annotate DEPENDENCIES/generic/include/boost/math/special_functions/sinc.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 // boost sinc.hpp header file
Chris@16 2
Chris@16 3 // (C) Copyright Hubert Holin 2001.
Chris@16 4 // Distributed under the Boost Software License, Version 1.0. (See
Chris@16 5 // accompanying file LICENSE_1_0.txt or copy at
Chris@16 6 // http://www.boost.org/LICENSE_1_0.txt)
Chris@16 7
Chris@16 8 // See http://www.boost.org for updates, documentation, and revision history.
Chris@16 9
Chris@16 10 #ifndef BOOST_SINC_HPP
Chris@16 11 #define BOOST_SINC_HPP
Chris@16 12
Chris@16 13
Chris@16 14 #ifdef _MSC_VER
Chris@16 15 #pragma once
Chris@16 16 #endif
Chris@16 17
Chris@16 18 #include <boost/math/tools/config.hpp>
Chris@16 19 #include <boost/math/tools/precision.hpp>
Chris@16 20 #include <boost/math/policies/policy.hpp>
Chris@16 21 #include <boost/math/special_functions/math_fwd.hpp>
Chris@16 22 #include <boost/config/no_tr1/cmath.hpp>
Chris@16 23 #include <boost/limits.hpp>
Chris@16 24 #include <string>
Chris@16 25 #include <stdexcept>
Chris@16 26
Chris@16 27
Chris@16 28 #include <boost/config.hpp>
Chris@16 29
Chris@16 30
Chris@16 31 // These are the the "Sinus Cardinal" functions.
Chris@16 32
Chris@16 33 namespace boost
Chris@16 34 {
Chris@16 35 namespace math
Chris@16 36 {
Chris@16 37 namespace detail
Chris@16 38 {
Chris@16 39 // This is the "Sinus Cardinal" of index Pi.
Chris@16 40
Chris@16 41 template<typename T>
Chris@16 42 inline T sinc_pi_imp(const T x)
Chris@16 43 {
Chris@16 44 BOOST_MATH_STD_USING
Chris@16 45
Chris@16 46 T const taylor_0_bound = tools::epsilon<T>();
Chris@16 47 T const taylor_2_bound = tools::root_epsilon<T>();
Chris@16 48 T const taylor_n_bound = tools::forth_root_epsilon<T>();
Chris@16 49
Chris@16 50 if (abs(x) >= taylor_n_bound)
Chris@16 51 {
Chris@16 52 return(sin(x)/x);
Chris@16 53 }
Chris@16 54 else
Chris@16 55 {
Chris@16 56 // approximation by taylor series in x at 0 up to order 0
Chris@16 57 T result = static_cast<T>(1);
Chris@16 58
Chris@16 59 if (abs(x) >= taylor_0_bound)
Chris@16 60 {
Chris@16 61 T x2 = x*x;
Chris@16 62
Chris@16 63 // approximation by taylor series in x at 0 up to order 2
Chris@16 64 result -= x2/static_cast<T>(6);
Chris@16 65
Chris@16 66 if (abs(x) >= taylor_2_bound)
Chris@16 67 {
Chris@16 68 // approximation by taylor series in x at 0 up to order 4
Chris@16 69 result += (x2*x2)/static_cast<T>(120);
Chris@16 70 }
Chris@16 71 }
Chris@16 72
Chris@16 73 return(result);
Chris@16 74 }
Chris@16 75 }
Chris@16 76
Chris@16 77 } // namespace detail
Chris@16 78
Chris@16 79 template <class T>
Chris@16 80 inline typename tools::promote_args<T>::type sinc_pi(T x)
Chris@16 81 {
Chris@16 82 typedef typename tools::promote_args<T>::type result_type;
Chris@16 83 return detail::sinc_pi_imp(static_cast<result_type>(x));
Chris@16 84 }
Chris@16 85
Chris@16 86 template <class T, class Policy>
Chris@16 87 inline typename tools::promote_args<T>::type sinc_pi(T x, const Policy&)
Chris@16 88 {
Chris@16 89 typedef typename tools::promote_args<T>::type result_type;
Chris@16 90 return detail::sinc_pi_imp(static_cast<result_type>(x));
Chris@16 91 }
Chris@16 92
Chris@16 93 #ifndef BOOST_NO_TEMPLATE_TEMPLATES
Chris@16 94 template<typename T, template<typename> class U>
Chris@16 95 inline U<T> sinc_pi(const U<T> x)
Chris@16 96 {
Chris@16 97 BOOST_MATH_STD_USING
Chris@16 98 using ::std::numeric_limits;
Chris@16 99
Chris@16 100 T const taylor_0_bound = tools::epsilon<T>();
Chris@16 101 T const taylor_2_bound = tools::root_epsilon<T>();
Chris@16 102 T const taylor_n_bound = tools::forth_root_epsilon<T>();
Chris@16 103
Chris@16 104 if (abs(x) >= taylor_n_bound)
Chris@16 105 {
Chris@16 106 return(sin(x)/x);
Chris@16 107 }
Chris@16 108 else
Chris@16 109 {
Chris@16 110 // approximation by taylor series in x at 0 up to order 0
Chris@16 111 #ifdef __MWERKS__
Chris@16 112 U<T> result = static_cast<U<T> >(1);
Chris@16 113 #else
Chris@16 114 U<T> result = U<T>(1);
Chris@16 115 #endif
Chris@16 116
Chris@16 117 if (abs(x) >= taylor_0_bound)
Chris@16 118 {
Chris@16 119 U<T> x2 = x*x;
Chris@16 120
Chris@16 121 // approximation by taylor series in x at 0 up to order 2
Chris@16 122 result -= x2/static_cast<T>(6);
Chris@16 123
Chris@16 124 if (abs(x) >= taylor_2_bound)
Chris@16 125 {
Chris@16 126 // approximation by taylor series in x at 0 up to order 4
Chris@16 127 result += (x2*x2)/static_cast<T>(120);
Chris@16 128 }
Chris@16 129 }
Chris@16 130
Chris@16 131 return(result);
Chris@16 132 }
Chris@16 133 }
Chris@16 134
Chris@16 135 template<typename T, template<typename> class U, class Policy>
Chris@16 136 inline U<T> sinc_pi(const U<T> x, const Policy&)
Chris@16 137 {
Chris@16 138 return sinc_pi(x);
Chris@16 139 }
Chris@16 140 #endif /* BOOST_NO_TEMPLATE_TEMPLATES */
Chris@16 141 }
Chris@16 142 }
Chris@16 143
Chris@16 144 #endif /* BOOST_SINC_HPP */
Chris@16 145