Chris@16
|
1 /*=============================================================================
|
Chris@16
|
2 Copyright (c) 2004 Angus Leeming
|
Chris@16
|
3 Copyright (c) 2004 Joel de Guzman
|
Chris@16
|
4
|
Chris@16
|
5 Distributed under the Boost Software License, Version 1.0. (See accompanying
|
Chris@16
|
6 file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
7 ==============================================================================*/
|
Chris@16
|
8 #ifndef BOOST_PHOENIX_CONTAINER_DETAIL_CONTAINER_HPP
|
Chris@16
|
9 #define BOOST_PHOENIX_CONTAINER_DETAIL_CONTAINER_HPP
|
Chris@16
|
10
|
Chris@16
|
11 #include <utility>
|
Chris@16
|
12 #include <boost/mpl/eval_if.hpp>
|
Chris@16
|
13 #include <boost/type_traits/is_same.hpp>
|
Chris@16
|
14 #include <boost/type_traits/is_const.hpp>
|
Chris@16
|
15
|
Chris@16
|
16 namespace boost { namespace phoenix { namespace stl
|
Chris@16
|
17 {
|
Chris@16
|
18 ///////////////////////////////////////////////////////////////////////////////
|
Chris@16
|
19 //
|
Chris@16
|
20 // Metafunctions "value_type_of", "key_type_of" etc.
|
Chris@16
|
21 //
|
Chris@16
|
22 // These metafunctions define a typedef "type" that returns the nested
|
Chris@16
|
23 // type if it exists. If not then the typedef returns void.
|
Chris@16
|
24 //
|
Chris@16
|
25 // For example, "value_type_of<std::vector<int> >::type" is "int" whilst
|
Chris@16
|
26 // "value_type_of<double>::type" is "void".
|
Chris@16
|
27 //
|
Chris@16
|
28 // I use a macro to define structs "value_type_of" etc simply to cut
|
Chris@16
|
29 // down on the amount of code. The macro is #undef-ed immediately after
|
Chris@16
|
30 // its final use.
|
Chris@16
|
31 //
|
Chris@16
|
32 /////////////////////////////////////////////////////////////////c//////////////
|
Chris@16
|
33 #define MEMBER_TYPE_OF(MEMBER_TYPE) \
|
Chris@16
|
34 template <typename C> \
|
Chris@16
|
35 struct BOOST_PP_CAT(MEMBER_TYPE, _of) \
|
Chris@16
|
36 { \
|
Chris@16
|
37 typedef typename C::MEMBER_TYPE type; \
|
Chris@16
|
38 }
|
Chris@16
|
39
|
Chris@16
|
40 MEMBER_TYPE_OF(allocator_type);
|
Chris@16
|
41 MEMBER_TYPE_OF(const_iterator);
|
Chris@16
|
42 MEMBER_TYPE_OF(const_reference);
|
Chris@16
|
43 MEMBER_TYPE_OF(const_reverse_iterator);
|
Chris@16
|
44 MEMBER_TYPE_OF(container_type);
|
Chris@16
|
45 MEMBER_TYPE_OF(data_type);
|
Chris@16
|
46 MEMBER_TYPE_OF(iterator);
|
Chris@16
|
47 MEMBER_TYPE_OF(key_compare);
|
Chris@16
|
48 MEMBER_TYPE_OF(key_type);
|
Chris@16
|
49 MEMBER_TYPE_OF(reference);
|
Chris@16
|
50 MEMBER_TYPE_OF(reverse_iterator);
|
Chris@16
|
51 MEMBER_TYPE_OF(size_type);
|
Chris@16
|
52 MEMBER_TYPE_OF(value_compare);
|
Chris@16
|
53 MEMBER_TYPE_OF(value_type);
|
Chris@16
|
54
|
Chris@16
|
55 #undef MEMBER_TYPE_OF
|
Chris@16
|
56
|
Chris@16
|
57 ///////////////////////////////////////////////////////////////////////////////
|
Chris@16
|
58 //
|
Chris@16
|
59 // Const-Qualified types.
|
Chris@16
|
60 //
|
Chris@16
|
61 // Many of the stl member functions have const and non-const
|
Chris@16
|
62 // overloaded versions that return distinct types. For example:
|
Chris@16
|
63 //
|
Chris@16
|
64 // iterator begin();
|
Chris@16
|
65 // const_iterator begin() const;
|
Chris@16
|
66 //
|
Chris@16
|
67 // The three class templates defined below,
|
Chris@16
|
68 // const_qualified_reference_of, const_qualified_iterator_of
|
Chris@16
|
69 // and const_qualified_reverse_iterator_of provide a means to extract
|
Chris@16
|
70 // this return type automatically.
|
Chris@16
|
71 //
|
Chris@16
|
72 ///////////////////////////////////////////////////////////////////////////////
|
Chris@16
|
73 template <typename C>
|
Chris@16
|
74 struct const_qualified_reference_of
|
Chris@16
|
75 {
|
Chris@16
|
76 typedef typename
|
Chris@16
|
77 boost::mpl::eval_if_c<
|
Chris@16
|
78 boost::is_const<C>::value
|
Chris@16
|
79 , const_reference_of<C>
|
Chris@16
|
80 , reference_of<C>
|
Chris@16
|
81 >::type
|
Chris@16
|
82 type;
|
Chris@16
|
83 };
|
Chris@16
|
84
|
Chris@16
|
85 template <typename C>
|
Chris@16
|
86 struct const_qualified_iterator_of
|
Chris@16
|
87 {
|
Chris@16
|
88 typedef typename
|
Chris@16
|
89 boost::mpl::eval_if_c<
|
Chris@16
|
90 boost::is_const<C>::value
|
Chris@16
|
91 , const_iterator_of<C>
|
Chris@16
|
92 , iterator_of<C>
|
Chris@16
|
93 >::type
|
Chris@16
|
94 type;
|
Chris@16
|
95 };
|
Chris@16
|
96
|
Chris@16
|
97 template <typename C>
|
Chris@16
|
98 struct const_qualified_reverse_iterator_of
|
Chris@16
|
99 {
|
Chris@16
|
100 typedef typename
|
Chris@16
|
101 boost::mpl::eval_if_c<
|
Chris@16
|
102 boost::is_const<C>::value
|
Chris@16
|
103 , const_reverse_iterator_of<C>
|
Chris@16
|
104 , reverse_iterator_of<C>
|
Chris@16
|
105 >::type
|
Chris@16
|
106 type;
|
Chris@16
|
107 };
|
Chris@16
|
108
|
Chris@16
|
109 ///////////////////////////////////////////////////////////////////////////////
|
Chris@16
|
110 //
|
Chris@16
|
111 // has_mapped_type<C>
|
Chris@16
|
112 //
|
Chris@16
|
113 // Given a container C, determine if it is a map or multimap
|
Chris@16
|
114 // by checking if it has a member type named "mapped_type".
|
Chris@16
|
115 //
|
Chris@16
|
116 ///////////////////////////////////////////////////////////////////////////////
|
Chris@16
|
117 namespace stl_impl
|
Chris@16
|
118 {
|
Chris@16
|
119 struct one { char a[1]; };
|
Chris@16
|
120 struct two { char a[2]; };
|
Chris@16
|
121
|
Chris@16
|
122 template <typename C>
|
Chris@16
|
123 one has_mapped_type(typename C::mapped_type(*)());
|
Chris@16
|
124
|
Chris@16
|
125 template <typename C>
|
Chris@16
|
126 two has_mapped_type(...);
|
Chris@16
|
127
|
Chris@16
|
128 template<typename T>
|
Chris@16
|
129 struct enable_if_is_void
|
Chris@16
|
130 {};
|
Chris@16
|
131
|
Chris@16
|
132 template<>
|
Chris@16
|
133 struct enable_if_is_void<void>
|
Chris@16
|
134 {
|
Chris@16
|
135 typedef void type;
|
Chris@16
|
136 };
|
Chris@16
|
137
|
Chris@16
|
138 template<typename T>
|
Chris@16
|
139 struct disable_if_is_void
|
Chris@16
|
140 {
|
Chris@16
|
141 typedef T type;
|
Chris@16
|
142 };
|
Chris@16
|
143
|
Chris@16
|
144 template<>
|
Chris@16
|
145 struct disable_if_is_void<void>
|
Chris@16
|
146 {};
|
Chris@16
|
147 }
|
Chris@16
|
148
|
Chris@16
|
149 template <typename C>
|
Chris@16
|
150 struct has_mapped_type
|
Chris@16
|
151 : boost::mpl::bool_<
|
Chris@16
|
152 sizeof(stl_impl::has_mapped_type<C>(0)) == sizeof(stl_impl::one)
|
Chris@16
|
153 >
|
Chris@16
|
154 {};
|
Chris@16
|
155
|
Chris@16
|
156 ///////////////////////////////////////////////////////////////////////////////
|
Chris@16
|
157 //
|
Chris@16
|
158 // map_insert_returns_pair<C>
|
Chris@16
|
159 //
|
Chris@16
|
160 // Distinguish a map from a multimap by checking the return type
|
Chris@16
|
161 // of its "insert" member function. A map returns a pair while
|
Chris@16
|
162 // a multimap returns an iterator.
|
Chris@16
|
163 //
|
Chris@16
|
164 ///////////////////////////////////////////////////////////////////////////////
|
Chris@16
|
165 namespace stl_impl
|
Chris@16
|
166 {
|
Chris@16
|
167 // Cool implementation of map_insert_returns_pair by Daniel Wallin.
|
Chris@16
|
168 // Thanks Daniel!!! I owe you a Pizza!
|
Chris@16
|
169
|
Chris@16
|
170 template<class A, class B>
|
Chris@16
|
171 one map_insert_returns_pair_check(std::pair<A,B> const&);
|
Chris@16
|
172
|
Chris@16
|
173 template <typename T>
|
Chris@16
|
174 two map_insert_returns_pair_check(T const&);
|
Chris@16
|
175
|
Chris@16
|
176 template <typename C>
|
Chris@16
|
177 struct map_insert_returns_pair
|
Chris@16
|
178 {
|
Chris@16
|
179 static typename C::value_type const& get;
|
Chris@16
|
180 BOOST_STATIC_CONSTANT(int,
|
Chris@16
|
181 value = sizeof(
|
Chris@16
|
182 map_insert_returns_pair_check(((C*)0)->insert(get))));
|
Chris@16
|
183 typedef boost::mpl::bool_<value == sizeof(one)> type;
|
Chris@16
|
184 };
|
Chris@16
|
185 }
|
Chris@16
|
186
|
Chris@16
|
187 template <typename C>
|
Chris@16
|
188 struct map_insert_returns_pair
|
Chris@16
|
189 : stl_impl::map_insert_returns_pair<C>::type {};
|
Chris@16
|
190
|
Chris@16
|
191 }}} // namespace boost::phoenix::stl
|
Chris@16
|
192
|
Chris@16
|
193 #endif // BOOST_PHOENIX_STL_CONTAINER_TRAITS_HPP
|