annotate DEPENDENCIES/generic/include/boost/math/special_functions/zeta.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@101 1 // Copyright John Maddock 2007, 2014.
Chris@16 2 // Use, modification and distribution are subject to the
Chris@16 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5
Chris@16 6 #ifndef BOOST_MATH_ZETA_HPP
Chris@16 7 #define BOOST_MATH_ZETA_HPP
Chris@16 8
Chris@16 9 #ifdef _MSC_VER
Chris@16 10 #pragma once
Chris@16 11 #endif
Chris@16 12
Chris@101 13 #include <boost/math/special_functions/math_fwd.hpp>
Chris@16 14 #include <boost/math/tools/precision.hpp>
Chris@16 15 #include <boost/math/tools/series.hpp>
Chris@16 16 #include <boost/math/tools/big_constant.hpp>
Chris@16 17 #include <boost/math/policies/error_handling.hpp>
Chris@16 18 #include <boost/math/special_functions/gamma.hpp>
Chris@101 19 #include <boost/math/special_functions/factorials.hpp>
Chris@16 20 #include <boost/math/special_functions/sin_pi.hpp>
Chris@16 21
Chris@16 22 namespace boost{ namespace math{ namespace detail{
Chris@16 23
Chris@16 24 #if 0
Chris@16 25 //
Chris@16 26 // This code is commented out because we have a better more rapidly converging series
Chris@16 27 // now. Retained for future reference and in case the new code causes any issues down the line....
Chris@16 28 //
Chris@16 29
Chris@16 30 template <class T, class Policy>
Chris@16 31 struct zeta_series_cache_size
Chris@16 32 {
Chris@16 33 //
Chris@16 34 // Work how large to make our cache size when evaluating the series
Chris@16 35 // evaluation: normally this is just large enough for the series
Chris@16 36 // to have converged, but for arbitrary precision types we need a
Chris@16 37 // really large cache to achieve reasonable precision in a reasonable
Chris@16 38 // time. This is important when constructing rational approximations
Chris@16 39 // to zeta for example.
Chris@16 40 //
Chris@16 41 typedef typename boost::math::policies::precision<T,Policy>::type precision_type;
Chris@16 42 typedef typename mpl::if_<
Chris@16 43 mpl::less_equal<precision_type, mpl::int_<0> >,
Chris@16 44 mpl::int_<5000>,
Chris@16 45 typename mpl::if_<
Chris@16 46 mpl::less_equal<precision_type, mpl::int_<64> >,
Chris@16 47 mpl::int_<70>,
Chris@16 48 typename mpl::if_<
Chris@16 49 mpl::less_equal<precision_type, mpl::int_<113> >,
Chris@16 50 mpl::int_<100>,
Chris@16 51 mpl::int_<5000>
Chris@16 52 >::type
Chris@16 53 >::type
Chris@16 54 >::type type;
Chris@16 55 };
Chris@16 56
Chris@16 57 template <class T, class Policy>
Chris@16 58 T zeta_series_imp(T s, T sc, const Policy&)
Chris@16 59 {
Chris@16 60 //
Chris@16 61 // Series evaluation from:
Chris@16 62 // Havil, J. Gamma: Exploring Euler's Constant.
Chris@16 63 // Princeton, NJ: Princeton University Press, 2003.
Chris@16 64 //
Chris@16 65 // See also http://mathworld.wolfram.com/RiemannZetaFunction.html
Chris@16 66 //
Chris@16 67 BOOST_MATH_STD_USING
Chris@16 68 T sum = 0;
Chris@16 69 T mult = 0.5;
Chris@16 70 T change;
Chris@16 71 typedef typename zeta_series_cache_size<T,Policy>::type cache_size;
Chris@16 72 T powers[cache_size::value] = { 0, };
Chris@16 73 unsigned n = 0;
Chris@16 74 do{
Chris@16 75 T binom = -static_cast<T>(n);
Chris@16 76 T nested_sum = 1;
Chris@16 77 if(n < sizeof(powers) / sizeof(powers[0]))
Chris@16 78 powers[n] = pow(static_cast<T>(n + 1), -s);
Chris@16 79 for(unsigned k = 1; k <= n; ++k)
Chris@16 80 {
Chris@16 81 T p;
Chris@16 82 if(k < sizeof(powers) / sizeof(powers[0]))
Chris@16 83 {
Chris@16 84 p = powers[k];
Chris@16 85 //p = pow(k + 1, -s);
Chris@16 86 }
Chris@16 87 else
Chris@16 88 p = pow(static_cast<T>(k + 1), -s);
Chris@16 89 nested_sum += binom * p;
Chris@16 90 binom *= (k - static_cast<T>(n)) / (k + 1);
Chris@16 91 }
Chris@16 92 change = mult * nested_sum;
Chris@16 93 sum += change;
Chris@16 94 mult /= 2;
Chris@16 95 ++n;
Chris@16 96 }while(fabs(change / sum) > tools::epsilon<T>());
Chris@16 97
Chris@16 98 return sum * 1 / -boost::math::powm1(T(2), sc);
Chris@16 99 }
Chris@16 100
Chris@16 101 //
Chris@16 102 // Classical p-series:
Chris@16 103 //
Chris@16 104 template <class T>
Chris@16 105 struct zeta_series2
Chris@16 106 {
Chris@16 107 typedef T result_type;
Chris@16 108 zeta_series2(T _s) : s(-_s), k(1){}
Chris@16 109 T operator()()
Chris@16 110 {
Chris@16 111 BOOST_MATH_STD_USING
Chris@16 112 return pow(static_cast<T>(k++), s);
Chris@16 113 }
Chris@16 114 private:
Chris@16 115 T s;
Chris@16 116 unsigned k;
Chris@16 117 };
Chris@16 118
Chris@16 119 template <class T, class Policy>
Chris@16 120 inline T zeta_series2_imp(T s, const Policy& pol)
Chris@16 121 {
Chris@16 122 boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();;
Chris@16 123 zeta_series2<T> f(s);
Chris@16 124 T result = tools::sum_series(
Chris@16 125 f,
Chris@16 126 policies::get_epsilon<T, Policy>(),
Chris@16 127 max_iter);
Chris@16 128 policies::check_series_iterations<T>("boost::math::zeta_series2<%1%>(%1%)", max_iter, pol);
Chris@16 129 return result;
Chris@16 130 }
Chris@16 131 #endif
Chris@16 132
Chris@16 133 template <class T, class Policy>
Chris@16 134 T zeta_polynomial_series(T s, T sc, Policy const &)
Chris@16 135 {
Chris@16 136 //
Chris@16 137 // This is algorithm 3 from:
Chris@16 138 //
Chris@16 139 // "An Efficient Algorithm for the Riemann Zeta Function", P. Borwein,
Chris@16 140 // Canadian Mathematical Society, Conference Proceedings.
Chris@16 141 // See: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf
Chris@16 142 //
Chris@16 143 BOOST_MATH_STD_USING
Chris@16 144 int n = itrunc(T(log(boost::math::tools::epsilon<T>()) / -2));
Chris@16 145 T sum = 0;
Chris@16 146 T two_n = ldexp(T(1), n);
Chris@16 147 int ej_sign = 1;
Chris@16 148 for(int j = 0; j < n; ++j)
Chris@16 149 {
Chris@16 150 sum += ej_sign * -two_n / pow(T(j + 1), s);
Chris@16 151 ej_sign = -ej_sign;
Chris@16 152 }
Chris@16 153 T ej_sum = 1;
Chris@16 154 T ej_term = 1;
Chris@16 155 for(int j = n; j <= 2 * n - 1; ++j)
Chris@16 156 {
Chris@16 157 sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s);
Chris@16 158 ej_sign = -ej_sign;
Chris@16 159 ej_term *= 2 * n - j;
Chris@16 160 ej_term /= j - n + 1;
Chris@16 161 ej_sum += ej_term;
Chris@16 162 }
Chris@16 163 return -sum / (two_n * (-powm1(T(2), sc)));
Chris@16 164 }
Chris@16 165
Chris@16 166 template <class T, class Policy>
Chris@16 167 T zeta_imp_prec(T s, T sc, const Policy& pol, const mpl::int_<0>&)
Chris@16 168 {
Chris@16 169 BOOST_MATH_STD_USING
Chris@16 170 T result;
Chris@101 171 if(s >= policies::digits<T, Policy>())
Chris@101 172 return 1;
Chris@16 173 result = zeta_polynomial_series(s, sc, pol);
Chris@16 174 #if 0
Chris@16 175 // Old code archived for future reference:
Chris@16 176
Chris@16 177 //
Chris@16 178 // Only use power series if it will converge in 100
Chris@16 179 // iterations or less: the more iterations it consumes
Chris@16 180 // the slower convergence becomes so we have to be very
Chris@16 181 // careful in it's usage.
Chris@16 182 //
Chris@16 183 if (s > -log(tools::epsilon<T>()) / 4.5)
Chris@16 184 result = detail::zeta_series2_imp(s, pol);
Chris@16 185 else
Chris@16 186 result = detail::zeta_series_imp(s, sc, pol);
Chris@16 187 #endif
Chris@16 188 return result;
Chris@16 189 }
Chris@16 190
Chris@16 191 template <class T, class Policy>
Chris@16 192 inline T zeta_imp_prec(T s, T sc, const Policy&, const mpl::int_<53>&)
Chris@16 193 {
Chris@16 194 BOOST_MATH_STD_USING
Chris@16 195 T result;
Chris@16 196 if(s < 1)
Chris@16 197 {
Chris@16 198 // Rational Approximation
Chris@16 199 // Maximum Deviation Found: 2.020e-18
Chris@16 200 // Expected Error Term: -2.020e-18
Chris@16 201 // Max error found at double precision: 3.994987e-17
Chris@16 202 static const T P[6] = {
Chris@16 203 0.24339294433593750202L,
Chris@16 204 -0.49092470516353571651L,
Chris@16 205 0.0557616214776046784287L,
Chris@16 206 -0.00320912498879085894856L,
Chris@16 207 0.000451534528645796438704L,
Chris@16 208 -0.933241270357061460782e-5L,
Chris@16 209 };
Chris@16 210 static const T Q[6] = {
Chris@16 211 1L,
Chris@16 212 -0.279960334310344432495L,
Chris@16 213 0.0419676223309986037706L,
Chris@16 214 -0.00413421406552171059003L,
Chris@16 215 0.00024978985622317935355L,
Chris@16 216 -0.101855788418564031874e-4L,
Chris@16 217 };
Chris@16 218 result = tools::evaluate_polynomial(P, sc) / tools::evaluate_polynomial(Q, sc);
Chris@16 219 result -= 1.2433929443359375F;
Chris@16 220 result += (sc);
Chris@16 221 result /= (sc);
Chris@16 222 }
Chris@16 223 else if(s <= 2)
Chris@16 224 {
Chris@16 225 // Maximum Deviation Found: 9.007e-20
Chris@16 226 // Expected Error Term: 9.007e-20
Chris@16 227 static const T P[6] = {
Chris@16 228 0.577215664901532860516,
Chris@16 229 0.243210646940107164097,
Chris@16 230 0.0417364673988216497593,
Chris@16 231 0.00390252087072843288378,
Chris@16 232 0.000249606367151877175456,
Chris@16 233 0.110108440976732897969e-4,
Chris@16 234 };
Chris@16 235 static const T Q[6] = {
Chris@16 236 1,
Chris@16 237 0.295201277126631761737,
Chris@16 238 0.043460910607305495864,
Chris@16 239 0.00434930582085826330659,
Chris@16 240 0.000255784226140488490982,
Chris@16 241 0.10991819782396112081e-4,
Chris@16 242 };
Chris@16 243 result = tools::evaluate_polynomial(P, T(-sc)) / tools::evaluate_polynomial(Q, T(-sc));
Chris@16 244 result += 1 / (-sc);
Chris@16 245 }
Chris@16 246 else if(s <= 4)
Chris@16 247 {
Chris@16 248 // Maximum Deviation Found: 5.946e-22
Chris@16 249 // Expected Error Term: -5.946e-22
Chris@16 250 static const float Y = 0.6986598968505859375;
Chris@16 251 static const T P[6] = {
Chris@16 252 -0.0537258300023595030676,
Chris@16 253 0.0445163473292365591906,
Chris@16 254 0.0128677673534519952905,
Chris@16 255 0.00097541770457391752726,
Chris@16 256 0.769875101573654070925e-4,
Chris@16 257 0.328032510000383084155e-5,
Chris@16 258 };
Chris@16 259 static const T Q[7] = {
Chris@16 260 1,
Chris@16 261 0.33383194553034051422,
Chris@16 262 0.0487798431291407621462,
Chris@16 263 0.00479039708573558490716,
Chris@16 264 0.000270776703956336357707,
Chris@16 265 0.106951867532057341359e-4,
Chris@16 266 0.236276623974978646399e-7,
Chris@16 267 };
Chris@16 268 result = tools::evaluate_polynomial(P, T(s - 2)) / tools::evaluate_polynomial(Q, T(s - 2));
Chris@16 269 result += Y + 1 / (-sc);
Chris@16 270 }
Chris@16 271 else if(s <= 7)
Chris@16 272 {
Chris@16 273 // Maximum Deviation Found: 2.955e-17
Chris@16 274 // Expected Error Term: 2.955e-17
Chris@16 275 // Max error found at double precision: 2.009135e-16
Chris@16 276
Chris@16 277 static const T P[6] = {
Chris@16 278 -2.49710190602259410021,
Chris@16 279 -2.60013301809475665334,
Chris@16 280 -0.939260435377109939261,
Chris@16 281 -0.138448617995741530935,
Chris@16 282 -0.00701721240549802377623,
Chris@16 283 -0.229257310594893932383e-4,
Chris@16 284 };
Chris@16 285 static const T Q[9] = {
Chris@16 286 1,
Chris@16 287 0.706039025937745133628,
Chris@16 288 0.15739599649558626358,
Chris@16 289 0.0106117950976845084417,
Chris@16 290 -0.36910273311764618902e-4,
Chris@16 291 0.493409563927590008943e-5,
Chris@16 292 -0.234055487025287216506e-6,
Chris@16 293 0.718833729365459760664e-8,
Chris@16 294 -0.1129200113474947419e-9,
Chris@16 295 };
Chris@16 296 result = tools::evaluate_polynomial(P, T(s - 4)) / tools::evaluate_polynomial(Q, T(s - 4));
Chris@16 297 result = 1 + exp(result);
Chris@16 298 }
Chris@16 299 else if(s < 15)
Chris@16 300 {
Chris@16 301 // Maximum Deviation Found: 7.117e-16
Chris@16 302 // Expected Error Term: 7.117e-16
Chris@16 303 // Max error found at double precision: 9.387771e-16
Chris@16 304 static const T P[7] = {
Chris@16 305 -4.78558028495135619286,
Chris@16 306 -1.89197364881972536382,
Chris@16 307 -0.211407134874412820099,
Chris@16 308 -0.000189204758260076688518,
Chris@16 309 0.00115140923889178742086,
Chris@16 310 0.639949204213164496988e-4,
Chris@16 311 0.139348932445324888343e-5,
Chris@16 312 };
Chris@16 313 static const T Q[9] = {
Chris@16 314 1,
Chris@16 315 0.244345337378188557777,
Chris@16 316 0.00873370754492288653669,
Chris@16 317 -0.00117592765334434471562,
Chris@16 318 -0.743743682899933180415e-4,
Chris@16 319 -0.21750464515767984778e-5,
Chris@16 320 0.471001264003076486547e-8,
Chris@16 321 -0.833378440625385520576e-10,
Chris@16 322 0.699841545204845636531e-12,
Chris@16 323 };
Chris@16 324 result = tools::evaluate_polynomial(P, T(s - 7)) / tools::evaluate_polynomial(Q, T(s - 7));
Chris@16 325 result = 1 + exp(result);
Chris@16 326 }
Chris@16 327 else if(s < 36)
Chris@16 328 {
Chris@16 329 // Max error in interpolated form: 1.668e-17
Chris@16 330 // Max error found at long double precision: 1.669714e-17
Chris@16 331 static const T P[8] = {
Chris@16 332 -10.3948950573308896825,
Chris@16 333 -2.85827219671106697179,
Chris@16 334 -0.347728266539245787271,
Chris@16 335 -0.0251156064655346341766,
Chris@16 336 -0.00119459173416968685689,
Chris@16 337 -0.382529323507967522614e-4,
Chris@16 338 -0.785523633796723466968e-6,
Chris@16 339 -0.821465709095465524192e-8,
Chris@16 340 };
Chris@16 341 static const T Q[10] = {
Chris@16 342 1,
Chris@16 343 0.208196333572671890965,
Chris@16 344 0.0195687657317205033485,
Chris@16 345 0.00111079638102485921877,
Chris@16 346 0.408507746266039256231e-4,
Chris@16 347 0.955561123065693483991e-6,
Chris@16 348 0.118507153474022900583e-7,
Chris@16 349 0.222609483627352615142e-14,
Chris@16 350 };
Chris@16 351 result = tools::evaluate_polynomial(P, T(s - 15)) / tools::evaluate_polynomial(Q, T(s - 15));
Chris@16 352 result = 1 + exp(result);
Chris@16 353 }
Chris@16 354 else if(s < 56)
Chris@16 355 {
Chris@16 356 result = 1 + pow(T(2), -s);
Chris@16 357 }
Chris@16 358 else
Chris@16 359 {
Chris@16 360 result = 1;
Chris@16 361 }
Chris@16 362 return result;
Chris@16 363 }
Chris@16 364
Chris@16 365 template <class T, class Policy>
Chris@16 366 T zeta_imp_prec(T s, T sc, const Policy&, const mpl::int_<64>&)
Chris@16 367 {
Chris@16 368 BOOST_MATH_STD_USING
Chris@16 369 T result;
Chris@16 370 if(s < 1)
Chris@16 371 {
Chris@16 372 // Rational Approximation
Chris@16 373 // Maximum Deviation Found: 3.099e-20
Chris@16 374 // Expected Error Term: 3.099e-20
Chris@16 375 // Max error found at long double precision: 5.890498e-20
Chris@16 376 static const T P[6] = {
Chris@16 377 BOOST_MATH_BIG_CONSTANT(T, 64, 0.243392944335937499969),
Chris@16 378 BOOST_MATH_BIG_CONSTANT(T, 64, -0.496837806864865688082),
Chris@16 379 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0680008039723709987107),
Chris@16 380 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00511620413006619942112),
Chris@16 381 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000455369899250053003335),
Chris@16 382 BOOST_MATH_BIG_CONSTANT(T, 64, -0.279496685273033761927e-4),
Chris@16 383 };
Chris@16 384 static const T Q[7] = {
Chris@101 385 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 386 BOOST_MATH_BIG_CONSTANT(T, 64, -0.30425480068225790522),
Chris@16 387 BOOST_MATH_BIG_CONSTANT(T, 64, 0.050052748580371598736),
Chris@16 388 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00519355671064700627862),
Chris@16 389 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000360623385771198350257),
Chris@16 390 BOOST_MATH_BIG_CONSTANT(T, 64, -0.159600883054550987633e-4),
Chris@16 391 BOOST_MATH_BIG_CONSTANT(T, 64, 0.339770279812410586032e-6),
Chris@16 392 };
Chris@16 393 result = tools::evaluate_polynomial(P, sc) / tools::evaluate_polynomial(Q, sc);
Chris@16 394 result -= 1.2433929443359375F;
Chris@16 395 result += (sc);
Chris@16 396 result /= (sc);
Chris@16 397 }
Chris@16 398 else if(s <= 2)
Chris@16 399 {
Chris@16 400 // Maximum Deviation Found: 1.059e-21
Chris@16 401 // Expected Error Term: 1.059e-21
Chris@16 402 // Max error found at long double precision: 1.626303e-19
Chris@16 403
Chris@16 404 static const T P[6] = {
Chris@16 405 BOOST_MATH_BIG_CONSTANT(T, 64, 0.577215664901532860605),
Chris@16 406 BOOST_MATH_BIG_CONSTANT(T, 64, 0.222537368917162139445),
Chris@16 407 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0356286324033215682729),
Chris@16 408 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00304465292366350081446),
Chris@16 409 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000178102511649069421904),
Chris@16 410 BOOST_MATH_BIG_CONSTANT(T, 64, 0.700867470265983665042e-5),
Chris@16 411 };
Chris@16 412 static const T Q[7] = {
Chris@101 413 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 414 BOOST_MATH_BIG_CONSTANT(T, 64, 0.259385759149531030085),
Chris@16 415 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0373974962106091316854),
Chris@16 416 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00332735159183332820617),
Chris@16 417 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000188690420706998606469),
Chris@16 418 BOOST_MATH_BIG_CONSTANT(T, 64, 0.635994377921861930071e-5),
Chris@16 419 BOOST_MATH_BIG_CONSTANT(T, 64, 0.226583954978371199405e-7),
Chris@16 420 };
Chris@16 421 result = tools::evaluate_polynomial(P, T(-sc)) / tools::evaluate_polynomial(Q, T(-sc));
Chris@16 422 result += 1 / (-sc);
Chris@16 423 }
Chris@16 424 else if(s <= 4)
Chris@16 425 {
Chris@16 426 // Maximum Deviation Found: 5.946e-22
Chris@16 427 // Expected Error Term: -5.946e-22
Chris@16 428 static const float Y = 0.6986598968505859375;
Chris@16 429 static const T P[7] = {
Chris@16 430 BOOST_MATH_BIG_CONSTANT(T, 64, -0.053725830002359501027),
Chris@16 431 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0470551187571475844778),
Chris@16 432 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0101339410415759517471),
Chris@16 433 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00100240326666092854528),
Chris@16 434 BOOST_MATH_BIG_CONSTANT(T, 64, 0.685027119098122814867e-4),
Chris@16 435 BOOST_MATH_BIG_CONSTANT(T, 64, 0.390972820219765942117e-5),
Chris@16 436 BOOST_MATH_BIG_CONSTANT(T, 64, 0.540319769113543934483e-7),
Chris@16 437 };
Chris@16 438 static const T Q[8] = {
Chris@16 439 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 440 BOOST_MATH_BIG_CONSTANT(T, 64, 0.286577739726542730421),
Chris@16 441 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0447355811517733225843),
Chris@16 442 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00430125107610252363302),
Chris@16 443 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000284956969089786662045),
Chris@16 444 BOOST_MATH_BIG_CONSTANT(T, 64, 0.116188101609848411329e-4),
Chris@16 445 BOOST_MATH_BIG_CONSTANT(T, 64, 0.278090318191657278204e-6),
Chris@16 446 BOOST_MATH_BIG_CONSTANT(T, 64, -0.19683620233222028478e-8),
Chris@16 447 };
Chris@16 448 result = tools::evaluate_polynomial(P, T(s - 2)) / tools::evaluate_polynomial(Q, T(s - 2));
Chris@16 449 result += Y + 1 / (-sc);
Chris@16 450 }
Chris@16 451 else if(s <= 7)
Chris@16 452 {
Chris@16 453 // Max error found at long double precision: 8.132216e-19
Chris@16 454 static const T P[8] = {
Chris@16 455 BOOST_MATH_BIG_CONSTANT(T, 64, -2.49710190602259407065),
Chris@16 456 BOOST_MATH_BIG_CONSTANT(T, 64, -3.36664913245960625334),
Chris@16 457 BOOST_MATH_BIG_CONSTANT(T, 64, -1.77180020623777595452),
Chris@16 458 BOOST_MATH_BIG_CONSTANT(T, 64, -0.464717885249654313933),
Chris@16 459 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0643694921293579472583),
Chris@16 460 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00464265386202805715487),
Chris@16 461 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000165556579779704340166),
Chris@16 462 BOOST_MATH_BIG_CONSTANT(T, 64, -0.252884970740994069582e-5),
Chris@16 463 };
Chris@16 464 static const T Q[9] = {
Chris@16 465 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 466 BOOST_MATH_BIG_CONSTANT(T, 64, 1.01300131390690459085),
Chris@16 467 BOOST_MATH_BIG_CONSTANT(T, 64, 0.387898115758643503827),
Chris@16 468 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0695071490045701135188),
Chris@16 469 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00586908595251442839291),
Chris@16 470 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000217752974064612188616),
Chris@16 471 BOOST_MATH_BIG_CONSTANT(T, 64, 0.397626583349419011731e-5),
Chris@16 472 BOOST_MATH_BIG_CONSTANT(T, 64, -0.927884739284359700764e-8),
Chris@16 473 BOOST_MATH_BIG_CONSTANT(T, 64, 0.119810501805618894381e-9),
Chris@16 474 };
Chris@16 475 result = tools::evaluate_polynomial(P, T(s - 4)) / tools::evaluate_polynomial(Q, T(s - 4));
Chris@16 476 result = 1 + exp(result);
Chris@16 477 }
Chris@16 478 else if(s < 15)
Chris@16 479 {
Chris@16 480 // Max error in interpolated form: 1.133e-18
Chris@16 481 // Max error found at long double precision: 2.183198e-18
Chris@16 482 static const T P[9] = {
Chris@16 483 BOOST_MATH_BIG_CONSTANT(T, 64, -4.78558028495135548083),
Chris@16 484 BOOST_MATH_BIG_CONSTANT(T, 64, -3.23873322238609358947),
Chris@16 485 BOOST_MATH_BIG_CONSTANT(T, 64, -0.892338582881021799922),
Chris@16 486 BOOST_MATH_BIG_CONSTANT(T, 64, -0.131326296217965913809),
Chris@16 487 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0115651591773783712996),
Chris@16 488 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000657728968362695775205),
Chris@16 489 BOOST_MATH_BIG_CONSTANT(T, 64, -0.252051328129449973047e-4),
Chris@16 490 BOOST_MATH_BIG_CONSTANT(T, 64, -0.626503445372641798925e-6),
Chris@16 491 BOOST_MATH_BIG_CONSTANT(T, 64, -0.815696314790853893484e-8),
Chris@16 492 };
Chris@16 493 static const T Q[9] = {
Chris@16 494 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 495 BOOST_MATH_BIG_CONSTANT(T, 64, 0.525765665400123515036),
Chris@16 496 BOOST_MATH_BIG_CONSTANT(T, 64, 0.10852641753657122787),
Chris@16 497 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0115669945375362045249),
Chris@16 498 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000732896513858274091966),
Chris@16 499 BOOST_MATH_BIG_CONSTANT(T, 64, 0.30683952282420248448e-4),
Chris@16 500 BOOST_MATH_BIG_CONSTANT(T, 64, 0.819649214609633126119e-6),
Chris@16 501 BOOST_MATH_BIG_CONSTANT(T, 64, 0.117957556472335968146e-7),
Chris@16 502 BOOST_MATH_BIG_CONSTANT(T, 64, -0.193432300973017671137e-12),
Chris@16 503 };
Chris@16 504 result = tools::evaluate_polynomial(P, T(s - 7)) / tools::evaluate_polynomial(Q, T(s - 7));
Chris@16 505 result = 1 + exp(result);
Chris@16 506 }
Chris@16 507 else if(s < 42)
Chris@16 508 {
Chris@16 509 // Max error in interpolated form: 1.668e-17
Chris@16 510 // Max error found at long double precision: 1.669714e-17
Chris@16 511 static const T P[9] = {
Chris@16 512 BOOST_MATH_BIG_CONSTANT(T, 64, -10.3948950573308861781),
Chris@16 513 BOOST_MATH_BIG_CONSTANT(T, 64, -2.82646012777913950108),
Chris@16 514 BOOST_MATH_BIG_CONSTANT(T, 64, -0.342144362739570333665),
Chris@16 515 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0249285145498722647472),
Chris@16 516 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00122493108848097114118),
Chris@16 517 BOOST_MATH_BIG_CONSTANT(T, 64, -0.423055371192592850196e-4),
Chris@16 518 BOOST_MATH_BIG_CONSTANT(T, 64, -0.1025215577185967488e-5),
Chris@16 519 BOOST_MATH_BIG_CONSTANT(T, 64, -0.165096762663509467061e-7),
Chris@16 520 BOOST_MATH_BIG_CONSTANT(T, 64, -0.145392555873022044329e-9),
Chris@16 521 };
Chris@16 522 static const T Q[10] = {
Chris@16 523 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 524 BOOST_MATH_BIG_CONSTANT(T, 64, 0.205135978585281988052),
Chris@16 525 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0192359357875879453602),
Chris@16 526 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00111496452029715514119),
Chris@16 527 BOOST_MATH_BIG_CONSTANT(T, 64, 0.434928449016693986857e-4),
Chris@16 528 BOOST_MATH_BIG_CONSTANT(T, 64, 0.116911068726610725891e-5),
Chris@16 529 BOOST_MATH_BIG_CONSTANT(T, 64, 0.206704342290235237475e-7),
Chris@16 530 BOOST_MATH_BIG_CONSTANT(T, 64, 0.209772836100827647474e-9),
Chris@16 531 BOOST_MATH_BIG_CONSTANT(T, 64, -0.939798249922234703384e-16),
Chris@16 532 BOOST_MATH_BIG_CONSTANT(T, 64, 0.264584017421245080294e-18),
Chris@16 533 };
Chris@16 534 result = tools::evaluate_polynomial(P, T(s - 15)) / tools::evaluate_polynomial(Q, T(s - 15));
Chris@16 535 result = 1 + exp(result);
Chris@16 536 }
Chris@16 537 else if(s < 63)
Chris@16 538 {
Chris@16 539 result = 1 + pow(T(2), -s);
Chris@16 540 }
Chris@16 541 else
Chris@16 542 {
Chris@16 543 result = 1;
Chris@16 544 }
Chris@16 545 return result;
Chris@16 546 }
Chris@16 547
Chris@16 548 template <class T, class Policy>
Chris@16 549 T zeta_imp_prec(T s, T sc, const Policy&, const mpl::int_<113>&)
Chris@16 550 {
Chris@16 551 BOOST_MATH_STD_USING
Chris@16 552 T result;
Chris@16 553 if(s < 1)
Chris@16 554 {
Chris@16 555 // Rational Approximation
Chris@16 556 // Maximum Deviation Found: 9.493e-37
Chris@16 557 // Expected Error Term: 9.492e-37
Chris@16 558 // Max error found at long double precision: 7.281332e-31
Chris@16 559
Chris@16 560 static const T P[10] = {
Chris@101 561 BOOST_MATH_BIG_CONSTANT(T, 113, -1.0),
Chris@16 562 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0353008629988648122808504280990313668),
Chris@16 563 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0107795651204927743049369868548706909),
Chris@16 564 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000523961870530500751114866884685172975),
Chris@16 565 BOOST_MATH_BIG_CONSTANT(T, 113, -0.661805838304910731947595897966487515e-4),
Chris@16 566 BOOST_MATH_BIG_CONSTANT(T, 113, -0.658932670403818558510656304189164638e-5),
Chris@16 567 BOOST_MATH_BIG_CONSTANT(T, 113, -0.103437265642266106533814021041010453e-6),
Chris@16 568 BOOST_MATH_BIG_CONSTANT(T, 113, 0.116818787212666457105375746642927737e-7),
Chris@16 569 BOOST_MATH_BIG_CONSTANT(T, 113, 0.660690993901506912123512551294239036e-9),
Chris@16 570 BOOST_MATH_BIG_CONSTANT(T, 113, 0.113103113698388531428914333768142527e-10),
Chris@16 571 };
Chris@16 572 static const T Q[11] = {
Chris@101 573 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 574 BOOST_MATH_BIG_CONSTANT(T, 113, -0.387483472099602327112637481818565459),
Chris@16 575 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0802265315091063135271497708694776875),
Chris@16 576 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0110727276164171919280036408995078164),
Chris@16 577 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00112552716946286252000434849173787243),
Chris@16 578 BOOST_MATH_BIG_CONSTANT(T, 113, -0.874554160748626916455655180296834352e-4),
Chris@16 579 BOOST_MATH_BIG_CONSTANT(T, 113, 0.530097847491828379568636739662278322e-5),
Chris@16 580 BOOST_MATH_BIG_CONSTANT(T, 113, -0.248461553590496154705565904497247452e-6),
Chris@16 581 BOOST_MATH_BIG_CONSTANT(T, 113, 0.881834921354014787309644951507523899e-8),
Chris@16 582 BOOST_MATH_BIG_CONSTANT(T, 113, -0.217062446168217797598596496310953025e-9),
Chris@16 583 BOOST_MATH_BIG_CONSTANT(T, 113, 0.315823200002384492377987848307151168e-11),
Chris@16 584 };
Chris@16 585 result = tools::evaluate_polynomial(P, sc) / tools::evaluate_polynomial(Q, sc);
Chris@16 586 result += (sc);
Chris@16 587 result /= (sc);
Chris@16 588 }
Chris@16 589 else if(s <= 2)
Chris@16 590 {
Chris@16 591 // Maximum Deviation Found: 1.616e-37
Chris@16 592 // Expected Error Term: -1.615e-37
Chris@16 593
Chris@16 594 static const T P[10] = {
Chris@16 595 BOOST_MATH_BIG_CONSTANT(T, 113, 0.577215664901532860606512090082402431),
Chris@16 596 BOOST_MATH_BIG_CONSTANT(T, 113, 0.255597968739771510415479842335906308),
Chris@16 597 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0494056503552807274142218876983542205),
Chris@16 598 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00551372778611700965268920983472292325),
Chris@16 599 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00043667616723970574871427830895192731),
Chris@16 600 BOOST_MATH_BIG_CONSTANT(T, 113, 0.268562259154821957743669387915239528e-4),
Chris@16 601 BOOST_MATH_BIG_CONSTANT(T, 113, 0.109249633923016310141743084480436612e-5),
Chris@16 602 BOOST_MATH_BIG_CONSTANT(T, 113, 0.273895554345300227466534378753023924e-7),
Chris@16 603 BOOST_MATH_BIG_CONSTANT(T, 113, 0.583103205551702720149237384027795038e-9),
Chris@16 604 BOOST_MATH_BIG_CONSTANT(T, 113, -0.835774625259919268768735944711219256e-11),
Chris@16 605 };
Chris@16 606 static const T Q[11] = {
Chris@101 607 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 608 BOOST_MATH_BIG_CONSTANT(T, 113, 0.316661751179735502065583176348292881),
Chris@16 609 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0540401806533507064453851182728635272),
Chris@16 610 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00598621274107420237785899476374043797),
Chris@16 611 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000474907812321704156213038740142079615),
Chris@16 612 BOOST_MATH_BIG_CONSTANT(T, 113, 0.272125421722314389581695715835862418e-4),
Chris@16 613 BOOST_MATH_BIG_CONSTANT(T, 113, 0.112649552156479800925522445229212933e-5),
Chris@16 614 BOOST_MATH_BIG_CONSTANT(T, 113, 0.301838975502992622733000078063330461e-7),
Chris@16 615 BOOST_MATH_BIG_CONSTANT(T, 113, 0.422960728687211282539769943184270106e-9),
Chris@16 616 BOOST_MATH_BIG_CONSTANT(T, 113, -0.377105263588822468076813329270698909e-11),
Chris@16 617 BOOST_MATH_BIG_CONSTANT(T, 113, -0.581926559304525152432462127383600681e-13),
Chris@16 618 };
Chris@16 619 result = tools::evaluate_polynomial(P, T(-sc)) / tools::evaluate_polynomial(Q, T(-sc));
Chris@16 620 result += 1 / (-sc);
Chris@16 621 }
Chris@16 622 else if(s <= 4)
Chris@16 623 {
Chris@16 624 // Maximum Deviation Found: 1.891e-36
Chris@16 625 // Expected Error Term: -1.891e-36
Chris@16 626 // Max error found: 2.171527e-35
Chris@16 627
Chris@16 628 static const float Y = 0.6986598968505859375;
Chris@16 629 static const T P[11] = {
Chris@16 630 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0537258300023595010275848333539748089),
Chris@16 631 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0429086930802630159457448174466342553),
Chris@16 632 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0136148228754303412510213395034056857),
Chris@16 633 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00190231601036042925183751238033763915),
Chris@16 634 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000186880390916311438818302549192456581),
Chris@16 635 BOOST_MATH_BIG_CONSTANT(T, 113, 0.145347370745893262394287982691323657e-4),
Chris@16 636 BOOST_MATH_BIG_CONSTANT(T, 113, 0.805843276446813106414036600485884885e-6),
Chris@16 637 BOOST_MATH_BIG_CONSTANT(T, 113, 0.340818159286739137503297172091882574e-7),
Chris@16 638 BOOST_MATH_BIG_CONSTANT(T, 113, 0.115762357488748996526167305116837246e-8),
Chris@16 639 BOOST_MATH_BIG_CONSTANT(T, 113, 0.231904754577648077579913403645767214e-10),
Chris@16 640 BOOST_MATH_BIG_CONSTANT(T, 113, 0.340169592866058506675897646629036044e-12),
Chris@16 641 };
Chris@16 642 static const T Q[12] = {
Chris@101 643 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 644 BOOST_MATH_BIG_CONSTANT(T, 113, 0.363755247765087100018556983050520554),
Chris@16 645 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0696581979014242539385695131258321598),
Chris@16 646 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00882208914484611029571547753782014817),
Chris@16 647 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000815405623261946661762236085660996718),
Chris@16 648 BOOST_MATH_BIG_CONSTANT(T, 113, 0.571366167062457197282642344940445452e-4),
Chris@16 649 BOOST_MATH_BIG_CONSTANT(T, 113, 0.309278269271853502353954062051797838e-5),
Chris@16 650 BOOST_MATH_BIG_CONSTANT(T, 113, 0.12822982083479010834070516053794262e-6),
Chris@16 651 BOOST_MATH_BIG_CONSTANT(T, 113, 0.397876357325018976733953479182110033e-8),
Chris@16 652 BOOST_MATH_BIG_CONSTANT(T, 113, 0.8484432107648683277598472295289279e-10),
Chris@16 653 BOOST_MATH_BIG_CONSTANT(T, 113, 0.105677416606909614301995218444080615e-11),
Chris@16 654 BOOST_MATH_BIG_CONSTANT(T, 113, 0.547223964564003701979951154093005354e-15),
Chris@16 655 };
Chris@16 656 result = tools::evaluate_polynomial(P, T(s - 2)) / tools::evaluate_polynomial(Q, T(s - 2));
Chris@16 657 result += Y + 1 / (-sc);
Chris@16 658 }
Chris@16 659 else if(s <= 6)
Chris@16 660 {
Chris@16 661 // Max error in interpolated form: 1.510e-37
Chris@16 662 // Max error found at long double precision: 2.769266e-34
Chris@16 663
Chris@16 664 static const T Y = 3.28348541259765625F;
Chris@16 665
Chris@16 666 static const T P[13] = {
Chris@16 667 BOOST_MATH_BIG_CONSTANT(T, 113, 0.786383506575062179339611614117697622),
Chris@16 668 BOOST_MATH_BIG_CONSTANT(T, 113, 0.495766593395271370974685959652073976),
Chris@16 669 BOOST_MATH_BIG_CONSTANT(T, 113, -0.409116737851754766422360889037532228),
Chris@16 670 BOOST_MATH_BIG_CONSTANT(T, 113, -0.57340744006238263817895456842655987),
Chris@16 671 BOOST_MATH_BIG_CONSTANT(T, 113, -0.280479899797421910694892949057963111),
Chris@16 672 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0753148409447590257157585696212649869),
Chris@16 673 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0122934003684672788499099362823748632),
Chris@16 674 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126148398446193639247961370266962927),
Chris@16 675 BOOST_MATH_BIG_CONSTANT(T, 113, -0.828465038179772939844657040917364896e-4),
Chris@16 676 BOOST_MATH_BIG_CONSTANT(T, 113, -0.361008916706050977143208468690645684e-5),
Chris@16 677 BOOST_MATH_BIG_CONSTANT(T, 113, -0.109879825497910544424797771195928112e-6),
Chris@16 678 BOOST_MATH_BIG_CONSTANT(T, 113, -0.214539416789686920918063075528797059e-8),
Chris@16 679 BOOST_MATH_BIG_CONSTANT(T, 113, -0.15090220092460596872172844424267351e-10),
Chris@16 680 };
Chris@16 681 static const T Q[14] = {
Chris@101 682 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 683 BOOST_MATH_BIG_CONSTANT(T, 113, 1.69490865837142338462982225731926485),
Chris@16 684 BOOST_MATH_BIG_CONSTANT(T, 113, 1.22697696630994080733321401255942464),
Chris@16 685 BOOST_MATH_BIG_CONSTANT(T, 113, 0.495409420862526540074366618006341533),
Chris@16 686 BOOST_MATH_BIG_CONSTANT(T, 113, 0.122368084916843823462872905024259633),
Chris@16 687 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0191412993625268971656513890888208623),
Chris@16 688 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00191401538628980617753082598351559642),
Chris@16 689 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000123318142456272424148930280876444459),
Chris@16 690 BOOST_MATH_BIG_CONSTANT(T, 113, 0.531945488232526067889835342277595709e-5),
Chris@16 691 BOOST_MATH_BIG_CONSTANT(T, 113, 0.161843184071894368337068779669116236e-6),
Chris@16 692 BOOST_MATH_BIG_CONSTANT(T, 113, 0.305796079600152506743828859577462778e-8),
Chris@16 693 BOOST_MATH_BIG_CONSTANT(T, 113, 0.233582592298450202680170811044408894e-10),
Chris@16 694 BOOST_MATH_BIG_CONSTANT(T, 113, -0.275363878344548055574209713637734269e-13),
Chris@16 695 BOOST_MATH_BIG_CONSTANT(T, 113, 0.221564186807357535475441900517843892e-15),
Chris@16 696 };
Chris@16 697 result = tools::evaluate_polynomial(P, T(s - 4)) / tools::evaluate_polynomial(Q, T(s - 4));
Chris@16 698 result -= Y;
Chris@16 699 result = 1 + exp(result);
Chris@16 700 }
Chris@16 701 else if(s < 10)
Chris@16 702 {
Chris@16 703 // Max error in interpolated form: 1.999e-34
Chris@16 704 // Max error found at long double precision: 2.156186e-33
Chris@16 705
Chris@16 706 static const T P[13] = {
Chris@16 707 BOOST_MATH_BIG_CONSTANT(T, 113, -4.0545627381873738086704293881227365),
Chris@16 708 BOOST_MATH_BIG_CONSTANT(T, 113, -4.70088348734699134347906176097717782),
Chris@16 709 BOOST_MATH_BIG_CONSTANT(T, 113, -2.36921550900925512951976617607678789),
Chris@16 710 BOOST_MATH_BIG_CONSTANT(T, 113, -0.684322583796369508367726293719322866),
Chris@16 711 BOOST_MATH_BIG_CONSTANT(T, 113, -0.126026534540165129870721937592996324),
Chris@16 712 BOOST_MATH_BIG_CONSTANT(T, 113, -0.015636903921778316147260572008619549),
Chris@16 713 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00135442294754728549644376325814460807),
Chris@16 714 BOOST_MATH_BIG_CONSTANT(T, 113, -0.842793965853572134365031384646117061e-4),
Chris@16 715 BOOST_MATH_BIG_CONSTANT(T, 113, -0.385602133791111663372015460784978351e-5),
Chris@16 716 BOOST_MATH_BIG_CONSTANT(T, 113, -0.130458500394692067189883214401478539e-6),
Chris@16 717 BOOST_MATH_BIG_CONSTANT(T, 113, -0.315861074947230418778143153383660035e-8),
Chris@16 718 BOOST_MATH_BIG_CONSTANT(T, 113, -0.500334720512030826996373077844707164e-10),
Chris@16 719 BOOST_MATH_BIG_CONSTANT(T, 113, -0.420204769185233365849253969097184005e-12),
Chris@16 720 };
Chris@16 721 static const T Q[14] = {
Chris@101 722 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 723 BOOST_MATH_BIG_CONSTANT(T, 113, 0.97663511666410096104783358493318814),
Chris@16 724 BOOST_MATH_BIG_CONSTANT(T, 113, 0.40878780231201806504987368939673249),
Chris@16 725 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0963890666609396058945084107597727252),
Chris@16 726 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0142207619090854604824116070866614505),
Chris@16 727 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139010220902667918476773423995750877),
Chris@16 728 BOOST_MATH_BIG_CONSTANT(T, 113, 0.940669540194694997889636696089994734e-4),
Chris@16 729 BOOST_MATH_BIG_CONSTANT(T, 113, 0.458220848507517004399292480807026602e-5),
Chris@16 730 BOOST_MATH_BIG_CONSTANT(T, 113, 0.16345521617741789012782420625435495e-6),
Chris@16 731 BOOST_MATH_BIG_CONSTANT(T, 113, 0.414007452533083304371566316901024114e-8),
Chris@16 732 BOOST_MATH_BIG_CONSTANT(T, 113, 0.68701473543366328016953742622661377e-10),
Chris@16 733 BOOST_MATH_BIG_CONSTANT(T, 113, 0.603461891080716585087883971886075863e-12),
Chris@16 734 BOOST_MATH_BIG_CONSTANT(T, 113, 0.294670713571839023181857795866134957e-16),
Chris@16 735 BOOST_MATH_BIG_CONSTANT(T, 113, -0.147003914536437243143096875069813451e-18),
Chris@16 736 };
Chris@16 737 result = tools::evaluate_polynomial(P, T(s - 6)) / tools::evaluate_polynomial(Q, T(s - 6));
Chris@16 738 result = 1 + exp(result);
Chris@16 739 }
Chris@16 740 else if(s < 17)
Chris@16 741 {
Chris@16 742 // Max error in interpolated form: 1.641e-32
Chris@16 743 // Max error found at long double precision: 1.696121e-32
Chris@16 744 static const T P[13] = {
Chris@16 745 BOOST_MATH_BIG_CONSTANT(T, 113, -6.91319491921722925920883787894829678),
Chris@16 746 BOOST_MATH_BIG_CONSTANT(T, 113, -3.65491257639481960248690596951049048),
Chris@16 747 BOOST_MATH_BIG_CONSTANT(T, 113, -0.813557553449954526442644544105257881),
Chris@16 748 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0994317301685870959473658713841138083),
Chris@16 749 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00726896610245676520248617014211734906),
Chris@16 750 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000317253318715075854811266230916762929),
Chris@16 751 BOOST_MATH_BIG_CONSTANT(T, 113, -0.66851422826636750855184211580127133e-5),
Chris@16 752 BOOST_MATH_BIG_CONSTANT(T, 113, 0.879464154730985406003332577806849971e-7),
Chris@16 753 BOOST_MATH_BIG_CONSTANT(T, 113, 0.113838903158254250631678791998294628e-7),
Chris@16 754 BOOST_MATH_BIG_CONSTANT(T, 113, 0.379184410304927316385211327537817583e-9),
Chris@16 755 BOOST_MATH_BIG_CONSTANT(T, 113, 0.612992858643904887150527613446403867e-11),
Chris@16 756 BOOST_MATH_BIG_CONSTANT(T, 113, 0.347873737198164757035457841688594788e-13),
Chris@16 757 BOOST_MATH_BIG_CONSTANT(T, 113, -0.289187187441625868404494665572279364e-15),
Chris@16 758 };
Chris@16 759 static const T Q[14] = {
Chris@101 760 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 761 BOOST_MATH_BIG_CONSTANT(T, 113, 0.427310044448071818775721584949868806),
Chris@16 762 BOOST_MATH_BIG_CONSTANT(T, 113, 0.074602514873055756201435421385243062),
Chris@16 763 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00688651562174480772901425121653945942),
Chris@16 764 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000360174847635115036351323894321880445),
Chris@16 765 BOOST_MATH_BIG_CONSTANT(T, 113, 0.973556847713307543918865405758248777e-5),
Chris@16 766 BOOST_MATH_BIG_CONSTANT(T, 113, -0.853455848314516117964634714780874197e-8),
Chris@16 767 BOOST_MATH_BIG_CONSTANT(T, 113, -0.118203513654855112421673192194622826e-7),
Chris@16 768 BOOST_MATH_BIG_CONSTANT(T, 113, -0.462521662511754117095006543363328159e-9),
Chris@16 769 BOOST_MATH_BIG_CONSTANT(T, 113, -0.834212591919475633107355719369463143e-11),
Chris@16 770 BOOST_MATH_BIG_CONSTANT(T, 113, -0.5354594751002702935740220218582929e-13),
Chris@16 771 BOOST_MATH_BIG_CONSTANT(T, 113, 0.406451690742991192964889603000756203e-15),
Chris@16 772 BOOST_MATH_BIG_CONSTANT(T, 113, 0.887948682401000153828241615760146728e-19),
Chris@16 773 BOOST_MATH_BIG_CONSTANT(T, 113, -0.34980761098820347103967203948619072e-21),
Chris@16 774 };
Chris@16 775 result = tools::evaluate_polynomial(P, T(s - 10)) / tools::evaluate_polynomial(Q, T(s - 10));
Chris@16 776 result = 1 + exp(result);
Chris@16 777 }
Chris@16 778 else if(s < 30)
Chris@16 779 {
Chris@16 780 // Max error in interpolated form: 1.563e-31
Chris@16 781 // Max error found at long double precision: 1.562725e-31
Chris@16 782
Chris@16 783 static const T P[13] = {
Chris@16 784 BOOST_MATH_BIG_CONSTANT(T, 113, -11.7824798233959252791987402769438322),
Chris@16 785 BOOST_MATH_BIG_CONSTANT(T, 113, -4.36131215284987731928174218354118102),
Chris@16 786 BOOST_MATH_BIG_CONSTANT(T, 113, -0.732260980060982349410898496846972204),
Chris@16 787 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0744985185694913074484248803015717388),
Chris@16 788 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00517228281320594683022294996292250527),
Chris@16 789 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000260897206152101522569969046299309939),
Chris@16 790 BOOST_MATH_BIG_CONSTANT(T, 113, -0.989553462123121764865178453128769948e-5),
Chris@16 791 BOOST_MATH_BIG_CONSTANT(T, 113, -0.286916799741891410827712096608826167e-6),
Chris@16 792 BOOST_MATH_BIG_CONSTANT(T, 113, -0.637262477796046963617949532211619729e-8),
Chris@16 793 BOOST_MATH_BIG_CONSTANT(T, 113, -0.106796831465628373325491288787760494e-9),
Chris@16 794 BOOST_MATH_BIG_CONSTANT(T, 113, -0.129343095511091870860498356205376823e-11),
Chris@16 795 BOOST_MATH_BIG_CONSTANT(T, 113, -0.102397936697965977221267881716672084e-13),
Chris@16 796 BOOST_MATH_BIG_CONSTANT(T, 113, -0.402663128248642002351627980255756363e-16),
Chris@16 797 };
Chris@16 798 static const T Q[14] = {
Chris@101 799 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 800 BOOST_MATH_BIG_CONSTANT(T, 113, 0.311288325355705609096155335186466508),
Chris@16 801 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0438318468940415543546769437752132748),
Chris@16 802 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00374396349183199548610264222242269536),
Chris@16 803 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000218707451200585197339671707189281302),
Chris@16 804 BOOST_MATH_BIG_CONSTANT(T, 113, 0.927578767487930747532953583797351219e-5),
Chris@16 805 BOOST_MATH_BIG_CONSTANT(T, 113, 0.294145760625753561951137473484889639e-6),
Chris@16 806 BOOST_MATH_BIG_CONSTANT(T, 113, 0.704618586690874460082739479535985395e-8),
Chris@16 807 BOOST_MATH_BIG_CONSTANT(T, 113, 0.126333332872897336219649130062221257e-9),
Chris@16 808 BOOST_MATH_BIG_CONSTANT(T, 113, 0.16317315713773503718315435769352765e-11),
Chris@16 809 BOOST_MATH_BIG_CONSTANT(T, 113, 0.137846712823719515148344938160275695e-13),
Chris@16 810 BOOST_MATH_BIG_CONSTANT(T, 113, 0.580975420554224366450994232723910583e-16),
Chris@16 811 BOOST_MATH_BIG_CONSTANT(T, 113, -0.291354445847552426900293580511392459e-22),
Chris@16 812 BOOST_MATH_BIG_CONSTANT(T, 113, 0.73614324724785855925025452085443636e-25),
Chris@16 813 };
Chris@16 814 result = tools::evaluate_polynomial(P, T(s - 17)) / tools::evaluate_polynomial(Q, T(s - 17));
Chris@16 815 result = 1 + exp(result);
Chris@16 816 }
Chris@16 817 else if(s < 74)
Chris@16 818 {
Chris@16 819 // Max error in interpolated form: 2.311e-27
Chris@16 820 // Max error found at long double precision: 2.297544e-27
Chris@16 821 static const T P[14] = {
Chris@16 822 BOOST_MATH_BIG_CONSTANT(T, 113, -20.7944102007844314586649688802236072),
Chris@16 823 BOOST_MATH_BIG_CONSTANT(T, 113, -4.95759941987499442499908748130192187),
Chris@16 824 BOOST_MATH_BIG_CONSTANT(T, 113, -0.563290752832461751889194629200298688),
Chris@16 825 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0406197001137935911912457120706122877),
Chris@16 826 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0020846534789473022216888863613422293),
Chris@16 827 BOOST_MATH_BIG_CONSTANT(T, 113, -0.808095978462109173749395599401375667e-4),
Chris@16 828 BOOST_MATH_BIG_CONSTANT(T, 113, -0.244706022206249301640890603610060959e-5),
Chris@16 829 BOOST_MATH_BIG_CONSTANT(T, 113, -0.589477682919645930544382616501666572e-7),
Chris@16 830 BOOST_MATH_BIG_CONSTANT(T, 113, -0.113699573675553496343617442433027672e-8),
Chris@16 831 BOOST_MATH_BIG_CONSTANT(T, 113, -0.174767860183598149649901223128011828e-10),
Chris@16 832 BOOST_MATH_BIG_CONSTANT(T, 113, -0.210051620306761367764549971980026474e-12),
Chris@16 833 BOOST_MATH_BIG_CONSTANT(T, 113, -0.189187969537370950337212675466400599e-14),
Chris@16 834 BOOST_MATH_BIG_CONSTANT(T, 113, -0.116313253429564048145641663778121898e-16),
Chris@16 835 BOOST_MATH_BIG_CONSTANT(T, 113, -0.376708747782400769427057630528578187e-19),
Chris@16 836 };
Chris@16 837 static const T Q[16] = {
Chris@101 838 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 839 BOOST_MATH_BIG_CONSTANT(T, 113, 0.205076752981410805177554569784219717),
Chris@16 840 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0202526722696670378999575738524540269),
Chris@16 841 BOOST_MATH_BIG_CONSTANT(T, 113, 0.001278305290005994980069466658219057),
Chris@16 842 BOOST_MATH_BIG_CONSTANT(T, 113, 0.576404779858501791742255670403304787e-4),
Chris@16 843 BOOST_MATH_BIG_CONSTANT(T, 113, 0.196477049872253010859712483984252067e-5),
Chris@16 844 BOOST_MATH_BIG_CONSTANT(T, 113, 0.521863830500876189501054079974475762e-7),
Chris@16 845 BOOST_MATH_BIG_CONSTANT(T, 113, 0.109524209196868135198775445228552059e-8),
Chris@16 846 BOOST_MATH_BIG_CONSTANT(T, 113, 0.181698713448644481083966260949267825e-10),
Chris@16 847 BOOST_MATH_BIG_CONSTANT(T, 113, 0.234793316975091282090312036524695562e-12),
Chris@16 848 BOOST_MATH_BIG_CONSTANT(T, 113, 0.227490441461460571047545264251399048e-14),
Chris@16 849 BOOST_MATH_BIG_CONSTANT(T, 113, 0.151500292036937400913870642638520668e-16),
Chris@16 850 BOOST_MATH_BIG_CONSTANT(T, 113, 0.543475775154780935815530649335936121e-19),
Chris@16 851 BOOST_MATH_BIG_CONSTANT(T, 113, 0.241647013434111434636554455083309352e-28),
Chris@16 852 BOOST_MATH_BIG_CONSTANT(T, 113, -0.557103423021951053707162364713587374e-31),
Chris@16 853 BOOST_MATH_BIG_CONSTANT(T, 113, 0.618708773442584843384712258199645166e-34),
Chris@16 854 };
Chris@16 855 result = tools::evaluate_polynomial(P, T(s - 30)) / tools::evaluate_polynomial(Q, T(s - 30));
Chris@16 856 result = 1 + exp(result);
Chris@16 857 }
Chris@16 858 else if(s < 117)
Chris@16 859 {
Chris@16 860 result = 1 + pow(T(2), -s);
Chris@16 861 }
Chris@16 862 else
Chris@16 863 {
Chris@16 864 result = 1;
Chris@16 865 }
Chris@16 866 return result;
Chris@16 867 }
Chris@16 868
Chris@101 869 template <class T, class Policy>
Chris@101 870 T zeta_imp_odd_integer(int s, const T&, const Policy&, const mpl::true_&)
Chris@101 871 {
Chris@101 872 static const T results[] = {
Chris@101 873 BOOST_MATH_BIG_CONSTANT(T, 113, 1.2020569031595942853997381615114500), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0369277551433699263313654864570342), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0083492773819228268397975498497968), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0020083928260822144178527692324121), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0004941886041194645587022825264699), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0001227133475784891467518365263574), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000305882363070204935517285106451), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000076371976378997622736002935630), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000019082127165539389256569577951), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000004769329867878064631167196044), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000001192199259653110730677887189), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000298035035146522801860637051), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000074507117898354294919810042), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000018626597235130490064039099), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000004656629065033784072989233), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000001164155017270051977592974), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000291038504449709968692943), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000072759598350574810145209), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000018189896503070659475848), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000004547473783042154026799), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000001136868407680227849349), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000284217097688930185546), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000071054273952108527129), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000017763568435791203275), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000004440892103143813364), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000001110223025141066134), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000277555756213612417), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000069388939045441537), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000017347234760475766), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000004336808690020650), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000001084202172494241), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000271050543122347), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000067762635780452), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000016940658945098), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000004235164736273), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000001058791184068), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000264697796017), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000066174449004), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000016543612251), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000004135903063), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000001033975766), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000258493941), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000064623485), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000016155871), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000004038968), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000001009742), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000252435), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000063109), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000015777), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000003944), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000986), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000247), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000062), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000015), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000004), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000001),
Chris@101 874 };
Chris@101 875 return s > 113 ? 1 : results[(s - 3) / 2];
Chris@101 876 }
Chris@101 877
Chris@101 878 template <class T, class Policy>
Chris@101 879 T zeta_imp_odd_integer(int s, const T& sc, const Policy& pol, const mpl::false_&)
Chris@101 880 {
Chris@101 881 static bool is_init = false;
Chris@101 882 static T results[50] = {};
Chris@101 883 if(!is_init)
Chris@101 884 {
Chris@101 885 is_init = true;
Chris@101 886 for(int k = 0; k < sizeof(results) / sizeof(results[0]); ++k)
Chris@101 887 {
Chris@101 888 T arg = k * 2 + 3;
Chris@101 889 T c_arg = 1 - arg;
Chris@101 890 results[k] = zeta_polynomial_series(arg, c_arg, pol);
Chris@101 891 }
Chris@101 892 }
Chris@101 893 int index = (s - 3) / 2;
Chris@101 894 return index >= sizeof(results) / sizeof(results[0]) ? zeta_polynomial_series(T(s), sc, pol): results[index];
Chris@101 895 }
Chris@101 896
Chris@16 897 template <class T, class Policy, class Tag>
Chris@16 898 T zeta_imp(T s, T sc, const Policy& pol, const Tag& tag)
Chris@16 899 {
Chris@16 900 BOOST_MATH_STD_USING
Chris@101 901 static const char* function = "boost::math::zeta<%1%>";
Chris@16 902 if(sc == 0)
Chris@16 903 return policies::raise_pole_error<T>(
Chris@101 904 function,
Chris@16 905 "Evaluation of zeta function at pole %1%",
Chris@16 906 s, pol);
Chris@16 907 T result;
Chris@101 908 //
Chris@101 909 // Trivial case:
Chris@101 910 //
Chris@101 911 if(s > policies::digits<T, Policy>())
Chris@101 912 return 1;
Chris@101 913 //
Chris@101 914 // Start by seeing if we have a simple closed form:
Chris@101 915 //
Chris@101 916 if(floor(s) == s)
Chris@101 917 {
Chris@101 918 try
Chris@101 919 {
Chris@101 920 int v = itrunc(s);
Chris@101 921 if(v == s)
Chris@101 922 {
Chris@101 923 if(v < 0)
Chris@101 924 {
Chris@101 925 if(((-v) & 1) == 0)
Chris@101 926 return 0;
Chris@101 927 int n = (-v + 1) / 2;
Chris@101 928 if(n <= boost::math::max_bernoulli_b2n<T>::value)
Chris@101 929 return T((-v & 1) ? -1 : 1) * boost::math::unchecked_bernoulli_b2n<T>(n) / (1 - v);
Chris@101 930 }
Chris@101 931 else if((v & 1) == 0)
Chris@101 932 {
Chris@101 933 if(((v / 2) <= boost::math::max_bernoulli_b2n<T>::value) && (v <= boost::math::max_factorial<T>::value))
Chris@101 934 return T(((v / 2 - 1) & 1) ? -1 : 1) * ldexp(T(1), v - 1) * pow(constants::pi<T, Policy>(), v) *
Chris@101 935 boost::math::unchecked_bernoulli_b2n<T>(v / 2) / boost::math::unchecked_factorial<T>(v);
Chris@101 936 return T(((v / 2 - 1) & 1) ? -1 : 1) * ldexp(T(1), v - 1) * pow(constants::pi<T, Policy>(), v) *
Chris@101 937 boost::math::bernoulli_b2n<T>(v / 2) / boost::math::factorial<T>(v);
Chris@101 938 }
Chris@101 939 else
Chris@101 940 return zeta_imp_odd_integer(v, sc, pol, mpl::bool_<(Tag::value <= 113) && Tag::value>());
Chris@101 941 }
Chris@101 942 }
Chris@101 943 catch(const boost::math::rounding_error&){} // Just fall through, s is too large to round
Chris@101 944 catch(const std::overflow_error&){}
Chris@101 945 }
Chris@101 946
Chris@16 947 if(fabs(s) < tools::root_epsilon<T>())
Chris@16 948 {
Chris@16 949 result = -0.5f - constants::log_root_two_pi<T, Policy>() * s;
Chris@16 950 }
Chris@16 951 else if(s < 0)
Chris@16 952 {
Chris@16 953 std::swap(s, sc);
Chris@16 954 if(floor(sc/2) == sc/2)
Chris@16 955 result = 0;
Chris@16 956 else
Chris@16 957 {
Chris@101 958 if(s > max_factorial<T>::value)
Chris@101 959 {
Chris@101 960 T mult = boost::math::sin_pi(0.5f * sc, pol) * 2 * zeta_imp(s, sc, pol, tag);
Chris@101 961 result = boost::math::lgamma(s, pol);
Chris@101 962 result -= s * log(2 * constants::pi<T>());
Chris@101 963 if(result > tools::log_max_value<T>())
Chris@101 964 return sign(mult) * policies::raise_overflow_error<T>(function, 0, pol);
Chris@101 965 result = exp(result);
Chris@101 966 if(tools::max_value<T>() / fabs(mult) < result)
Chris@101 967 return boost::math::sign(mult) * policies::raise_overflow_error<T>(function, 0, pol);
Chris@101 968 result *= mult;
Chris@101 969 }
Chris@101 970 else
Chris@101 971 {
Chris@101 972 result = boost::math::sin_pi(0.5f * sc, pol)
Chris@101 973 * 2 * pow(2 * constants::pi<T>(), -s)
Chris@101 974 * boost::math::tgamma(s, pol)
Chris@101 975 * zeta_imp(s, sc, pol, tag);
Chris@101 976 }
Chris@16 977 }
Chris@16 978 }
Chris@16 979 else
Chris@16 980 {
Chris@16 981 result = zeta_imp_prec(s, sc, pol, tag);
Chris@16 982 }
Chris@16 983 return result;
Chris@16 984 }
Chris@16 985
Chris@16 986 template <class T, class Policy, class tag>
Chris@16 987 struct zeta_initializer
Chris@16 988 {
Chris@16 989 struct init
Chris@16 990 {
Chris@16 991 init()
Chris@16 992 {
Chris@16 993 do_init(tag());
Chris@16 994 }
Chris@101 995 static void do_init(const mpl::int_<0>&){ boost::math::zeta(static_cast<T>(5), Policy()); }
Chris@101 996 static void do_init(const mpl::int_<53>&){ boost::math::zeta(static_cast<T>(5), Policy()); }
Chris@16 997 static void do_init(const mpl::int_<64>&)
Chris@16 998 {
Chris@16 999 boost::math::zeta(static_cast<T>(0.5), Policy());
Chris@16 1000 boost::math::zeta(static_cast<T>(1.5), Policy());
Chris@16 1001 boost::math::zeta(static_cast<T>(3.5), Policy());
Chris@16 1002 boost::math::zeta(static_cast<T>(6.5), Policy());
Chris@16 1003 boost::math::zeta(static_cast<T>(14.5), Policy());
Chris@16 1004 boost::math::zeta(static_cast<T>(40.5), Policy());
Chris@101 1005
Chris@101 1006 boost::math::zeta(static_cast<T>(5), Policy());
Chris@16 1007 }
Chris@16 1008 static void do_init(const mpl::int_<113>&)
Chris@16 1009 {
Chris@16 1010 boost::math::zeta(static_cast<T>(0.5), Policy());
Chris@16 1011 boost::math::zeta(static_cast<T>(1.5), Policy());
Chris@16 1012 boost::math::zeta(static_cast<T>(3.5), Policy());
Chris@16 1013 boost::math::zeta(static_cast<T>(5.5), Policy());
Chris@16 1014 boost::math::zeta(static_cast<T>(9.5), Policy());
Chris@16 1015 boost::math::zeta(static_cast<T>(16.5), Policy());
Chris@101 1016 boost::math::zeta(static_cast<T>(25.5), Policy());
Chris@101 1017 boost::math::zeta(static_cast<T>(70.5), Policy());
Chris@101 1018
Chris@101 1019 boost::math::zeta(static_cast<T>(5), Policy());
Chris@16 1020 }
Chris@16 1021 void force_instantiate()const{}
Chris@16 1022 };
Chris@16 1023 static const init initializer;
Chris@16 1024 static void force_instantiate()
Chris@16 1025 {
Chris@16 1026 initializer.force_instantiate();
Chris@16 1027 }
Chris@16 1028 };
Chris@16 1029
Chris@16 1030 template <class T, class Policy, class tag>
Chris@16 1031 const typename zeta_initializer<T, Policy, tag>::init zeta_initializer<T, Policy, tag>::initializer;
Chris@16 1032
Chris@16 1033 } // detail
Chris@16 1034
Chris@16 1035 template <class T, class Policy>
Chris@16 1036 inline typename tools::promote_args<T>::type zeta(T s, const Policy&)
Chris@16 1037 {
Chris@16 1038 typedef typename tools::promote_args<T>::type result_type;
Chris@16 1039 typedef typename policies::evaluation<result_type, Policy>::type value_type;
Chris@16 1040 typedef typename policies::precision<result_type, Policy>::type precision_type;
Chris@16 1041 typedef typename policies::normalise<
Chris@16 1042 Policy,
Chris@16 1043 policies::promote_float<false>,
Chris@16 1044 policies::promote_double<false>,
Chris@16 1045 policies::discrete_quantile<>,
Chris@16 1046 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 1047 typedef typename mpl::if_<
Chris@16 1048 mpl::less_equal<precision_type, mpl::int_<0> >,
Chris@16 1049 mpl::int_<0>,
Chris@16 1050 typename mpl::if_<
Chris@16 1051 mpl::less_equal<precision_type, mpl::int_<53> >,
Chris@16 1052 mpl::int_<53>, // double
Chris@16 1053 typename mpl::if_<
Chris@16 1054 mpl::less_equal<precision_type, mpl::int_<64> >,
Chris@16 1055 mpl::int_<64>, // 80-bit long double
Chris@16 1056 typename mpl::if_<
Chris@16 1057 mpl::less_equal<precision_type, mpl::int_<113> >,
Chris@16 1058 mpl::int_<113>, // 128-bit long double
Chris@16 1059 mpl::int_<0> // too many bits, use generic version.
Chris@16 1060 >::type
Chris@16 1061 >::type
Chris@16 1062 >::type
Chris@16 1063 >::type tag_type;
Chris@16 1064 //typedef mpl::int_<0> tag_type;
Chris@16 1065
Chris@16 1066 detail::zeta_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
Chris@16 1067
Chris@16 1068 return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::zeta_imp(
Chris@16 1069 static_cast<value_type>(s),
Chris@16 1070 static_cast<value_type>(1 - static_cast<value_type>(s)),
Chris@16 1071 forwarding_policy(),
Chris@16 1072 tag_type()), "boost::math::zeta<%1%>(%1%)");
Chris@16 1073 }
Chris@16 1074
Chris@16 1075 template <class T>
Chris@16 1076 inline typename tools::promote_args<T>::type zeta(T s)
Chris@16 1077 {
Chris@16 1078 return zeta(s, policies::policy<>());
Chris@16 1079 }
Chris@16 1080
Chris@16 1081 }} // namespaces
Chris@16 1082
Chris@16 1083 #endif // BOOST_MATH_ZETA_HPP
Chris@16 1084
Chris@16 1085
Chris@16 1086