annotate DEPENDENCIES/generic/include/boost/python/slice.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 #ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP
Chris@16 2 #define BOOST_PYTHON_SLICE_JDB20040105_HPP
Chris@16 3
Chris@16 4 // Copyright (c) 2004 Jonathan Brandmeyer
Chris@16 5 // Use, modification and distribution are subject to the
Chris@16 6 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 7 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 8
Chris@16 9 #include <boost/python/detail/prefix.hpp>
Chris@16 10 #include <boost/config.hpp>
Chris@16 11 #include <boost/python/object.hpp>
Chris@16 12 #include <boost/python/extract.hpp>
Chris@16 13 #include <boost/python/converter/pytype_object_mgr_traits.hpp>
Chris@16 14
Chris@16 15 #include <boost/iterator/iterator_traits.hpp>
Chris@16 16
Chris@16 17 #include <iterator>
Chris@16 18 #include <algorithm>
Chris@16 19
Chris@16 20 namespace boost { namespace python {
Chris@16 21
Chris@16 22 namespace detail
Chris@16 23 {
Chris@16 24 class BOOST_PYTHON_DECL slice_base : public object
Chris@16 25 {
Chris@16 26 public:
Chris@16 27 // Get the Python objects associated with the slice. In principle, these
Chris@16 28 // may be any arbitrary Python type, but in practice they are usually
Chris@16 29 // integers. If one or more parameter is ommited in the Python expression
Chris@16 30 // that created this slice, than that parameter is None here, and compares
Chris@16 31 // equal to a default-constructed boost::python::object.
Chris@16 32 // If a user-defined type wishes to support slicing, then support for the
Chris@16 33 // special meaning associated with negative indices is up to the user.
Chris@16 34 object start() const;
Chris@16 35 object stop() const;
Chris@16 36 object step() const;
Chris@16 37
Chris@16 38 protected:
Chris@16 39 explicit slice_base(PyObject*, PyObject*, PyObject*);
Chris@16 40
Chris@16 41 BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object)
Chris@16 42 };
Chris@16 43 }
Chris@16 44
Chris@16 45 class slice : public detail::slice_base
Chris@16 46 {
Chris@16 47 typedef detail::slice_base base;
Chris@16 48 public:
Chris@16 49 // Equivalent to slice(::)
Chris@16 50 slice() : base(0,0,0) {}
Chris@16 51
Chris@16 52 // Each argument must be slice_nil, or implicitly convertable to object.
Chris@16 53 // They should normally be integers.
Chris@16 54 template<typename Integer1, typename Integer2>
Chris@16 55 slice( Integer1 start, Integer2 stop)
Chris@16 56 : base( object(start).ptr(), object(stop).ptr(), 0 )
Chris@16 57 {}
Chris@16 58
Chris@16 59 template<typename Integer1, typename Integer2, typename Integer3>
Chris@16 60 slice( Integer1 start, Integer2 stop, Integer3 stride)
Chris@16 61 : base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )
Chris@16 62 {}
Chris@16 63
Chris@16 64 // The following algorithm is intended to automate the process of
Chris@16 65 // determining a slice range when you want to fully support negative
Chris@16 66 // indices and non-singular step sizes. Its functionallity is simmilar to
Chris@16 67 // PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.
Chris@16 68 // This template returns a slice::range struct that, when used in the
Chris@16 69 // following iterative loop, will traverse a slice of the function's
Chris@16 70 // arguments.
Chris@16 71 // while (start != end) {
Chris@16 72 // do_foo(...);
Chris@16 73 // std::advance( start, step);
Chris@16 74 // }
Chris@16 75 // do_foo(...); // repeat exactly once more.
Chris@16 76
Chris@16 77 // Arguments: a [begin, end) pair of STL-conforming random-access iterators.
Chris@16 78
Chris@16 79 // Return: slice::range, where start and stop define a _closed_ interval
Chris@16 80 // that covers at most [begin, end-1] of the provided arguments, and a step
Chris@16 81 // that is non-zero.
Chris@16 82
Chris@16 83 // Throws: error_already_set() if any of the indices are neither None nor
Chris@16 84 // integers, or the slice has a step value of zero.
Chris@16 85 // std::invalid_argument if the resulting range would be empty. Normally,
Chris@16 86 // you should catch this exception and return an empty sequence of the
Chris@16 87 // appropriate type.
Chris@16 88
Chris@16 89 // Performance: constant time for random-access iterators.
Chris@16 90
Chris@16 91 // Rationale:
Chris@16 92 // closed-interval: If an open interval were used, then for a non-singular
Chris@16 93 // value for step, the required state for the end iterator could be
Chris@16 94 // beyond the one-past-the-end postion of the specified range. While
Chris@16 95 // probably harmless, the behavior of STL-conforming iterators is
Chris@16 96 // undefined in this case.
Chris@16 97 // exceptions on zero-length range: It is impossible to define a closed
Chris@16 98 // interval over an empty range, so some other form of error checking
Chris@16 99 // would have to be used by the user to prevent undefined behavior. In
Chris@16 100 // the case where the user fails to catch the exception, it will simply
Chris@16 101 // be translated to Python by the default exception handling mechanisms.
Chris@16 102
Chris@16 103 template<typename RandomAccessIterator>
Chris@16 104 struct range
Chris@16 105 {
Chris@16 106 RandomAccessIterator start;
Chris@16 107 RandomAccessIterator stop;
Chris@16 108 typename iterator_difference<RandomAccessIterator>::type step;
Chris@16 109 };
Chris@16 110
Chris@16 111 template<typename RandomAccessIterator>
Chris@16 112 slice::range<RandomAccessIterator>
Chris@16 113 get_indices( const RandomAccessIterator& begin,
Chris@16 114 const RandomAccessIterator& end) const
Chris@16 115 {
Chris@16 116 // This is based loosely on PySlice_GetIndicesEx(), but it has been
Chris@16 117 // carefully crafted to ensure that these iterators never fall out of
Chris@16 118 // the range of the container.
Chris@16 119 slice::range<RandomAccessIterator> ret;
Chris@16 120
Chris@16 121 typedef typename iterator_difference<RandomAccessIterator>::type difference_type;
Chris@16 122 difference_type max_dist = boost::detail::distance(begin, end);
Chris@16 123
Chris@16 124 object slice_start = this->start();
Chris@16 125 object slice_stop = this->stop();
Chris@16 126 object slice_step = this->step();
Chris@16 127
Chris@16 128 // Extract the step.
Chris@16 129 if (slice_step == object()) {
Chris@16 130 ret.step = 1;
Chris@16 131 }
Chris@16 132 else {
Chris@16 133 ret.step = extract<long>( slice_step);
Chris@16 134 if (ret.step == 0) {
Chris@16 135 PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");
Chris@16 136 throw_error_already_set();
Chris@16 137 }
Chris@16 138 }
Chris@16 139
Chris@16 140 // Setup the start iterator.
Chris@16 141 if (slice_start == object()) {
Chris@16 142 if (ret.step < 0) {
Chris@16 143 ret.start = end;
Chris@16 144 --ret.start;
Chris@16 145 }
Chris@16 146 else
Chris@16 147 ret.start = begin;
Chris@16 148 }
Chris@16 149 else {
Chris@16 150 difference_type i = extract<long>( slice_start);
Chris@16 151 if (i >= max_dist && ret.step > 0)
Chris@16 152 throw std::invalid_argument( "Zero-length slice");
Chris@16 153 if (i >= 0) {
Chris@16 154 ret.start = begin;
Chris@16 155 BOOST_USING_STD_MIN();
Chris@16 156 std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));
Chris@16 157 }
Chris@16 158 else {
Chris@16 159 if (i < -max_dist && ret.step < 0)
Chris@16 160 throw std::invalid_argument( "Zero-length slice");
Chris@16 161 ret.start = end;
Chris@16 162 // Advance start (towards begin) not farther than begin.
Chris@16 163 std::advance( ret.start, (-i < max_dist) ? i : -max_dist );
Chris@16 164 }
Chris@16 165 }
Chris@16 166
Chris@16 167 // Set up the stop iterator. This one is a little trickier since slices
Chris@16 168 // define a [) range, and we are returning a [] range.
Chris@16 169 if (slice_stop == object()) {
Chris@16 170 if (ret.step < 0) {
Chris@16 171 ret.stop = begin;
Chris@16 172 }
Chris@16 173 else {
Chris@16 174 ret.stop = end;
Chris@16 175 std::advance( ret.stop, -1);
Chris@16 176 }
Chris@16 177 }
Chris@16 178 else {
Chris@16 179 difference_type i = extract<long>(slice_stop);
Chris@16 180 // First, branch on which direction we are going with this.
Chris@16 181 if (ret.step < 0) {
Chris@16 182 if (i+1 >= max_dist || i == -1)
Chris@16 183 throw std::invalid_argument( "Zero-length slice");
Chris@16 184
Chris@16 185 if (i >= 0) {
Chris@16 186 ret.stop = begin;
Chris@16 187 std::advance( ret.stop, i+1);
Chris@16 188 }
Chris@16 189 else { // i is negative, but more negative than -1.
Chris@16 190 ret.stop = end;
Chris@16 191 std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);
Chris@16 192 }
Chris@16 193 }
Chris@16 194 else { // stepping forward
Chris@16 195 if (i == 0 || -i >= max_dist)
Chris@16 196 throw std::invalid_argument( "Zero-length slice");
Chris@16 197
Chris@16 198 if (i > 0) {
Chris@16 199 ret.stop = begin;
Chris@16 200 std::advance( ret.stop, (std::min)( i-1, max_dist-1));
Chris@16 201 }
Chris@16 202 else { // i is negative, but not more negative than -max_dist
Chris@16 203 ret.stop = end;
Chris@16 204 std::advance( ret.stop, i-1);
Chris@16 205 }
Chris@16 206 }
Chris@16 207 }
Chris@16 208
Chris@16 209 // Now the fun part, handling the possibilites surrounding step.
Chris@16 210 // At this point, step has been initialized, ret.stop, and ret.step
Chris@16 211 // represent the widest possible range that could be traveled
Chris@16 212 // (inclusive), and final_dist is the maximum distance covered by the
Chris@16 213 // slice.
Chris@16 214 typename iterator_difference<RandomAccessIterator>::type final_dist =
Chris@16 215 boost::detail::distance( ret.start, ret.stop);
Chris@16 216
Chris@16 217 // First case, if both ret.start and ret.stop are equal, then step
Chris@16 218 // is irrelevant and we can return here.
Chris@16 219 if (final_dist == 0)
Chris@16 220 return ret;
Chris@16 221
Chris@16 222 // Second, if there is a sign mismatch, than the resulting range and
Chris@16 223 // step size conflict: std::advance( ret.start, ret.step) goes away from
Chris@16 224 // ret.stop.
Chris@16 225 if ((final_dist > 0) != (ret.step > 0))
Chris@16 226 throw std::invalid_argument( "Zero-length slice.");
Chris@16 227
Chris@16 228 // Finally, if the last step puts us past the end, we move ret.stop
Chris@16 229 // towards ret.start in the amount of the remainder.
Chris@16 230 // I don't remember all of the oolies surrounding negative modulii,
Chris@16 231 // so I am handling each of these cases separately.
Chris@16 232 if (final_dist < 0) {
Chris@16 233 difference_type remainder = -final_dist % -ret.step;
Chris@16 234 std::advance( ret.stop, remainder);
Chris@16 235 }
Chris@16 236 else {
Chris@16 237 difference_type remainder = final_dist % ret.step;
Chris@16 238 std::advance( ret.stop, -remainder);
Chris@16 239 }
Chris@16 240
Chris@16 241 return ret;
Chris@16 242 }
Chris@16 243
Chris@16 244 // Incorrect spelling. DO NOT USE. Only here for backward compatibility.
Chris@16 245 // Corrected 2011-06-14.
Chris@16 246 template<typename RandomAccessIterator>
Chris@16 247 slice::range<RandomAccessIterator>
Chris@16 248 get_indicies( const RandomAccessIterator& begin,
Chris@16 249 const RandomAccessIterator& end) const
Chris@16 250 {
Chris@16 251 return get_indices(begin, end);
Chris@16 252 }
Chris@16 253
Chris@16 254 public:
Chris@16 255 // This declaration, in conjunction with the specialization of
Chris@16 256 // object_manager_traits<> below, allows C++ functions accepting slice
Chris@16 257 // arguments to be called from from Python. These constructors should never
Chris@16 258 // be used in client code.
Chris@16 259 BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)
Chris@16 260 };
Chris@16 261
Chris@16 262
Chris@16 263 namespace converter {
Chris@16 264
Chris@16 265 template<>
Chris@16 266 struct object_manager_traits<slice>
Chris@16 267 : pytype_object_manager_traits<&PySlice_Type, slice>
Chris@16 268 {
Chris@16 269 };
Chris@16 270
Chris@16 271 } // !namesapce converter
Chris@16 272
Chris@16 273 } } // !namespace ::boost::python
Chris@16 274
Chris@16 275
Chris@16 276 #endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP