annotate DEPENDENCIES/generic/include/boost/multiprecision/detail/functions/pow.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@16 1
Chris@101 2 // Copyright Christopher Kormanyos 2002 - 2013.
Chris@101 3 // Copyright 2011 - 2013 John Maddock. Distributed under the Boost
Chris@16 4 // Distributed under the Boost Software License, Version 1.0.
Chris@16 5 // (See accompanying file LICENSE_1_0.txt or copy at
Chris@16 6 // http://www.boost.org/LICENSE_1_0.txt)
Chris@16 7
Chris@16 8 // This work is based on an earlier work:
Chris@16 9 // "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
Chris@16 10 // in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
Chris@16 11 //
Chris@16 12 // This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp
Chris@16 13 //
Chris@16 14
Chris@16 15 namespace detail{
Chris@16 16
Chris@16 17 template<typename T, typename U>
Chris@16 18 inline void pow_imp(T& result, const T& t, const U& p, const mpl::false_&)
Chris@16 19 {
Chris@16 20 // Compute the pure power of typename T t^p.
Chris@16 21 // Use the S-and-X binary method, as described in
Chris@16 22 // D. E. Knuth, "The Art of Computer Programming", Vol. 2,
Chris@16 23 // Section 4.6.3 . The resulting computational complexity
Chris@16 24 // is order log2[abs(p)].
Chris@16 25
Chris@16 26 typedef typename boost::multiprecision::detail::canonical<U, T>::type int_type;
Chris@16 27
Chris@16 28 if(&result == &t)
Chris@16 29 {
Chris@16 30 T temp;
Chris@16 31 pow_imp(temp, t, p, mpl::false_());
Chris@16 32 result = temp;
Chris@16 33 return;
Chris@16 34 }
Chris@16 35
Chris@16 36 // This will store the result.
Chris@16 37 if(U(p % U(2)) != U(0))
Chris@16 38 {
Chris@16 39 result = t;
Chris@16 40 }
Chris@16 41 else
Chris@16 42 result = int_type(1);
Chris@16 43
Chris@16 44 U p2(p);
Chris@16 45
Chris@16 46 // The variable x stores the binary powers of t.
Chris@16 47 T x(t);
Chris@16 48
Chris@16 49 while(U(p2 /= 2) != U(0))
Chris@16 50 {
Chris@16 51 // Square x for each binary power.
Chris@16 52 eval_multiply(x, x);
Chris@16 53
Chris@16 54 const bool has_binary_power = (U(p2 % U(2)) != U(0));
Chris@16 55
Chris@16 56 if(has_binary_power)
Chris@16 57 {
Chris@16 58 // Multiply the result with each binary power contained in the exponent.
Chris@16 59 eval_multiply(result, x);
Chris@16 60 }
Chris@16 61 }
Chris@16 62 }
Chris@16 63
Chris@16 64 template<typename T, typename U>
Chris@16 65 inline void pow_imp(T& result, const T& t, const U& p, const mpl::true_&)
Chris@16 66 {
Chris@16 67 // Signed integer power, just take care of the sign then call the unsigned version:
Chris@16 68 typedef typename boost::multiprecision::detail::canonical<U, T>::type int_type;
Chris@16 69 typedef typename make_unsigned<U>::type ui_type;
Chris@16 70
Chris@16 71 if(p < 0)
Chris@16 72 {
Chris@16 73 T temp;
Chris@16 74 temp = static_cast<int_type>(1);
Chris@16 75 T denom;
Chris@16 76 pow_imp(denom, t, static_cast<ui_type>(-p), mpl::false_());
Chris@16 77 eval_divide(result, temp, denom);
Chris@16 78 return;
Chris@16 79 }
Chris@16 80 pow_imp(result, t, static_cast<ui_type>(p), mpl::false_());
Chris@16 81 }
Chris@16 82
Chris@16 83 } // namespace detail
Chris@16 84
Chris@16 85 template<typename T, typename U>
Chris@16 86 inline typename enable_if<is_integral<U> >::type eval_pow(T& result, const T& t, const U& p)
Chris@16 87 {
Chris@16 88 detail::pow_imp(result, t, p, boost::is_signed<U>());
Chris@16 89 }
Chris@16 90
Chris@16 91 template <class T>
Chris@16 92 void hyp0F0(T& H0F0, const T& x)
Chris@16 93 {
Chris@16 94 // Compute the series representation of Hypergeometric0F0 taken from
Chris@16 95 // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F0/06/01/
Chris@16 96 // There are no checks on input range or parameter boundaries.
Chris@16 97
Chris@16 98 typedef typename mpl::front<typename T::unsigned_types>::type ui_type;
Chris@16 99
Chris@16 100 BOOST_ASSERT(&H0F0 != &x);
Chris@16 101 long tol = boost::multiprecision::detail::digits2<number<T, et_on> >::value;
Chris@16 102 T t;
Chris@16 103
Chris@16 104 T x_pow_n_div_n_fact(x);
Chris@16 105
Chris@16 106 eval_add(H0F0, x_pow_n_div_n_fact, ui_type(1));
Chris@16 107
Chris@16 108 T lim;
Chris@16 109 eval_ldexp(lim, H0F0, 1 - tol);
Chris@16 110 if(eval_get_sign(lim) < 0)
Chris@16 111 lim.negate();
Chris@16 112
Chris@16 113 ui_type n;
Chris@16 114
Chris@16 115 static const unsigned series_limit =
Chris@16 116 boost::multiprecision::detail::digits2<number<T, et_on> >::value < 100
Chris@16 117 ? 100 : boost::multiprecision::detail::digits2<number<T, et_on> >::value;
Chris@16 118 // Series expansion of hyperg_0f0(; ; x).
Chris@16 119 for(n = 2; n < series_limit; ++n)
Chris@16 120 {
Chris@16 121 eval_multiply(x_pow_n_div_n_fact, x);
Chris@16 122 eval_divide(x_pow_n_div_n_fact, n);
Chris@16 123 eval_add(H0F0, x_pow_n_div_n_fact);
Chris@16 124 bool neg = eval_get_sign(x_pow_n_div_n_fact) < 0;
Chris@16 125 if(neg)
Chris@16 126 x_pow_n_div_n_fact.negate();
Chris@16 127 if(lim.compare(x_pow_n_div_n_fact) > 0)
Chris@16 128 break;
Chris@16 129 if(neg)
Chris@16 130 x_pow_n_div_n_fact.negate();
Chris@16 131 }
Chris@16 132 if(n >= series_limit)
Chris@16 133 BOOST_THROW_EXCEPTION(std::runtime_error("H0F0 failed to converge"));
Chris@16 134 }
Chris@16 135
Chris@16 136 template <class T>
Chris@16 137 void hyp1F0(T& H1F0, const T& a, const T& x)
Chris@16 138 {
Chris@16 139 // Compute the series representation of Hypergeometric1F0 taken from
Chris@16 140 // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F0/06/01/01/
Chris@16 141 // and also see the corresponding section for the power function (i.e. x^a).
Chris@16 142 // There are no checks on input range or parameter boundaries.
Chris@16 143
Chris@16 144 typedef typename boost::multiprecision::detail::canonical<int, T>::type si_type;
Chris@16 145
Chris@16 146 BOOST_ASSERT(&H1F0 != &x);
Chris@16 147 BOOST_ASSERT(&H1F0 != &a);
Chris@16 148
Chris@16 149 T x_pow_n_div_n_fact(x);
Chris@16 150 T pochham_a (a);
Chris@16 151 T ap (a);
Chris@16 152
Chris@16 153 eval_multiply(H1F0, pochham_a, x_pow_n_div_n_fact);
Chris@16 154 eval_add(H1F0, si_type(1));
Chris@16 155 T lim;
Chris@16 156 eval_ldexp(lim, H1F0, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value);
Chris@16 157 if(eval_get_sign(lim) < 0)
Chris@16 158 lim.negate();
Chris@16 159
Chris@16 160 si_type n;
Chris@16 161 T term, part;
Chris@16 162
Chris@16 163 static const unsigned series_limit =
Chris@16 164 boost::multiprecision::detail::digits2<number<T, et_on> >::value < 100
Chris@16 165 ? 100 : boost::multiprecision::detail::digits2<number<T, et_on> >::value;
Chris@16 166 // Series expansion of hyperg_1f0(a; ; x).
Chris@16 167 for(n = 2; n < series_limit; n++)
Chris@16 168 {
Chris@16 169 eval_multiply(x_pow_n_div_n_fact, x);
Chris@16 170 eval_divide(x_pow_n_div_n_fact, n);
Chris@16 171 eval_increment(ap);
Chris@16 172 eval_multiply(pochham_a, ap);
Chris@16 173 eval_multiply(term, pochham_a, x_pow_n_div_n_fact);
Chris@16 174 eval_add(H1F0, term);
Chris@16 175 if(eval_get_sign(term) < 0)
Chris@16 176 term.negate();
Chris@16 177 if(lim.compare(term) >= 0)
Chris@16 178 break;
Chris@16 179 }
Chris@16 180 if(n >= series_limit)
Chris@16 181 BOOST_THROW_EXCEPTION(std::runtime_error("H1F0 failed to converge"));
Chris@16 182 }
Chris@16 183
Chris@16 184 template <class T>
Chris@16 185 void eval_exp(T& result, const T& x)
Chris@16 186 {
Chris@16 187 BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The exp function is only valid for floating point types.");
Chris@16 188 if(&x == &result)
Chris@16 189 {
Chris@16 190 T temp;
Chris@16 191 eval_exp(temp, x);
Chris@16 192 result = temp;
Chris@16 193 return;
Chris@16 194 }
Chris@16 195 typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
Chris@16 196 typedef typename boost::multiprecision::detail::canonical<int, T>::type si_type;
Chris@16 197 typedef typename T::exponent_type exp_type;
Chris@16 198 typedef typename boost::multiprecision::detail::canonical<exp_type, T>::type canonical_exp_type;
Chris@16 199
Chris@16 200 // Handle special arguments.
Chris@16 201 int type = eval_fpclassify(x);
Chris@16 202 bool isneg = eval_get_sign(x) < 0;
Chris@101 203 if(type == (int)FP_NAN)
Chris@16 204 {
Chris@16 205 result = x;
Chris@16 206 return;
Chris@16 207 }
Chris@101 208 else if(type == (int)FP_INFINITE)
Chris@16 209 {
Chris@16 210 result = x;
Chris@16 211 if(isneg)
Chris@16 212 result = ui_type(0u);
Chris@16 213 else
Chris@16 214 result = x;
Chris@16 215 return;
Chris@16 216 }
Chris@101 217 else if(type == (int)FP_ZERO)
Chris@16 218 {
Chris@16 219 result = ui_type(1);
Chris@16 220 return;
Chris@16 221 }
Chris@16 222
Chris@16 223 // Get local copy of argument and force it to be positive.
Chris@16 224 T xx = x;
Chris@16 225 T exp_series;
Chris@16 226 if(isneg)
Chris@16 227 xx.negate();
Chris@16 228
Chris@16 229 // Check the range of the argument.
Chris@16 230 if(xx.compare(si_type(1)) <= 0)
Chris@16 231 {
Chris@16 232 //
Chris@16 233 // Use series for exp(x) - 1:
Chris@16 234 //
Chris@16 235 T lim = std::numeric_limits<number<T, et_on> >::epsilon().backend();
Chris@16 236 unsigned k = 2;
Chris@16 237 exp_series = xx;
Chris@16 238 result = si_type(1);
Chris@16 239 if(isneg)
Chris@16 240 eval_subtract(result, exp_series);
Chris@16 241 else
Chris@16 242 eval_add(result, exp_series);
Chris@16 243 eval_multiply(exp_series, xx);
Chris@16 244 eval_divide(exp_series, ui_type(k));
Chris@16 245 eval_add(result, exp_series);
Chris@16 246 while(exp_series.compare(lim) > 0)
Chris@16 247 {
Chris@16 248 ++k;
Chris@16 249 eval_multiply(exp_series, xx);
Chris@16 250 eval_divide(exp_series, ui_type(k));
Chris@16 251 if(isneg && (k&1))
Chris@16 252 eval_subtract(result, exp_series);
Chris@16 253 else
Chris@16 254 eval_add(result, exp_series);
Chris@16 255 }
Chris@16 256 return;
Chris@16 257 }
Chris@16 258
Chris@16 259 // Check for pure-integer arguments which can be either signed or unsigned.
Chris@16 260 typename boost::multiprecision::detail::canonical<boost::intmax_t, T>::type ll;
Chris@16 261 eval_trunc(exp_series, x);
Chris@16 262 eval_convert_to(&ll, exp_series);
Chris@16 263 if(x.compare(ll) == 0)
Chris@16 264 {
Chris@16 265 detail::pow_imp(result, get_constant_e<T>(), ll, mpl::true_());
Chris@16 266 return;
Chris@16 267 }
Chris@16 268
Chris@16 269 // The algorithm for exp has been taken from MPFUN.
Chris@16 270 // exp(t) = [ (1 + r + r^2/2! + r^3/3! + r^4/4! ...)^p2 ] * 2^n
Chris@16 271 // where p2 is a power of 2 such as 2048, r = t_prime / p2, and
Chris@16 272 // t_prime = t - n*ln2, with n chosen to minimize the absolute
Chris@16 273 // value of t_prime. In the resulting Taylor series, which is
Chris@16 274 // implemented as a hypergeometric function, |r| is bounded by
Chris@16 275 // ln2 / p2. For small arguments, no scaling is done.
Chris@16 276
Chris@16 277 // Compute the exponential series of the (possibly) scaled argument.
Chris@16 278
Chris@16 279 eval_divide(result, xx, get_constant_ln2<T>());
Chris@16 280 exp_type n;
Chris@16 281 eval_convert_to(&n, result);
Chris@16 282
Chris@16 283 // The scaling is 2^11 = 2048.
Chris@16 284 static const si_type p2 = static_cast<si_type>(si_type(1) << 11);
Chris@16 285
Chris@16 286 eval_multiply(exp_series, get_constant_ln2<T>(), static_cast<canonical_exp_type>(n));
Chris@16 287 eval_subtract(exp_series, xx);
Chris@16 288 eval_divide(exp_series, p2);
Chris@16 289 exp_series.negate();
Chris@16 290 hyp0F0(result, exp_series);
Chris@16 291
Chris@16 292 detail::pow_imp(exp_series, result, p2, mpl::true_());
Chris@16 293 result = ui_type(1);
Chris@16 294 eval_ldexp(result, result, n);
Chris@16 295 eval_multiply(exp_series, result);
Chris@16 296
Chris@16 297 if(isneg)
Chris@16 298 eval_divide(result, ui_type(1), exp_series);
Chris@16 299 else
Chris@16 300 result = exp_series;
Chris@16 301 }
Chris@16 302
Chris@16 303 template <class T>
Chris@16 304 void eval_log(T& result, const T& arg)
Chris@16 305 {
Chris@16 306 BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The log function is only valid for floating point types.");
Chris@16 307 //
Chris@16 308 // We use a variation of http://dlmf.nist.gov/4.45#i
Chris@16 309 // using frexp to reduce the argument to x * 2^n,
Chris@16 310 // then let y = x - 1 and compute:
Chris@16 311 // log(x) = log(2) * n + log1p(1 + y)
Chris@16 312 //
Chris@16 313 typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
Chris@16 314 typedef typename T::exponent_type exp_type;
Chris@16 315 typedef typename boost::multiprecision::detail::canonical<exp_type, T>::type canonical_exp_type;
Chris@16 316 typedef typename mpl::front<typename T::float_types>::type fp_type;
Chris@16 317
Chris@16 318 exp_type e;
Chris@16 319 T t;
Chris@16 320 eval_frexp(t, arg, &e);
Chris@16 321 bool alternate = false;
Chris@16 322
Chris@16 323 if(t.compare(fp_type(2) / fp_type(3)) <= 0)
Chris@16 324 {
Chris@16 325 alternate = true;
Chris@16 326 eval_ldexp(t, t, 1);
Chris@16 327 --e;
Chris@16 328 }
Chris@16 329
Chris@16 330 eval_multiply(result, get_constant_ln2<T>(), canonical_exp_type(e));
Chris@16 331 INSTRUMENT_BACKEND(result);
Chris@16 332 eval_subtract(t, ui_type(1)); /* -0.3 <= t <= 0.3 */
Chris@16 333 if(!alternate)
Chris@16 334 t.negate(); /* 0 <= t <= 0.33333 */
Chris@16 335 T pow = t;
Chris@16 336 T lim;
Chris@16 337 T t2;
Chris@16 338
Chris@16 339 if(alternate)
Chris@16 340 eval_add(result, t);
Chris@16 341 else
Chris@16 342 eval_subtract(result, t);
Chris@16 343
Chris@16 344 eval_multiply(lim, result, std::numeric_limits<number<T, et_on> >::epsilon().backend());
Chris@16 345 if(eval_get_sign(lim) < 0)
Chris@16 346 lim.negate();
Chris@16 347 INSTRUMENT_BACKEND(lim);
Chris@16 348
Chris@16 349 ui_type k = 1;
Chris@16 350 do
Chris@16 351 {
Chris@16 352 ++k;
Chris@16 353 eval_multiply(pow, t);
Chris@16 354 eval_divide(t2, pow, k);
Chris@16 355 INSTRUMENT_BACKEND(t2);
Chris@16 356 if(alternate && ((k & 1) != 0))
Chris@16 357 eval_add(result, t2);
Chris@16 358 else
Chris@16 359 eval_subtract(result, t2);
Chris@16 360 INSTRUMENT_BACKEND(result);
Chris@16 361 }while(lim.compare(t2) < 0);
Chris@16 362 }
Chris@16 363
Chris@16 364 template <class T>
Chris@16 365 const T& get_constant_log10()
Chris@16 366 {
Chris@16 367 static T result;
Chris@16 368 static bool b = false;
Chris@16 369 if(!b)
Chris@16 370 {
Chris@16 371 typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
Chris@16 372 T ten;
Chris@16 373 ten = ui_type(10u);
Chris@16 374 eval_log(result, ten);
Chris@16 375 }
Chris@16 376
Chris@16 377 constant_initializer<T, &get_constant_log10<T> >::do_nothing();
Chris@16 378
Chris@16 379 return result;
Chris@16 380 }
Chris@16 381
Chris@16 382 template <class T>
Chris@16 383 void eval_log10(T& result, const T& arg)
Chris@16 384 {
Chris@16 385 BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The log10 function is only valid for floating point types.");
Chris@16 386 eval_log(result, arg);
Chris@16 387 eval_divide(result, get_constant_log10<T>());
Chris@16 388 }
Chris@16 389
Chris@16 390 template<typename T>
Chris@16 391 inline void eval_pow(T& result, const T& x, const T& a)
Chris@16 392 {
Chris@16 393 BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The pow function is only valid for floating point types.");
Chris@16 394 typedef typename boost::multiprecision::detail::canonical<int, T>::type si_type;
Chris@16 395 typedef typename mpl::front<typename T::float_types>::type fp_type;
Chris@16 396
Chris@16 397 if((&result == &x) || (&result == &a))
Chris@16 398 {
Chris@16 399 T t;
Chris@16 400 eval_pow(t, x, a);
Chris@16 401 result = t;
Chris@16 402 return;
Chris@16 403 }
Chris@16 404
Chris@16 405 if(a.compare(si_type(1)) == 0)
Chris@16 406 {
Chris@16 407 result = x;
Chris@16 408 return;
Chris@16 409 }
Chris@16 410
Chris@16 411 int type = eval_fpclassify(x);
Chris@16 412
Chris@16 413 switch(type)
Chris@16 414 {
Chris@16 415 case FP_INFINITE:
Chris@16 416 result = x;
Chris@16 417 return;
Chris@16 418 case FP_ZERO:
Chris@16 419 switch(eval_fpclassify(a))
Chris@16 420 {
Chris@16 421 case FP_ZERO:
Chris@16 422 result = si_type(1);
Chris@16 423 break;
Chris@16 424 case FP_NAN:
Chris@16 425 result = a;
Chris@16 426 break;
Chris@16 427 default:
Chris@16 428 result = x;
Chris@16 429 break;
Chris@16 430 }
Chris@16 431 return;
Chris@16 432 case FP_NAN:
Chris@16 433 result = x;
Chris@16 434 return;
Chris@16 435 default: ;
Chris@16 436 }
Chris@16 437
Chris@16 438 int s = eval_get_sign(a);
Chris@16 439 if(s == 0)
Chris@16 440 {
Chris@16 441 result = si_type(1);
Chris@16 442 return;
Chris@16 443 }
Chris@16 444
Chris@16 445 if(s < 0)
Chris@16 446 {
Chris@16 447 T t, da;
Chris@16 448 t = a;
Chris@16 449 t.negate();
Chris@16 450 eval_pow(da, x, t);
Chris@16 451 eval_divide(result, si_type(1), da);
Chris@16 452 return;
Chris@16 453 }
Chris@16 454
Chris@16 455 typename boost::multiprecision::detail::canonical<boost::intmax_t, T>::type an;
Chris@16 456 T fa;
Chris@16 457 try
Chris@16 458 {
Chris@16 459 eval_convert_to(&an, a);
Chris@16 460 if(a.compare(an) == 0)
Chris@16 461 {
Chris@16 462 detail::pow_imp(result, x, an, mpl::true_());
Chris@16 463 return;
Chris@16 464 }
Chris@16 465 }
Chris@16 466 catch(const std::exception&)
Chris@16 467 {
Chris@16 468 // conversion failed, just fall through, value is not an integer.
Chris@16 469 an = (std::numeric_limits<boost::intmax_t>::max)();
Chris@16 470 }
Chris@16 471
Chris@16 472 if((eval_get_sign(x) < 0))
Chris@16 473 {
Chris@16 474 typename boost::multiprecision::detail::canonical<boost::uintmax_t, T>::type aun;
Chris@16 475 try
Chris@16 476 {
Chris@16 477 eval_convert_to(&aun, a);
Chris@16 478 if(a.compare(aun) == 0)
Chris@16 479 {
Chris@16 480 fa = x;
Chris@16 481 fa.negate();
Chris@16 482 eval_pow(result, fa, a);
Chris@16 483 if(aun & 1u)
Chris@16 484 result.negate();
Chris@16 485 return;
Chris@16 486 }
Chris@16 487 }
Chris@16 488 catch(const std::exception&)
Chris@16 489 {
Chris@16 490 // conversion failed, just fall through, value is not an integer.
Chris@16 491 }
Chris@16 492 if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
Chris@16 493 result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
Chris@16 494 else
Chris@16 495 {
Chris@16 496 BOOST_THROW_EXCEPTION(std::domain_error("Result of pow is undefined or non-real and there is no NaN for this number type."));
Chris@16 497 }
Chris@16 498 return;
Chris@16 499 }
Chris@16 500
Chris@16 501 T t, da;
Chris@16 502
Chris@16 503 eval_subtract(da, a, an);
Chris@16 504
Chris@16 505 if((x.compare(fp_type(0.5)) >= 0) && (x.compare(fp_type(0.9)) < 0))
Chris@16 506 {
Chris@16 507 if(a.compare(fp_type(1e-5f)) <= 0)
Chris@16 508 {
Chris@16 509 // Series expansion for small a.
Chris@16 510 eval_log(t, x);
Chris@16 511 eval_multiply(t, a);
Chris@16 512 hyp0F0(result, t);
Chris@16 513 return;
Chris@16 514 }
Chris@16 515 else
Chris@16 516 {
Chris@16 517 // Series expansion for moderately sized x. Note that for large power of a,
Chris@16 518 // the power of the integer part of a is calculated using the pown function.
Chris@16 519 if(an)
Chris@16 520 {
Chris@16 521 da.negate();
Chris@16 522 t = si_type(1);
Chris@16 523 eval_subtract(t, x);
Chris@16 524 hyp1F0(result, da, t);
Chris@16 525 detail::pow_imp(t, x, an, mpl::true_());
Chris@16 526 eval_multiply(result, t);
Chris@16 527 }
Chris@16 528 else
Chris@16 529 {
Chris@16 530 da = a;
Chris@16 531 da.negate();
Chris@16 532 t = si_type(1);
Chris@16 533 eval_subtract(t, x);
Chris@16 534 hyp1F0(result, da, t);
Chris@16 535 }
Chris@16 536 }
Chris@16 537 }
Chris@16 538 else
Chris@16 539 {
Chris@16 540 // Series expansion for pow(x, a). Note that for large power of a, the power
Chris@16 541 // of the integer part of a is calculated using the pown function.
Chris@16 542 if(an)
Chris@16 543 {
Chris@16 544 eval_log(t, x);
Chris@16 545 eval_multiply(t, da);
Chris@16 546 eval_exp(result, t);
Chris@16 547 detail::pow_imp(t, x, an, mpl::true_());
Chris@16 548 eval_multiply(result, t);
Chris@16 549 }
Chris@16 550 else
Chris@16 551 {
Chris@16 552 eval_log(t, x);
Chris@16 553 eval_multiply(t, a);
Chris@16 554 eval_exp(result, t);
Chris@16 555 }
Chris@16 556 }
Chris@16 557 }
Chris@16 558
Chris@16 559 template<class T, class A>
Chris@16 560 inline typename enable_if<is_floating_point<A>, void>::type eval_pow(T& result, const T& x, const A& a)
Chris@16 561 {
Chris@16 562 // Note this one is restricted to float arguments since pow.hpp already has a version for
Chris@16 563 // integer powers....
Chris@16 564 typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
Chris@16 565 typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
Chris@16 566 cast_type c;
Chris@16 567 c = a;
Chris@16 568 eval_pow(result, x, c);
Chris@16 569 }
Chris@16 570
Chris@16 571 template<class T, class A>
Chris@16 572 inline typename enable_if<is_arithmetic<A>, void>::type eval_pow(T& result, const A& x, const T& a)
Chris@16 573 {
Chris@16 574 typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
Chris@16 575 typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
Chris@16 576 cast_type c;
Chris@16 577 c = x;
Chris@16 578 eval_pow(result, c, a);
Chris@16 579 }
Chris@16 580
Chris@16 581 namespace detail{
Chris@16 582
Chris@16 583 template <class T>
Chris@16 584 void small_sinh_series(T x, T& result)
Chris@16 585 {
Chris@16 586 typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
Chris@16 587 bool neg = eval_get_sign(x) < 0;
Chris@16 588 if(neg)
Chris@16 589 x.negate();
Chris@16 590 T p(x);
Chris@16 591 T mult(x);
Chris@16 592 eval_multiply(mult, x);
Chris@16 593 result = x;
Chris@16 594 ui_type k = 1;
Chris@16 595
Chris@16 596 T lim(x);
Chris@16 597 eval_ldexp(lim, lim, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value);
Chris@16 598
Chris@16 599 do
Chris@16 600 {
Chris@16 601 eval_multiply(p, mult);
Chris@16 602 eval_divide(p, ++k);
Chris@16 603 eval_divide(p, ++k);
Chris@16 604 eval_add(result, p);
Chris@16 605 }while(p.compare(lim) >= 0);
Chris@16 606 if(neg)
Chris@16 607 result.negate();
Chris@16 608 }
Chris@16 609
Chris@16 610 template <class T>
Chris@16 611 void sinhcosh(const T& x, T* p_sinh, T* p_cosh)
Chris@16 612 {
Chris@16 613 typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
Chris@16 614 typedef typename mpl::front<typename T::float_types>::type fp_type;
Chris@16 615
Chris@16 616 switch(eval_fpclassify(x))
Chris@16 617 {
Chris@16 618 case FP_NAN:
Chris@16 619 case FP_INFINITE:
Chris@16 620 if(p_sinh)
Chris@16 621 *p_sinh = x;
Chris@16 622 if(p_cosh)
Chris@16 623 {
Chris@16 624 *p_cosh = x;
Chris@16 625 if(eval_get_sign(x) < 0)
Chris@16 626 p_cosh->negate();
Chris@16 627 }
Chris@16 628 return;
Chris@16 629 case FP_ZERO:
Chris@16 630 if(p_sinh)
Chris@16 631 *p_sinh = x;
Chris@16 632 if(p_cosh)
Chris@16 633 *p_cosh = ui_type(1);
Chris@16 634 return;
Chris@16 635 default: ;
Chris@16 636 }
Chris@16 637
Chris@16 638 bool small_sinh = eval_get_sign(x) < 0 ? x.compare(fp_type(-0.5)) > 0 : x.compare(fp_type(0.5)) < 0;
Chris@16 639
Chris@16 640 if(p_cosh || !small_sinh)
Chris@16 641 {
Chris@16 642 T e_px, e_mx;
Chris@16 643 eval_exp(e_px, x);
Chris@16 644 eval_divide(e_mx, ui_type(1), e_px);
Chris@16 645
Chris@16 646 if(p_sinh)
Chris@16 647 {
Chris@16 648 if(small_sinh)
Chris@16 649 {
Chris@16 650 small_sinh_series(x, *p_sinh);
Chris@16 651 }
Chris@16 652 else
Chris@16 653 {
Chris@16 654 eval_subtract(*p_sinh, e_px, e_mx);
Chris@16 655 eval_ldexp(*p_sinh, *p_sinh, -1);
Chris@16 656 }
Chris@16 657 }
Chris@16 658 if(p_cosh)
Chris@16 659 {
Chris@16 660 eval_add(*p_cosh, e_px, e_mx);
Chris@16 661 eval_ldexp(*p_cosh, *p_cosh, -1);
Chris@16 662 }
Chris@16 663 }
Chris@16 664 else
Chris@16 665 {
Chris@16 666 small_sinh_series(x, *p_sinh);
Chris@16 667 }
Chris@16 668 }
Chris@16 669
Chris@16 670 } // namespace detail
Chris@16 671
Chris@16 672 template <class T>
Chris@16 673 inline void eval_sinh(T& result, const T& x)
Chris@16 674 {
Chris@16 675 BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The sinh function is only valid for floating point types.");
Chris@16 676 detail::sinhcosh(x, &result, static_cast<T*>(0));
Chris@16 677 }
Chris@16 678
Chris@16 679 template <class T>
Chris@16 680 inline void eval_cosh(T& result, const T& x)
Chris@16 681 {
Chris@16 682 BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The cosh function is only valid for floating point types.");
Chris@16 683 detail::sinhcosh(x, static_cast<T*>(0), &result);
Chris@16 684 }
Chris@16 685
Chris@16 686 template <class T>
Chris@16 687 inline void eval_tanh(T& result, const T& x)
Chris@16 688 {
Chris@16 689 BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The tanh function is only valid for floating point types.");
Chris@16 690 T c;
Chris@16 691 detail::sinhcosh(x, &result, &c);
Chris@16 692 eval_divide(result, c);
Chris@16 693 }
Chris@16 694