annotate DEPENDENCIES/generic/include/boost/math/special_functions/erf.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // (C) Copyright John Maddock 2006.
Chris@16 2 // Use, modification and distribution are subject to the
Chris@16 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5
Chris@16 6 #ifndef BOOST_MATH_SPECIAL_ERF_HPP
Chris@16 7 #define BOOST_MATH_SPECIAL_ERF_HPP
Chris@16 8
Chris@16 9 #ifdef _MSC_VER
Chris@16 10 #pragma once
Chris@16 11 #endif
Chris@16 12
Chris@16 13 #include <boost/math/special_functions/math_fwd.hpp>
Chris@16 14 #include <boost/math/tools/config.hpp>
Chris@16 15 #include <boost/math/special_functions/gamma.hpp>
Chris@16 16 #include <boost/math/tools/roots.hpp>
Chris@16 17 #include <boost/math/policies/error_handling.hpp>
Chris@16 18 #include <boost/math/tools/big_constant.hpp>
Chris@16 19
Chris@16 20 namespace boost{ namespace math{
Chris@16 21
Chris@16 22 namespace detail
Chris@16 23 {
Chris@16 24
Chris@16 25 //
Chris@16 26 // Asymptotic series for large z:
Chris@16 27 //
Chris@16 28 template <class T>
Chris@16 29 struct erf_asympt_series_t
Chris@16 30 {
Chris@16 31 erf_asympt_series_t(T z) : xx(2 * -z * z), tk(1)
Chris@16 32 {
Chris@16 33 BOOST_MATH_STD_USING
Chris@16 34 result = -exp(-z * z) / sqrt(boost::math::constants::pi<T>());
Chris@16 35 result /= z;
Chris@16 36 }
Chris@16 37
Chris@16 38 typedef T result_type;
Chris@16 39
Chris@16 40 T operator()()
Chris@16 41 {
Chris@16 42 BOOST_MATH_STD_USING
Chris@16 43 T r = result;
Chris@16 44 result *= tk / xx;
Chris@16 45 tk += 2;
Chris@16 46 if( fabs(r) < fabs(result))
Chris@16 47 result = 0;
Chris@16 48 return r;
Chris@16 49 }
Chris@16 50 private:
Chris@16 51 T result;
Chris@16 52 T xx;
Chris@16 53 int tk;
Chris@16 54 };
Chris@16 55 //
Chris@16 56 // How large z has to be in order to ensure that the series converges:
Chris@16 57 //
Chris@16 58 template <class T>
Chris@16 59 inline float erf_asymptotic_limit_N(const T&)
Chris@16 60 {
Chris@16 61 return (std::numeric_limits<float>::max)();
Chris@16 62 }
Chris@16 63 inline float erf_asymptotic_limit_N(const mpl::int_<24>&)
Chris@16 64 {
Chris@16 65 return 2.8F;
Chris@16 66 }
Chris@16 67 inline float erf_asymptotic_limit_N(const mpl::int_<53>&)
Chris@16 68 {
Chris@16 69 return 4.3F;
Chris@16 70 }
Chris@16 71 inline float erf_asymptotic_limit_N(const mpl::int_<64>&)
Chris@16 72 {
Chris@16 73 return 4.8F;
Chris@16 74 }
Chris@16 75 inline float erf_asymptotic_limit_N(const mpl::int_<106>&)
Chris@16 76 {
Chris@16 77 return 6.5F;
Chris@16 78 }
Chris@16 79 inline float erf_asymptotic_limit_N(const mpl::int_<113>&)
Chris@16 80 {
Chris@16 81 return 6.8F;
Chris@16 82 }
Chris@16 83
Chris@16 84 template <class T, class Policy>
Chris@16 85 inline T erf_asymptotic_limit()
Chris@16 86 {
Chris@16 87 typedef typename policies::precision<T, Policy>::type precision_type;
Chris@16 88 typedef typename mpl::if_<
Chris@16 89 mpl::less_equal<precision_type, mpl::int_<24> >,
Chris@16 90 typename mpl::if_<
Chris@16 91 mpl::less_equal<precision_type, mpl::int_<0> >,
Chris@16 92 mpl::int_<0>,
Chris@16 93 mpl::int_<24>
Chris@16 94 >::type,
Chris@16 95 typename mpl::if_<
Chris@16 96 mpl::less_equal<precision_type, mpl::int_<53> >,
Chris@16 97 mpl::int_<53>,
Chris@16 98 typename mpl::if_<
Chris@16 99 mpl::less_equal<precision_type, mpl::int_<64> >,
Chris@16 100 mpl::int_<64>,
Chris@16 101 typename mpl::if_<
Chris@16 102 mpl::less_equal<precision_type, mpl::int_<106> >,
Chris@16 103 mpl::int_<106>,
Chris@16 104 typename mpl::if_<
Chris@16 105 mpl::less_equal<precision_type, mpl::int_<113> >,
Chris@16 106 mpl::int_<113>,
Chris@16 107 mpl::int_<0>
Chris@16 108 >::type
Chris@16 109 >::type
Chris@16 110 >::type
Chris@16 111 >::type
Chris@16 112 >::type tag_type;
Chris@16 113 return erf_asymptotic_limit_N(tag_type());
Chris@16 114 }
Chris@16 115
Chris@16 116 template <class T, class Policy, class Tag>
Chris@16 117 T erf_imp(T z, bool invert, const Policy& pol, const Tag& t)
Chris@16 118 {
Chris@16 119 BOOST_MATH_STD_USING
Chris@16 120
Chris@16 121 BOOST_MATH_INSTRUMENT_CODE("Generic erf_imp called");
Chris@16 122
Chris@16 123 if(z < 0)
Chris@16 124 {
Chris@16 125 if(!invert)
Chris@16 126 return -erf_imp(T(-z), invert, pol, t);
Chris@16 127 else
Chris@16 128 return 1 + erf_imp(T(-z), false, pol, t);
Chris@16 129 }
Chris@16 130
Chris@16 131 T result;
Chris@16 132
Chris@16 133 if(!invert && (z > detail::erf_asymptotic_limit<T, Policy>()))
Chris@16 134 {
Chris@16 135 detail::erf_asympt_series_t<T> s(z);
Chris@16 136 boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
Chris@16 137 result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, 1);
Chris@16 138 policies::check_series_iterations<T>("boost::math::erf<%1%>(%1%, %1%)", max_iter, pol);
Chris@16 139 }
Chris@16 140 else
Chris@16 141 {
Chris@16 142 T x = z * z;
Chris@16 143 if(x < 0.6)
Chris@16 144 {
Chris@16 145 // Compute P:
Chris@16 146 result = z * exp(-x);
Chris@16 147 result /= sqrt(boost::math::constants::pi<T>());
Chris@16 148 if(result != 0)
Chris@16 149 result *= 2 * detail::lower_gamma_series(T(0.5f), x, pol);
Chris@16 150 }
Chris@16 151 else if(x < 1.1f)
Chris@16 152 {
Chris@16 153 // Compute Q:
Chris@16 154 invert = !invert;
Chris@16 155 result = tgamma_small_upper_part(T(0.5f), x, pol);
Chris@16 156 result /= sqrt(boost::math::constants::pi<T>());
Chris@16 157 }
Chris@16 158 else
Chris@16 159 {
Chris@16 160 // Compute Q:
Chris@16 161 invert = !invert;
Chris@16 162 result = z * exp(-x);
Chris@16 163 result /= sqrt(boost::math::constants::pi<T>());
Chris@16 164 result *= upper_gamma_fraction(T(0.5f), x, policies::get_epsilon<T, Policy>());
Chris@16 165 }
Chris@16 166 }
Chris@16 167 if(invert)
Chris@16 168 result = 1 - result;
Chris@16 169 return result;
Chris@16 170 }
Chris@16 171
Chris@16 172 template <class T, class Policy>
Chris@16 173 T erf_imp(T z, bool invert, const Policy& pol, const mpl::int_<53>& t)
Chris@16 174 {
Chris@16 175 BOOST_MATH_STD_USING
Chris@16 176
Chris@16 177 BOOST_MATH_INSTRUMENT_CODE("53-bit precision erf_imp called");
Chris@16 178
Chris@16 179 if(z < 0)
Chris@16 180 {
Chris@16 181 if(!invert)
Chris@16 182 return -erf_imp(T(-z), invert, pol, t);
Chris@16 183 else if(z < -0.5)
Chris@16 184 return 2 - erf_imp(T(-z), invert, pol, t);
Chris@16 185 else
Chris@16 186 return 1 + erf_imp(T(-z), false, pol, t);
Chris@16 187 }
Chris@16 188
Chris@16 189 T result;
Chris@16 190
Chris@16 191 //
Chris@16 192 // Big bunch of selection statements now to pick
Chris@16 193 // which implementation to use,
Chris@16 194 // try to put most likely options first:
Chris@16 195 //
Chris@16 196 if(z < 0.5)
Chris@16 197 {
Chris@16 198 //
Chris@16 199 // We're going to calculate erf:
Chris@16 200 //
Chris@16 201 if(z < 1e-10)
Chris@16 202 {
Chris@16 203 if(z == 0)
Chris@16 204 {
Chris@16 205 result = T(0);
Chris@16 206 }
Chris@16 207 else
Chris@16 208 {
Chris@16 209 static const T c = BOOST_MATH_BIG_CONSTANT(T, 53, 0.003379167095512573896158903121545171688);
Chris@16 210 result = static_cast<T>(z * 1.125f + z * c);
Chris@16 211 }
Chris@16 212 }
Chris@16 213 else
Chris@16 214 {
Chris@16 215 // Maximum Deviation Found: 1.561e-17
Chris@16 216 // Expected Error Term: 1.561e-17
Chris@16 217 // Maximum Relative Change in Control Points: 1.155e-04
Chris@16 218 // Max Error found at double precision = 2.961182e-17
Chris@16 219
Chris@16 220 static const T Y = 1.044948577880859375f;
Chris@16 221 static const T P[] = {
Chris@16 222 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0834305892146531832907),
Chris@16 223 BOOST_MATH_BIG_CONSTANT(T, 53, -0.338165134459360935041),
Chris@16 224 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0509990735146777432841),
Chris@16 225 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00772758345802133288487),
Chris@16 226 BOOST_MATH_BIG_CONSTANT(T, 53, -0.000322780120964605683831),
Chris@16 227 };
Chris@16 228 static const T Q[] = {
Chris@16 229 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
Chris@16 230 BOOST_MATH_BIG_CONSTANT(T, 53, 0.455004033050794024546),
Chris@16 231 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0875222600142252549554),
Chris@16 232 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00858571925074406212772),
Chris@16 233 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000370900071787748000569),
Chris@16 234 };
Chris@16 235 T zz = z * z;
Chris@16 236 result = z * (Y + tools::evaluate_polynomial(P, zz) / tools::evaluate_polynomial(Q, zz));
Chris@16 237 }
Chris@16 238 }
Chris@16 239 else if(invert ? (z < 28) : (z < 5.8f))
Chris@16 240 {
Chris@16 241 //
Chris@16 242 // We'll be calculating erfc:
Chris@16 243 //
Chris@16 244 invert = !invert;
Chris@16 245 if(z < 1.5f)
Chris@16 246 {
Chris@16 247 // Maximum Deviation Found: 3.702e-17
Chris@16 248 // Expected Error Term: 3.702e-17
Chris@16 249 // Maximum Relative Change in Control Points: 2.845e-04
Chris@16 250 // Max Error found at double precision = 4.841816e-17
Chris@16 251 static const T Y = 0.405935764312744140625f;
Chris@16 252 static const T P[] = {
Chris@16 253 BOOST_MATH_BIG_CONSTANT(T, 53, -0.098090592216281240205),
Chris@16 254 BOOST_MATH_BIG_CONSTANT(T, 53, 0.178114665841120341155),
Chris@16 255 BOOST_MATH_BIG_CONSTANT(T, 53, 0.191003695796775433986),
Chris@16 256 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0888900368967884466578),
Chris@16 257 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0195049001251218801359),
Chris@16 258 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00180424538297014223957),
Chris@16 259 };
Chris@16 260 static const T Q[] = {
Chris@16 261 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
Chris@16 262 BOOST_MATH_BIG_CONSTANT(T, 53, 1.84759070983002217845),
Chris@16 263 BOOST_MATH_BIG_CONSTANT(T, 53, 1.42628004845511324508),
Chris@16 264 BOOST_MATH_BIG_CONSTANT(T, 53, 0.578052804889902404909),
Chris@16 265 BOOST_MATH_BIG_CONSTANT(T, 53, 0.12385097467900864233),
Chris@16 266 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0113385233577001411017),
Chris@16 267 BOOST_MATH_BIG_CONSTANT(T, 53, 0.337511472483094676155e-5),
Chris@16 268 };
Chris@16 269 BOOST_MATH_INSTRUMENT_VARIABLE(Y);
Chris@16 270 BOOST_MATH_INSTRUMENT_VARIABLE(P[0]);
Chris@16 271 BOOST_MATH_INSTRUMENT_VARIABLE(Q[0]);
Chris@16 272 BOOST_MATH_INSTRUMENT_VARIABLE(z);
Chris@16 273 result = Y + tools::evaluate_polynomial(P, T(z - 0.5)) / tools::evaluate_polynomial(Q, T(z - 0.5));
Chris@16 274 BOOST_MATH_INSTRUMENT_VARIABLE(result);
Chris@16 275 result *= exp(-z * z) / z;
Chris@16 276 BOOST_MATH_INSTRUMENT_VARIABLE(result);
Chris@16 277 }
Chris@16 278 else if(z < 2.5f)
Chris@16 279 {
Chris@16 280 // Max Error found at double precision = 6.599585e-18
Chris@16 281 // Maximum Deviation Found: 3.909e-18
Chris@16 282 // Expected Error Term: 3.909e-18
Chris@16 283 // Maximum Relative Change in Control Points: 9.886e-05
Chris@16 284 static const T Y = 0.50672817230224609375f;
Chris@16 285 static const T P[] = {
Chris@16 286 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0243500476207698441272),
Chris@16 287 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0386540375035707201728),
Chris@16 288 BOOST_MATH_BIG_CONSTANT(T, 53, 0.04394818964209516296),
Chris@16 289 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175679436311802092299),
Chris@16 290 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00323962406290842133584),
Chris@16 291 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000235839115596880717416),
Chris@16 292 };
Chris@16 293 static const T Q[] = {
Chris@101 294 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
Chris@16 295 BOOST_MATH_BIG_CONSTANT(T, 53, 1.53991494948552447182),
Chris@16 296 BOOST_MATH_BIG_CONSTANT(T, 53, 0.982403709157920235114),
Chris@16 297 BOOST_MATH_BIG_CONSTANT(T, 53, 0.325732924782444448493),
Chris@16 298 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0563921837420478160373),
Chris@16 299 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00410369723978904575884),
Chris@16 300 };
Chris@16 301 result = Y + tools::evaluate_polynomial(P, T(z - 1.5)) / tools::evaluate_polynomial(Q, T(z - 1.5));
Chris@16 302 result *= exp(-z * z) / z;
Chris@16 303 }
Chris@16 304 else if(z < 4.5f)
Chris@16 305 {
Chris@16 306 // Maximum Deviation Found: 1.512e-17
Chris@16 307 // Expected Error Term: 1.512e-17
Chris@16 308 // Maximum Relative Change in Control Points: 2.222e-04
Chris@16 309 // Max Error found at double precision = 2.062515e-17
Chris@16 310 static const T Y = 0.5405750274658203125f;
Chris@16 311 static const T P[] = {
Chris@16 312 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00295276716530971662634),
Chris@16 313 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0137384425896355332126),
Chris@16 314 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00840807615555585383007),
Chris@16 315 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00212825620914618649141),
Chris@16 316 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000250269961544794627958),
Chris@16 317 BOOST_MATH_BIG_CONSTANT(T, 53, 0.113212406648847561139e-4),
Chris@16 318 };
Chris@16 319 static const T Q[] = {
Chris@101 320 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
Chris@16 321 BOOST_MATH_BIG_CONSTANT(T, 53, 1.04217814166938418171),
Chris@16 322 BOOST_MATH_BIG_CONSTANT(T, 53, 0.442597659481563127003),
Chris@16 323 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0958492726301061423444),
Chris@16 324 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0105982906484876531489),
Chris@16 325 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000479411269521714493907),
Chris@16 326 };
Chris@16 327 result = Y + tools::evaluate_polynomial(P, T(z - 3.5)) / tools::evaluate_polynomial(Q, T(z - 3.5));
Chris@16 328 result *= exp(-z * z) / z;
Chris@16 329 }
Chris@16 330 else
Chris@16 331 {
Chris@16 332 // Max Error found at double precision = 2.997958e-17
Chris@16 333 // Maximum Deviation Found: 2.860e-17
Chris@16 334 // Expected Error Term: 2.859e-17
Chris@16 335 // Maximum Relative Change in Control Points: 1.357e-05
Chris@16 336 static const T Y = 0.5579090118408203125f;
Chris@16 337 static const T P[] = {
Chris@16 338 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00628057170626964891937),
Chris@16 339 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175389834052493308818),
Chris@16 340 BOOST_MATH_BIG_CONSTANT(T, 53, -0.212652252872804219852),
Chris@16 341 BOOST_MATH_BIG_CONSTANT(T, 53, -0.687717681153649930619),
Chris@16 342 BOOST_MATH_BIG_CONSTANT(T, 53, -2.5518551727311523996),
Chris@16 343 BOOST_MATH_BIG_CONSTANT(T, 53, -3.22729451764143718517),
Chris@16 344 BOOST_MATH_BIG_CONSTANT(T, 53, -2.8175401114513378771),
Chris@16 345 };
Chris@16 346 static const T Q[] = {
Chris@101 347 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
Chris@16 348 BOOST_MATH_BIG_CONSTANT(T, 53, 2.79257750980575282228),
Chris@16 349 BOOST_MATH_BIG_CONSTANT(T, 53, 11.0567237927800161565),
Chris@16 350 BOOST_MATH_BIG_CONSTANT(T, 53, 15.930646027911794143),
Chris@16 351 BOOST_MATH_BIG_CONSTANT(T, 53, 22.9367376522880577224),
Chris@16 352 BOOST_MATH_BIG_CONSTANT(T, 53, 13.5064170191802889145),
Chris@16 353 BOOST_MATH_BIG_CONSTANT(T, 53, 5.48409182238641741584),
Chris@16 354 };
Chris@16 355 result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
Chris@16 356 result *= exp(-z * z) / z;
Chris@16 357 }
Chris@16 358 }
Chris@16 359 else
Chris@16 360 {
Chris@16 361 //
Chris@16 362 // Any value of z larger than 28 will underflow to zero:
Chris@16 363 //
Chris@16 364 result = 0;
Chris@16 365 invert = !invert;
Chris@16 366 }
Chris@16 367
Chris@16 368 if(invert)
Chris@16 369 {
Chris@16 370 result = 1 - result;
Chris@16 371 }
Chris@16 372
Chris@16 373 return result;
Chris@16 374 } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const mpl::int_<53>& t)
Chris@16 375
Chris@16 376
Chris@16 377 template <class T, class Policy>
Chris@16 378 T erf_imp(T z, bool invert, const Policy& pol, const mpl::int_<64>& t)
Chris@16 379 {
Chris@16 380 BOOST_MATH_STD_USING
Chris@16 381
Chris@16 382 BOOST_MATH_INSTRUMENT_CODE("64-bit precision erf_imp called");
Chris@16 383
Chris@16 384 if(z < 0)
Chris@16 385 {
Chris@16 386 if(!invert)
Chris@16 387 return -erf_imp(T(-z), invert, pol, t);
Chris@16 388 else if(z < -0.5)
Chris@16 389 return 2 - erf_imp(T(-z), invert, pol, t);
Chris@16 390 else
Chris@16 391 return 1 + erf_imp(T(-z), false, pol, t);
Chris@16 392 }
Chris@16 393
Chris@16 394 T result;
Chris@16 395
Chris@16 396 //
Chris@16 397 // Big bunch of selection statements now to pick which
Chris@16 398 // implementation to use, try to put most likely options
Chris@16 399 // first:
Chris@16 400 //
Chris@16 401 if(z < 0.5)
Chris@16 402 {
Chris@16 403 //
Chris@16 404 // We're going to calculate erf:
Chris@16 405 //
Chris@16 406 if(z == 0)
Chris@16 407 {
Chris@16 408 result = 0;
Chris@16 409 }
Chris@16 410 else if(z < 1e-10)
Chris@16 411 {
Chris@16 412 static const T c = BOOST_MATH_BIG_CONSTANT(T, 64, 0.003379167095512573896158903121545171688);
Chris@16 413 result = z * 1.125 + z * c;
Chris@16 414 }
Chris@16 415 else
Chris@16 416 {
Chris@16 417 // Max Error found at long double precision = 1.623299e-20
Chris@16 418 // Maximum Deviation Found: 4.326e-22
Chris@16 419 // Expected Error Term: -4.326e-22
Chris@16 420 // Maximum Relative Change in Control Points: 1.474e-04
Chris@16 421 static const T Y = 1.044948577880859375f;
Chris@16 422 static const T P[] = {
Chris@16 423 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0834305892146531988966),
Chris@16 424 BOOST_MATH_BIG_CONSTANT(T, 64, -0.338097283075565413695),
Chris@16 425 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509602734406067204596),
Chris@16 426 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00904906346158537794396),
Chris@16 427 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000489468651464798669181),
Chris@16 428 BOOST_MATH_BIG_CONSTANT(T, 64, -0.200305626366151877759e-4),
Chris@16 429 };
Chris@16 430 static const T Q[] = {
Chris@101 431 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 432 BOOST_MATH_BIG_CONSTANT(T, 64, 0.455817300515875172439),
Chris@16 433 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0916537354356241792007),
Chris@16 434 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0102722652675910031202),
Chris@16 435 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000650511752687851548735),
Chris@16 436 BOOST_MATH_BIG_CONSTANT(T, 64, 0.189532519105655496778e-4),
Chris@16 437 };
Chris@16 438 result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z)));
Chris@16 439 }
Chris@16 440 }
Chris@16 441 else if(invert ? (z < 110) : (z < 6.4f))
Chris@16 442 {
Chris@16 443 //
Chris@16 444 // We'll be calculating erfc:
Chris@16 445 //
Chris@16 446 invert = !invert;
Chris@16 447 if(z < 1.5)
Chris@16 448 {
Chris@16 449 // Max Error found at long double precision = 3.239590e-20
Chris@16 450 // Maximum Deviation Found: 2.241e-20
Chris@16 451 // Expected Error Term: -2.241e-20
Chris@16 452 // Maximum Relative Change in Control Points: 5.110e-03
Chris@16 453 static const T Y = 0.405935764312744140625f;
Chris@16 454 static const T P[] = {
Chris@16 455 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0980905922162812031672),
Chris@16 456 BOOST_MATH_BIG_CONSTANT(T, 64, 0.159989089922969141329),
Chris@16 457 BOOST_MATH_BIG_CONSTANT(T, 64, 0.222359821619935712378),
Chris@16 458 BOOST_MATH_BIG_CONSTANT(T, 64, 0.127303921703577362312),
Chris@16 459 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0384057530342762400273),
Chris@16 460 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00628431160851156719325),
Chris@16 461 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000441266654514391746428),
Chris@16 462 BOOST_MATH_BIG_CONSTANT(T, 64, 0.266689068336295642561e-7),
Chris@16 463 };
Chris@16 464 static const T Q[] = {
Chris@101 465 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 466 BOOST_MATH_BIG_CONSTANT(T, 64, 2.03237474985469469291),
Chris@16 467 BOOST_MATH_BIG_CONSTANT(T, 64, 1.78355454954969405222),
Chris@16 468 BOOST_MATH_BIG_CONSTANT(T, 64, 0.867940326293760578231),
Chris@16 469 BOOST_MATH_BIG_CONSTANT(T, 64, 0.248025606990021698392),
Chris@16 470 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0396649631833002269861),
Chris@16 471 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00279220237309449026796),
Chris@16 472 };
Chris@16 473 result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f));
Chris@16 474 result *= exp(-z * z) / z;
Chris@16 475 }
Chris@16 476 else if(z < 2.5)
Chris@16 477 {
Chris@16 478 // Max Error found at long double precision = 3.686211e-21
Chris@16 479 // Maximum Deviation Found: 1.495e-21
Chris@16 480 // Expected Error Term: -1.494e-21
Chris@16 481 // Maximum Relative Change in Control Points: 1.793e-04
Chris@16 482 static const T Y = 0.50672817230224609375f;
Chris@16 483 static const T P[] = {
Chris@16 484 BOOST_MATH_BIG_CONSTANT(T, 64, -0.024350047620769840217),
Chris@16 485 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0343522687935671451309),
Chris@16 486 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0505420824305544949541),
Chris@16 487 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0257479325917757388209),
Chris@16 488 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00669349844190354356118),
Chris@16 489 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00090807914416099524444),
Chris@16 490 BOOST_MATH_BIG_CONSTANT(T, 64, 0.515917266698050027934e-4),
Chris@16 491 };
Chris@16 492 static const T Q[] = {
Chris@101 493 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 494 BOOST_MATH_BIG_CONSTANT(T, 64, 1.71657861671930336344),
Chris@16 495 BOOST_MATH_BIG_CONSTANT(T, 64, 1.26409634824280366218),
Chris@16 496 BOOST_MATH_BIG_CONSTANT(T, 64, 0.512371437838969015941),
Chris@16 497 BOOST_MATH_BIG_CONSTANT(T, 64, 0.120902623051120950935),
Chris@16 498 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0158027197831887485261),
Chris@16 499 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000897871370778031611439),
Chris@16 500 };
Chris@16 501 result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f));
Chris@16 502 result *= exp(-z * z) / z;
Chris@16 503 }
Chris@16 504 else if(z < 4.5)
Chris@16 505 {
Chris@16 506 // Maximum Deviation Found: 1.107e-20
Chris@16 507 // Expected Error Term: -1.106e-20
Chris@16 508 // Maximum Relative Change in Control Points: 1.709e-04
Chris@16 509 // Max Error found at long double precision = 1.446908e-20
Chris@16 510 static const T Y = 0.5405750274658203125f;
Chris@16 511 static const T P[] = {
Chris@16 512 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0029527671653097284033),
Chris@16 513 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0141853245895495604051),
Chris@16 514 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0104959584626432293901),
Chris@16 515 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00343963795976100077626),
Chris@16 516 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00059065441194877637899),
Chris@16 517 BOOST_MATH_BIG_CONSTANT(T, 64, 0.523435380636174008685e-4),
Chris@16 518 BOOST_MATH_BIG_CONSTANT(T, 64, 0.189896043050331257262e-5),
Chris@16 519 };
Chris@16 520 static const T Q[] = {
Chris@101 521 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 522 BOOST_MATH_BIG_CONSTANT(T, 64, 1.19352160185285642574),
Chris@16 523 BOOST_MATH_BIG_CONSTANT(T, 64, 0.603256964363454392857),
Chris@16 524 BOOST_MATH_BIG_CONSTANT(T, 64, 0.165411142458540585835),
Chris@16 525 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0259729870946203166468),
Chris@16 526 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00221657568292893699158),
Chris@16 527 BOOST_MATH_BIG_CONSTANT(T, 64, 0.804149464190309799804e-4),
Chris@16 528 };
Chris@16 529 result = Y + tools::evaluate_polynomial(P, T(z - 3.5f)) / tools::evaluate_polynomial(Q, T(z - 3.5f));
Chris@16 530 result *= exp(-z * z) / z;
Chris@16 531 }
Chris@16 532 else
Chris@16 533 {
Chris@16 534 // Max Error found at long double precision = 7.961166e-21
Chris@16 535 // Maximum Deviation Found: 6.677e-21
Chris@16 536 // Expected Error Term: 6.676e-21
Chris@16 537 // Maximum Relative Change in Control Points: 2.319e-05
Chris@16 538 static const T Y = 0.55825519561767578125f;
Chris@16 539 static const T P[] = {
Chris@16 540 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00593438793008050214106),
Chris@16 541 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280666231009089713937),
Chris@16 542 BOOST_MATH_BIG_CONSTANT(T, 64, -0.141597835204583050043),
Chris@16 543 BOOST_MATH_BIG_CONSTANT(T, 64, -0.978088201154300548842),
Chris@16 544 BOOST_MATH_BIG_CONSTANT(T, 64, -5.47351527796012049443),
Chris@16 545 BOOST_MATH_BIG_CONSTANT(T, 64, -13.8677304660245326627),
Chris@16 546 BOOST_MATH_BIG_CONSTANT(T, 64, -27.1274948720539821722),
Chris@16 547 BOOST_MATH_BIG_CONSTANT(T, 64, -29.2545152747009461519),
Chris@16 548 BOOST_MATH_BIG_CONSTANT(T, 64, -16.8865774499799676937),
Chris@16 549 };
Chris@16 550 static const T Q[] = {
Chris@101 551 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 552 BOOST_MATH_BIG_CONSTANT(T, 64, 4.72948911186645394541),
Chris@16 553 BOOST_MATH_BIG_CONSTANT(T, 64, 23.6750543147695749212),
Chris@16 554 BOOST_MATH_BIG_CONSTANT(T, 64, 60.0021517335693186785),
Chris@16 555 BOOST_MATH_BIG_CONSTANT(T, 64, 131.766251645149522868),
Chris@16 556 BOOST_MATH_BIG_CONSTANT(T, 64, 178.167924971283482513),
Chris@16 557 BOOST_MATH_BIG_CONSTANT(T, 64, 182.499390505915222699),
Chris@16 558 BOOST_MATH_BIG_CONSTANT(T, 64, 104.365251479578577989),
Chris@16 559 BOOST_MATH_BIG_CONSTANT(T, 64, 30.8365511891224291717),
Chris@16 560 };
Chris@16 561 result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
Chris@16 562 result *= exp(-z * z) / z;
Chris@16 563 }
Chris@16 564 }
Chris@16 565 else
Chris@16 566 {
Chris@16 567 //
Chris@16 568 // Any value of z larger than 110 will underflow to zero:
Chris@16 569 //
Chris@16 570 result = 0;
Chris@16 571 invert = !invert;
Chris@16 572 }
Chris@16 573
Chris@16 574 if(invert)
Chris@16 575 {
Chris@16 576 result = 1 - result;
Chris@16 577 }
Chris@16 578
Chris@16 579 return result;
Chris@16 580 } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const mpl::int_<64>& t)
Chris@16 581
Chris@16 582
Chris@16 583 template <class T, class Policy>
Chris@16 584 T erf_imp(T z, bool invert, const Policy& pol, const mpl::int_<113>& t)
Chris@16 585 {
Chris@16 586 BOOST_MATH_STD_USING
Chris@16 587
Chris@16 588 BOOST_MATH_INSTRUMENT_CODE("113-bit precision erf_imp called");
Chris@16 589
Chris@16 590 if(z < 0)
Chris@16 591 {
Chris@16 592 if(!invert)
Chris@16 593 return -erf_imp(T(-z), invert, pol, t);
Chris@16 594 else if(z < -0.5)
Chris@16 595 return 2 - erf_imp(T(-z), invert, pol, t);
Chris@16 596 else
Chris@16 597 return 1 + erf_imp(T(-z), false, pol, t);
Chris@16 598 }
Chris@16 599
Chris@16 600 T result;
Chris@16 601
Chris@16 602 //
Chris@16 603 // Big bunch of selection statements now to pick which
Chris@16 604 // implementation to use, try to put most likely options
Chris@16 605 // first:
Chris@16 606 //
Chris@16 607 if(z < 0.5)
Chris@16 608 {
Chris@16 609 //
Chris@16 610 // We're going to calculate erf:
Chris@16 611 //
Chris@16 612 if(z == 0)
Chris@16 613 {
Chris@16 614 result = 0;
Chris@16 615 }
Chris@16 616 else if(z < 1e-20)
Chris@16 617 {
Chris@16 618 static const T c = BOOST_MATH_BIG_CONSTANT(T, 113, 0.003379167095512573896158903121545171688);
Chris@16 619 result = z * 1.125 + z * c;
Chris@16 620 }
Chris@16 621 else
Chris@16 622 {
Chris@16 623 // Max Error found at long double precision = 2.342380e-35
Chris@16 624 // Maximum Deviation Found: 6.124e-36
Chris@16 625 // Expected Error Term: -6.124e-36
Chris@16 626 // Maximum Relative Change in Control Points: 3.492e-10
Chris@16 627 static const T Y = 1.0841522216796875f;
Chris@16 628 static const T P[] = {
Chris@16 629 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0442269454158250738961589031215451778),
Chris@16 630 BOOST_MATH_BIG_CONSTANT(T, 113, -0.35549265736002144875335323556961233),
Chris@16 631 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0582179564566667896225454670863270393),
Chris@16 632 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0112694696904802304229950538453123925),
Chris@16 633 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000805730648981801146251825329609079099),
Chris@16 634 BOOST_MATH_BIG_CONSTANT(T, 113, -0.566304966591936566229702842075966273e-4),
Chris@16 635 BOOST_MATH_BIG_CONSTANT(T, 113, -0.169655010425186987820201021510002265e-5),
Chris@16 636 BOOST_MATH_BIG_CONSTANT(T, 113, -0.344448249920445916714548295433198544e-7),
Chris@16 637 };
Chris@16 638 static const T Q[] = {
Chris@101 639 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 640 BOOST_MATH_BIG_CONSTANT(T, 113, 0.466542092785657604666906909196052522),
Chris@16 641 BOOST_MATH_BIG_CONSTANT(T, 113, 0.100005087012526447295176964142107611),
Chris@16 642 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0128341535890117646540050072234142603),
Chris@16 643 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00107150448466867929159660677016658186),
Chris@16 644 BOOST_MATH_BIG_CONSTANT(T, 113, 0.586168368028999183607733369248338474e-4),
Chris@16 645 BOOST_MATH_BIG_CONSTANT(T, 113, 0.196230608502104324965623171516808796e-5),
Chris@16 646 BOOST_MATH_BIG_CONSTANT(T, 113, 0.313388521582925207734229967907890146e-7),
Chris@16 647 };
Chris@16 648 result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z)));
Chris@16 649 }
Chris@16 650 }
Chris@16 651 else if(invert ? (z < 110) : (z < 8.65f))
Chris@16 652 {
Chris@16 653 //
Chris@16 654 // We'll be calculating erfc:
Chris@16 655 //
Chris@16 656 invert = !invert;
Chris@16 657 if(z < 1)
Chris@16 658 {
Chris@16 659 // Max Error found at long double precision = 3.246278e-35
Chris@16 660 // Maximum Deviation Found: 1.388e-35
Chris@16 661 // Expected Error Term: 1.387e-35
Chris@16 662 // Maximum Relative Change in Control Points: 6.127e-05
Chris@16 663 static const T Y = 0.371877193450927734375f;
Chris@16 664 static const T P[] = {
Chris@16 665 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0640320213544647969396032886581290455),
Chris@16 666 BOOST_MATH_BIG_CONSTANT(T, 113, 0.200769874440155895637857443946706731),
Chris@16 667 BOOST_MATH_BIG_CONSTANT(T, 113, 0.378447199873537170666487408805779826),
Chris@16 668 BOOST_MATH_BIG_CONSTANT(T, 113, 0.30521399466465939450398642044975127),
Chris@16 669 BOOST_MATH_BIG_CONSTANT(T, 113, 0.146890026406815277906781824723458196),
Chris@16 670 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0464837937749539978247589252732769567),
Chris@16 671 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00987895759019540115099100165904822903),
Chris@16 672 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00137507575429025512038051025154301132),
Chris@16 673 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0001144764551085935580772512359680516),
Chris@16 674 BOOST_MATH_BIG_CONSTANT(T, 113, 0.436544865032836914773944382339900079e-5),
Chris@16 675 };
Chris@16 676 static const T Q[] = {
Chris@101 677 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 678 BOOST_MATH_BIG_CONSTANT(T, 113, 2.47651182872457465043733800302427977),
Chris@16 679 BOOST_MATH_BIG_CONSTANT(T, 113, 2.78706486002517996428836400245547955),
Chris@16 680 BOOST_MATH_BIG_CONSTANT(T, 113, 1.87295924621659627926365005293130693),
Chris@16 681 BOOST_MATH_BIG_CONSTANT(T, 113, 0.829375825174365625428280908787261065),
Chris@16 682 BOOST_MATH_BIG_CONSTANT(T, 113, 0.251334771307848291593780143950311514),
Chris@16 683 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0522110268876176186719436765734722473),
Chris@16 684 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00718332151250963182233267040106902368),
Chris@16 685 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000595279058621482041084986219276392459),
Chris@16 686 BOOST_MATH_BIG_CONSTANT(T, 113, 0.226988669466501655990637599399326874e-4),
Chris@16 687 BOOST_MATH_BIG_CONSTANT(T, 113, 0.270666232259029102353426738909226413e-10),
Chris@16 688 };
Chris@16 689 result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f));
Chris@16 690 result *= exp(-z * z) / z;
Chris@16 691 }
Chris@16 692 else if(z < 1.5)
Chris@16 693 {
Chris@16 694 // Max Error found at long double precision = 2.215785e-35
Chris@16 695 // Maximum Deviation Found: 1.539e-35
Chris@16 696 // Expected Error Term: 1.538e-35
Chris@16 697 // Maximum Relative Change in Control Points: 6.104e-05
Chris@16 698 static const T Y = 0.45658016204833984375f;
Chris@16 699 static const T P[] = {
Chris@16 700 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0289965858925328393392496555094848345),
Chris@16 701 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0868181194868601184627743162571779226),
Chris@16 702 BOOST_MATH_BIG_CONSTANT(T, 113, 0.169373435121178901746317404936356745),
Chris@16 703 BOOST_MATH_BIG_CONSTANT(T, 113, 0.13350446515949251201104889028133486),
Chris@16 704 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0617447837290183627136837688446313313),
Chris@16 705 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0185618495228251406703152962489700468),
Chris@16 706 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00371949406491883508764162050169531013),
Chris@16 707 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000485121708792921297742105775823900772),
Chris@16 708 BOOST_MATH_BIG_CONSTANT(T, 113, 0.376494706741453489892108068231400061e-4),
Chris@16 709 BOOST_MATH_BIG_CONSTANT(T, 113, 0.133166058052466262415271732172490045e-5),
Chris@16 710 };
Chris@16 711 static const T Q[] = {
Chris@101 712 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 713 BOOST_MATH_BIG_CONSTANT(T, 113, 2.32970330146503867261275580968135126),
Chris@16 714 BOOST_MATH_BIG_CONSTANT(T, 113, 2.46325715420422771961250513514928746),
Chris@16 715 BOOST_MATH_BIG_CONSTANT(T, 113, 1.55307882560757679068505047390857842),
Chris@16 716 BOOST_MATH_BIG_CONSTANT(T, 113, 0.644274289865972449441174485441409076),
Chris@16 717 BOOST_MATH_BIG_CONSTANT(T, 113, 0.182609091063258208068606847453955649),
Chris@16 718 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0354171651271241474946129665801606795),
Chris@16 719 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00454060370165285246451879969534083997),
Chris@16 720 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000349871943711566546821198612518656486),
Chris@16 721 BOOST_MATH_BIG_CONSTANT(T, 113, 0.123749319840299552925421880481085392e-4),
Chris@16 722 };
Chris@16 723 result = Y + tools::evaluate_polynomial(P, T(z - 1.0f)) / tools::evaluate_polynomial(Q, T(z - 1.0f));
Chris@16 724 result *= exp(-z * z) / z;
Chris@16 725 }
Chris@16 726 else if(z < 2.25)
Chris@16 727 {
Chris@16 728 // Maximum Deviation Found: 1.418e-35
Chris@16 729 // Expected Error Term: 1.418e-35
Chris@16 730 // Maximum Relative Change in Control Points: 1.316e-04
Chris@16 731 // Max Error found at long double precision = 1.998462e-35
Chris@16 732 static const T Y = 0.50250148773193359375f;
Chris@16 733 static const T P[] = {
Chris@16 734 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0201233630504573402185161184151016606),
Chris@16 735 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0331864357574860196516686996302305002),
Chris@16 736 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0716562720864787193337475444413405461),
Chris@16 737 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0545835322082103985114927569724880658),
Chris@16 738 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0236692635189696678976549720784989593),
Chris@16 739 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00656970902163248872837262539337601845),
Chris@16 740 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00120282643299089441390490459256235021),
Chris@16 741 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000142123229065182650020762792081622986),
Chris@16 742 BOOST_MATH_BIG_CONSTANT(T, 113, 0.991531438367015135346716277792989347e-5),
Chris@16 743 BOOST_MATH_BIG_CONSTANT(T, 113, 0.312857043762117596999398067153076051e-6),
Chris@16 744 };
Chris@16 745 static const T Q[] = {
Chris@101 746 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 747 BOOST_MATH_BIG_CONSTANT(T, 113, 2.13506082409097783827103424943508554),
Chris@16 748 BOOST_MATH_BIG_CONSTANT(T, 113, 2.06399257267556230937723190496806215),
Chris@16 749 BOOST_MATH_BIG_CONSTANT(T, 113, 1.18678481279932541314830499880691109),
Chris@16 750 BOOST_MATH_BIG_CONSTANT(T, 113, 0.447733186643051752513538142316799562),
Chris@16 751 BOOST_MATH_BIG_CONSTANT(T, 113, 0.11505680005657879437196953047542148),
Chris@16 752 BOOST_MATH_BIG_CONSTANT(T, 113, 0.020163993632192726170219663831914034),
Chris@16 753 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00232708971840141388847728782209730585),
Chris@16 754 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000160733201627963528519726484608224112),
Chris@16 755 BOOST_MATH_BIG_CONSTANT(T, 113, 0.507158721790721802724402992033269266e-5),
Chris@16 756 BOOST_MATH_BIG_CONSTANT(T, 113, 0.18647774409821470950544212696270639e-12),
Chris@16 757 };
Chris@16 758 result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f));
Chris@16 759 result *= exp(-z * z) / z;
Chris@16 760 }
Chris@16 761 else if (z < 3)
Chris@16 762 {
Chris@16 763 // Maximum Deviation Found: 3.575e-36
Chris@16 764 // Expected Error Term: 3.575e-36
Chris@16 765 // Maximum Relative Change in Control Points: 7.103e-05
Chris@16 766 // Max Error found at long double precision = 5.794737e-36
Chris@16 767 static const T Y = 0.52896785736083984375f;
Chris@16 768 static const T P[] = {
Chris@16 769 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00902152521745813634562524098263360074),
Chris@16 770 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0145207142776691539346923710537580927),
Chris@16 771 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0301681239582193983824211995978678571),
Chris@16 772 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0215548540823305814379020678660434461),
Chris@16 773 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00864683476267958365678294164340749949),
Chris@16 774 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00219693096885585491739823283511049902),
Chris@16 775 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000364961639163319762492184502159894371),
Chris@16 776 BOOST_MATH_BIG_CONSTANT(T, 113, 0.388174251026723752769264051548703059e-4),
Chris@16 777 BOOST_MATH_BIG_CONSTANT(T, 113, 0.241918026931789436000532513553594321e-5),
Chris@16 778 BOOST_MATH_BIG_CONSTANT(T, 113, 0.676586625472423508158937481943649258e-7),
Chris@16 779 };
Chris@16 780 static const T Q[] = {
Chris@101 781 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 782 BOOST_MATH_BIG_CONSTANT(T, 113, 1.93669171363907292305550231764920001),
Chris@16 783 BOOST_MATH_BIG_CONSTANT(T, 113, 1.69468476144051356810672506101377494),
Chris@16 784 BOOST_MATH_BIG_CONSTANT(T, 113, 0.880023580986436640372794392579985511),
Chris@16 785 BOOST_MATH_BIG_CONSTANT(T, 113, 0.299099106711315090710836273697708402),
Chris@16 786 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0690593962363545715997445583603382337),
Chris@16 787 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0108427016361318921960863149875360222),
Chris@16 788 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00111747247208044534520499324234317695),
Chris@16 789 BOOST_MATH_BIG_CONSTANT(T, 113, 0.686843205749767250666787987163701209e-4),
Chris@16 790 BOOST_MATH_BIG_CONSTANT(T, 113, 0.192093541425429248675532015101904262e-5),
Chris@16 791 };
Chris@16 792 result = Y + tools::evaluate_polynomial(P, T(z - 2.25f)) / tools::evaluate_polynomial(Q, T(z - 2.25f));
Chris@16 793 result *= exp(-z * z) / z;
Chris@16 794 }
Chris@16 795 else if(z < 3.5)
Chris@16 796 {
Chris@16 797 // Maximum Deviation Found: 8.126e-37
Chris@16 798 // Expected Error Term: -8.126e-37
Chris@16 799 // Maximum Relative Change in Control Points: 1.363e-04
Chris@16 800 // Max Error found at long double precision = 1.747062e-36
Chris@16 801 static const T Y = 0.54037380218505859375f;
Chris@16 802 static const T P[] = {
Chris@16 803 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033703486408887424921155540591370375),
Chris@16 804 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0104948043110005245215286678898115811),
Chris@16 805 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0148530118504000311502310457390417795),
Chris@16 806 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00816693029245443090102738825536188916),
Chris@16 807 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00249716579989140882491939681805594585),
Chris@16 808 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0004655591010047353023978045800916647),
Chris@16 809 BOOST_MATH_BIG_CONSTANT(T, 113, 0.531129557920045295895085236636025323e-4),
Chris@16 810 BOOST_MATH_BIG_CONSTANT(T, 113, 0.343526765122727069515775194111741049e-5),
Chris@16 811 BOOST_MATH_BIG_CONSTANT(T, 113, 0.971120407556888763695313774578711839e-7),
Chris@16 812 };
Chris@16 813 static const T Q[] = {
Chris@101 814 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 815 BOOST_MATH_BIG_CONSTANT(T, 113, 1.59911256167540354915906501335919317),
Chris@16 816 BOOST_MATH_BIG_CONSTANT(T, 113, 1.136006830764025173864831382946934),
Chris@16 817 BOOST_MATH_BIG_CONSTANT(T, 113, 0.468565867990030871678574840738423023),
Chris@16 818 BOOST_MATH_BIG_CONSTANT(T, 113, 0.122821824954470343413956476900662236),
Chris@16 819 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0209670914950115943338996513330141633),
Chris@16 820 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00227845718243186165620199012883547257),
Chris@16 821 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000144243326443913171313947613547085553),
Chris@16 822 BOOST_MATH_BIG_CONSTANT(T, 113, 0.407763415954267700941230249989140046e-5),
Chris@16 823 };
Chris@16 824 result = Y + tools::evaluate_polynomial(P, T(z - 3.0f)) / tools::evaluate_polynomial(Q, T(z - 3.0f));
Chris@16 825 result *= exp(-z * z) / z;
Chris@16 826 }
Chris@16 827 else if(z < 5.5)
Chris@16 828 {
Chris@16 829 // Maximum Deviation Found: 5.804e-36
Chris@16 830 // Expected Error Term: -5.803e-36
Chris@16 831 // Maximum Relative Change in Control Points: 2.475e-05
Chris@16 832 // Max Error found at long double precision = 1.349545e-35
Chris@16 833 static const T Y = 0.55000019073486328125f;
Chris@16 834 static const T P[] = {
Chris@16 835 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00118142849742309772151454518093813615),
Chris@16 836 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0072201822885703318172366893469382745),
Chris@16 837 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0078782276276860110721875733778481505),
Chris@16 838 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00418229166204362376187593976656261146),
Chris@16 839 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00134198400587769200074194304298642705),
Chris@16 840 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000283210387078004063264777611497435572),
Chris@16 841 BOOST_MATH_BIG_CONSTANT(T, 113, 0.405687064094911866569295610914844928e-4),
Chris@16 842 BOOST_MATH_BIG_CONSTANT(T, 113, 0.39348283801568113807887364414008292e-5),
Chris@16 843 BOOST_MATH_BIG_CONSTANT(T, 113, 0.248798540917787001526976889284624449e-6),
Chris@16 844 BOOST_MATH_BIG_CONSTANT(T, 113, 0.929502490223452372919607105387474751e-8),
Chris@16 845 BOOST_MATH_BIG_CONSTANT(T, 113, 0.156161469668275442569286723236274457e-9),
Chris@16 846 };
Chris@16 847 static const T Q[] = {
Chris@101 848 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 849 BOOST_MATH_BIG_CONSTANT(T, 113, 1.52955245103668419479878456656709381),
Chris@16 850 BOOST_MATH_BIG_CONSTANT(T, 113, 1.06263944820093830054635017117417064),
Chris@16 851 BOOST_MATH_BIG_CONSTANT(T, 113, 0.441684612681607364321013134378316463),
Chris@16 852 BOOST_MATH_BIG_CONSTANT(T, 113, 0.121665258426166960049773715928906382),
Chris@16 853 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0232134512374747691424978642874321434),
Chris@16 854 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00310778180686296328582860464875562636),
Chris@16 855 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000288361770756174705123674838640161693),
Chris@16 856 BOOST_MATH_BIG_CONSTANT(T, 113, 0.177529187194133944622193191942300132e-4),
Chris@16 857 BOOST_MATH_BIG_CONSTANT(T, 113, 0.655068544833064069223029299070876623e-6),
Chris@16 858 BOOST_MATH_BIG_CONSTANT(T, 113, 0.11005507545746069573608988651927452e-7),
Chris@16 859 };
Chris@16 860 result = Y + tools::evaluate_polynomial(P, T(z - 4.5f)) / tools::evaluate_polynomial(Q, T(z - 4.5f));
Chris@16 861 result *= exp(-z * z) / z;
Chris@16 862 }
Chris@16 863 else if(z < 7.5)
Chris@16 864 {
Chris@16 865 // Maximum Deviation Found: 1.007e-36
Chris@16 866 // Expected Error Term: 1.007e-36
Chris@16 867 // Maximum Relative Change in Control Points: 1.027e-03
Chris@16 868 // Max Error found at long double precision = 2.646420e-36
Chris@16 869 static const T Y = 0.5574436187744140625f;
Chris@16 870 static const T P[] = {
Chris@16 871 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000293236907400849056269309713064107674),
Chris@16 872 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00225110719535060642692275221961480162),
Chris@16 873 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00190984458121502831421717207849429799),
Chris@16 874 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000747757733460111743833929141001680706),
Chris@16 875 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000170663175280949889583158597373928096),
Chris@16 876 BOOST_MATH_BIG_CONSTANT(T, 113, 0.246441188958013822253071608197514058e-4),
Chris@16 877 BOOST_MATH_BIG_CONSTANT(T, 113, 0.229818000860544644974205957895688106e-5),
Chris@16 878 BOOST_MATH_BIG_CONSTANT(T, 113, 0.134886977703388748488480980637704864e-6),
Chris@16 879 BOOST_MATH_BIG_CONSTANT(T, 113, 0.454764611880548962757125070106650958e-8),
Chris@16 880 BOOST_MATH_BIG_CONSTANT(T, 113, 0.673002744115866600294723141176820155e-10),
Chris@16 881 };
Chris@16 882 static const T Q[] = {
Chris@101 883 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 884 BOOST_MATH_BIG_CONSTANT(T, 113, 1.12843690320861239631195353379313367),
Chris@16 885 BOOST_MATH_BIG_CONSTANT(T, 113, 0.569900657061622955362493442186537259),
Chris@16 886 BOOST_MATH_BIG_CONSTANT(T, 113, 0.169094404206844928112348730277514273),
Chris@16 887 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0324887449084220415058158657252147063),
Chris@16 888 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00419252877436825753042680842608219552),
Chris@16 889 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00036344133176118603523976748563178578),
Chris@16 890 BOOST_MATH_BIG_CONSTANT(T, 113, 0.204123895931375107397698245752850347e-4),
Chris@16 891 BOOST_MATH_BIG_CONSTANT(T, 113, 0.674128352521481412232785122943508729e-6),
Chris@16 892 BOOST_MATH_BIG_CONSTANT(T, 113, 0.997637501418963696542159244436245077e-8),
Chris@16 893 };
Chris@16 894 result = Y + tools::evaluate_polynomial(P, T(z - 6.5f)) / tools::evaluate_polynomial(Q, T(z - 6.5f));
Chris@16 895 result *= exp(-z * z) / z;
Chris@16 896 }
Chris@16 897 else if(z < 11.5)
Chris@16 898 {
Chris@16 899 // Maximum Deviation Found: 8.380e-36
Chris@16 900 // Expected Error Term: 8.380e-36
Chris@16 901 // Maximum Relative Change in Control Points: 2.632e-06
Chris@16 902 // Max Error found at long double precision = 9.849522e-36
Chris@16 903 static const T Y = 0.56083202362060546875f;
Chris@16 904 static const T P[] = {
Chris@16 905 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000282420728751494363613829834891390121),
Chris@16 906 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00175387065018002823433704079355125161),
Chris@16 907 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0021344978564889819420775336322920375),
Chris@16 908 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00124151356560137532655039683963075661),
Chris@16 909 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000423600733566948018555157026862139644),
Chris@16 910 BOOST_MATH_BIG_CONSTANT(T, 113, 0.914030340865175237133613697319509698e-4),
Chris@16 911 BOOST_MATH_BIG_CONSTANT(T, 113, 0.126999927156823363353809747017945494e-4),
Chris@16 912 BOOST_MATH_BIG_CONSTANT(T, 113, 0.110610959842869849776179749369376402e-5),
Chris@16 913 BOOST_MATH_BIG_CONSTANT(T, 113, 0.55075079477173482096725348704634529e-7),
Chris@16 914 BOOST_MATH_BIG_CONSTANT(T, 113, 0.119735694018906705225870691331543806e-8),
Chris@16 915 };
Chris@16 916 static const T Q[] = {
Chris@101 917 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 918 BOOST_MATH_BIG_CONSTANT(T, 113, 1.69889613396167354566098060039549882),
Chris@16 919 BOOST_MATH_BIG_CONSTANT(T, 113, 1.28824647372749624464956031163282674),
Chris@16 920 BOOST_MATH_BIG_CONSTANT(T, 113, 0.572297795434934493541628008224078717),
Chris@16 921 BOOST_MATH_BIG_CONSTANT(T, 113, 0.164157697425571712377043857240773164),
Chris@16 922 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0315311145224594430281219516531649562),
Chris@16 923 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00405588922155632380812945849777127458),
Chris@16 924 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000336929033691445666232029762868642417),
Chris@16 925 BOOST_MATH_BIG_CONSTANT(T, 113, 0.164033049810404773469413526427932109e-4),
Chris@16 926 BOOST_MATH_BIG_CONSTANT(T, 113, 0.356615210500531410114914617294694857e-6),
Chris@16 927 };
Chris@16 928 result = Y + tools::evaluate_polynomial(P, T(z / 2 - 4.75f)) / tools::evaluate_polynomial(Q, T(z / 2 - 4.75f));
Chris@16 929 result *= exp(-z * z) / z;
Chris@16 930 }
Chris@16 931 else
Chris@16 932 {
Chris@16 933 // Maximum Deviation Found: 1.132e-35
Chris@16 934 // Expected Error Term: -1.132e-35
Chris@16 935 // Maximum Relative Change in Control Points: 4.674e-04
Chris@16 936 // Max Error found at long double precision = 1.162590e-35
Chris@16 937 static const T Y = 0.5632686614990234375f;
Chris@16 938 static const T P[] = {
Chris@16 939 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000920922048732849448079451574171836943),
Chris@16 940 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00321439044532288750501700028748922439),
Chris@16 941 BOOST_MATH_BIG_CONSTANT(T, 113, -0.250455263029390118657884864261823431),
Chris@16 942 BOOST_MATH_BIG_CONSTANT(T, 113, -0.906807635364090342031792404764598142),
Chris@16 943 BOOST_MATH_BIG_CONSTANT(T, 113, -8.92233572835991735876688745989985565),
Chris@16 944 BOOST_MATH_BIG_CONSTANT(T, 113, -21.7797433494422564811782116907878495),
Chris@16 945 BOOST_MATH_BIG_CONSTANT(T, 113, -91.1451915251976354349734589601171659),
Chris@16 946 BOOST_MATH_BIG_CONSTANT(T, 113, -144.1279109655993927069052125017673),
Chris@16 947 BOOST_MATH_BIG_CONSTANT(T, 113, -313.845076581796338665519022313775589),
Chris@16 948 BOOST_MATH_BIG_CONSTANT(T, 113, -273.11378811923343424081101235736475),
Chris@16 949 BOOST_MATH_BIG_CONSTANT(T, 113, -271.651566205951067025696102600443452),
Chris@16 950 BOOST_MATH_BIG_CONSTANT(T, 113, -60.0530577077238079968843307523245547),
Chris@16 951 };
Chris@16 952 static const T Q[] = {
Chris@101 953 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
Chris@16 954 BOOST_MATH_BIG_CONSTANT(T, 113, 3.49040448075464744191022350947892036),
Chris@16 955 BOOST_MATH_BIG_CONSTANT(T, 113, 34.3563592467165971295915749548313227),
Chris@16 956 BOOST_MATH_BIG_CONSTANT(T, 113, 84.4993232033879023178285731843850461),
Chris@16 957 BOOST_MATH_BIG_CONSTANT(T, 113, 376.005865281206894120659401340373818),
Chris@16 958 BOOST_MATH_BIG_CONSTANT(T, 113, 629.95369438888946233003926191755125),
Chris@16 959 BOOST_MATH_BIG_CONSTANT(T, 113, 1568.35771983533158591604513304269098),
Chris@16 960 BOOST_MATH_BIG_CONSTANT(T, 113, 1646.02452040831961063640827116581021),
Chris@16 961 BOOST_MATH_BIG_CONSTANT(T, 113, 2299.96860633240298708910425594484895),
Chris@16 962 BOOST_MATH_BIG_CONSTANT(T, 113, 1222.73204392037452750381340219906374),
Chris@16 963 BOOST_MATH_BIG_CONSTANT(T, 113, 799.359797306084372350264298361110448),
Chris@16 964 BOOST_MATH_BIG_CONSTANT(T, 113, 72.7415265778588087243442792401576737),
Chris@16 965 };
Chris@16 966 result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
Chris@16 967 result *= exp(-z * z) / z;
Chris@16 968 }
Chris@16 969 }
Chris@16 970 else
Chris@16 971 {
Chris@16 972 //
Chris@16 973 // Any value of z larger than 110 will underflow to zero:
Chris@16 974 //
Chris@16 975 result = 0;
Chris@16 976 invert = !invert;
Chris@16 977 }
Chris@16 978
Chris@16 979 if(invert)
Chris@16 980 {
Chris@16 981 result = 1 - result;
Chris@16 982 }
Chris@16 983
Chris@16 984 return result;
Chris@16 985 } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const mpl::int_<113>& t)
Chris@16 986
Chris@16 987 template <class T, class Policy, class tag>
Chris@16 988 struct erf_initializer
Chris@16 989 {
Chris@16 990 struct init
Chris@16 991 {
Chris@16 992 init()
Chris@16 993 {
Chris@16 994 do_init(tag());
Chris@16 995 }
Chris@16 996 static void do_init(const mpl::int_<0>&){}
Chris@16 997 static void do_init(const mpl::int_<53>&)
Chris@16 998 {
Chris@16 999 boost::math::erf(static_cast<T>(1e-12), Policy());
Chris@16 1000 boost::math::erf(static_cast<T>(0.25), Policy());
Chris@16 1001 boost::math::erf(static_cast<T>(1.25), Policy());
Chris@16 1002 boost::math::erf(static_cast<T>(2.25), Policy());
Chris@16 1003 boost::math::erf(static_cast<T>(4.25), Policy());
Chris@16 1004 boost::math::erf(static_cast<T>(5.25), Policy());
Chris@16 1005 }
Chris@16 1006 static void do_init(const mpl::int_<64>&)
Chris@16 1007 {
Chris@16 1008 boost::math::erf(static_cast<T>(1e-12), Policy());
Chris@16 1009 boost::math::erf(static_cast<T>(0.25), Policy());
Chris@16 1010 boost::math::erf(static_cast<T>(1.25), Policy());
Chris@16 1011 boost::math::erf(static_cast<T>(2.25), Policy());
Chris@16 1012 boost::math::erf(static_cast<T>(4.25), Policy());
Chris@16 1013 boost::math::erf(static_cast<T>(5.25), Policy());
Chris@16 1014 }
Chris@16 1015 static void do_init(const mpl::int_<113>&)
Chris@16 1016 {
Chris@16 1017 boost::math::erf(static_cast<T>(1e-22), Policy());
Chris@16 1018 boost::math::erf(static_cast<T>(0.25), Policy());
Chris@16 1019 boost::math::erf(static_cast<T>(1.25), Policy());
Chris@16 1020 boost::math::erf(static_cast<T>(2.125), Policy());
Chris@16 1021 boost::math::erf(static_cast<T>(2.75), Policy());
Chris@16 1022 boost::math::erf(static_cast<T>(3.25), Policy());
Chris@16 1023 boost::math::erf(static_cast<T>(5.25), Policy());
Chris@16 1024 boost::math::erf(static_cast<T>(7.25), Policy());
Chris@16 1025 boost::math::erf(static_cast<T>(11.25), Policy());
Chris@16 1026 boost::math::erf(static_cast<T>(12.5), Policy());
Chris@16 1027 }
Chris@16 1028 void force_instantiate()const{}
Chris@16 1029 };
Chris@16 1030 static const init initializer;
Chris@16 1031 static void force_instantiate()
Chris@16 1032 {
Chris@16 1033 initializer.force_instantiate();
Chris@16 1034 }
Chris@16 1035 };
Chris@16 1036
Chris@16 1037 template <class T, class Policy, class tag>
Chris@16 1038 const typename erf_initializer<T, Policy, tag>::init erf_initializer<T, Policy, tag>::initializer;
Chris@16 1039
Chris@16 1040 } // namespace detail
Chris@16 1041
Chris@16 1042 template <class T, class Policy>
Chris@16 1043 inline typename tools::promote_args<T>::type erf(T z, const Policy& /* pol */)
Chris@16 1044 {
Chris@16 1045 typedef typename tools::promote_args<T>::type result_type;
Chris@16 1046 typedef typename policies::evaluation<result_type, Policy>::type value_type;
Chris@16 1047 typedef typename policies::precision<result_type, Policy>::type precision_type;
Chris@16 1048 typedef typename policies::normalise<
Chris@16 1049 Policy,
Chris@16 1050 policies::promote_float<false>,
Chris@16 1051 policies::promote_double<false>,
Chris@16 1052 policies::discrete_quantile<>,
Chris@16 1053 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 1054
Chris@16 1055 BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name());
Chris@16 1056 BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name());
Chris@16 1057 BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name());
Chris@16 1058
Chris@16 1059 typedef typename mpl::if_<
Chris@16 1060 mpl::less_equal<precision_type, mpl::int_<0> >,
Chris@16 1061 mpl::int_<0>,
Chris@16 1062 typename mpl::if_<
Chris@16 1063 mpl::less_equal<precision_type, mpl::int_<53> >,
Chris@16 1064 mpl::int_<53>, // double
Chris@16 1065 typename mpl::if_<
Chris@16 1066 mpl::less_equal<precision_type, mpl::int_<64> >,
Chris@16 1067 mpl::int_<64>, // 80-bit long double
Chris@16 1068 typename mpl::if_<
Chris@16 1069 mpl::less_equal<precision_type, mpl::int_<113> >,
Chris@16 1070 mpl::int_<113>, // 128-bit long double
Chris@16 1071 mpl::int_<0> // too many bits, use generic version.
Chris@16 1072 >::type
Chris@16 1073 >::type
Chris@16 1074 >::type
Chris@16 1075 >::type tag_type;
Chris@16 1076
Chris@16 1077 BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name());
Chris@16 1078
Chris@16 1079 detail::erf_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); // Force constants to be initialized before main
Chris@16 1080
Chris@16 1081 return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp(
Chris@16 1082 static_cast<value_type>(z),
Chris@16 1083 false,
Chris@16 1084 forwarding_policy(),
Chris@16 1085 tag_type()), "boost::math::erf<%1%>(%1%, %1%)");
Chris@16 1086 }
Chris@16 1087
Chris@16 1088 template <class T, class Policy>
Chris@16 1089 inline typename tools::promote_args<T>::type erfc(T z, const Policy& /* pol */)
Chris@16 1090 {
Chris@16 1091 typedef typename tools::promote_args<T>::type result_type;
Chris@16 1092 typedef typename policies::evaluation<result_type, Policy>::type value_type;
Chris@16 1093 typedef typename policies::precision<result_type, Policy>::type precision_type;
Chris@16 1094 typedef typename policies::normalise<
Chris@16 1095 Policy,
Chris@16 1096 policies::promote_float<false>,
Chris@16 1097 policies::promote_double<false>,
Chris@16 1098 policies::discrete_quantile<>,
Chris@16 1099 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 1100
Chris@16 1101 BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name());
Chris@16 1102 BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name());
Chris@16 1103 BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name());
Chris@16 1104
Chris@16 1105 typedef typename mpl::if_<
Chris@16 1106 mpl::less_equal<precision_type, mpl::int_<0> >,
Chris@16 1107 mpl::int_<0>,
Chris@16 1108 typename mpl::if_<
Chris@16 1109 mpl::less_equal<precision_type, mpl::int_<53> >,
Chris@16 1110 mpl::int_<53>, // double
Chris@16 1111 typename mpl::if_<
Chris@16 1112 mpl::less_equal<precision_type, mpl::int_<64> >,
Chris@16 1113 mpl::int_<64>, // 80-bit long double
Chris@16 1114 typename mpl::if_<
Chris@16 1115 mpl::less_equal<precision_type, mpl::int_<113> >,
Chris@16 1116 mpl::int_<113>, // 128-bit long double
Chris@16 1117 mpl::int_<0> // too many bits, use generic version.
Chris@16 1118 >::type
Chris@16 1119 >::type
Chris@16 1120 >::type
Chris@16 1121 >::type tag_type;
Chris@16 1122
Chris@16 1123 BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name());
Chris@16 1124
Chris@16 1125 detail::erf_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); // Force constants to be initialized before main
Chris@16 1126
Chris@16 1127 return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp(
Chris@16 1128 static_cast<value_type>(z),
Chris@16 1129 true,
Chris@16 1130 forwarding_policy(),
Chris@16 1131 tag_type()), "boost::math::erfc<%1%>(%1%, %1%)");
Chris@16 1132 }
Chris@16 1133
Chris@16 1134 template <class T>
Chris@16 1135 inline typename tools::promote_args<T>::type erf(T z)
Chris@16 1136 {
Chris@16 1137 return boost::math::erf(z, policies::policy<>());
Chris@16 1138 }
Chris@16 1139
Chris@16 1140 template <class T>
Chris@16 1141 inline typename tools::promote_args<T>::type erfc(T z)
Chris@16 1142 {
Chris@16 1143 return boost::math::erfc(z, policies::policy<>());
Chris@16 1144 }
Chris@16 1145
Chris@16 1146 } // namespace math
Chris@16 1147 } // namespace boost
Chris@16 1148
Chris@16 1149 #include <boost/math/special_functions/detail/erf_inv.hpp>
Chris@16 1150
Chris@16 1151 #endif // BOOST_MATH_SPECIAL_ERF_HPP
Chris@16 1152
Chris@16 1153
Chris@16 1154
Chris@16 1155