annotate DEPENDENCIES/generic/include/boost/math/special_functions/detail/ibeta_inverse.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // Copyright John Maddock 2006.
Chris@16 2 // Copyright Paul A. Bristow 2007
Chris@16 3 // Use, modification and distribution are subject to the
Chris@16 4 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 5 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 6
Chris@16 7 #ifndef BOOST_MATH_SPECIAL_FUNCTIONS_IBETA_INVERSE_HPP
Chris@16 8 #define BOOST_MATH_SPECIAL_FUNCTIONS_IBETA_INVERSE_HPP
Chris@16 9
Chris@16 10 #ifdef _MSC_VER
Chris@16 11 #pragma once
Chris@16 12 #endif
Chris@16 13
Chris@16 14 #include <boost/math/special_functions/beta.hpp>
Chris@16 15 #include <boost/math/special_functions/erf.hpp>
Chris@16 16 #include <boost/math/tools/roots.hpp>
Chris@16 17 #include <boost/math/special_functions/detail/t_distribution_inv.hpp>
Chris@16 18
Chris@16 19 namespace boost{ namespace math{ namespace detail{
Chris@16 20
Chris@16 21 //
Chris@16 22 // Helper object used by root finding
Chris@16 23 // code to convert eta to x.
Chris@16 24 //
Chris@16 25 template <class T>
Chris@16 26 struct temme_root_finder
Chris@16 27 {
Chris@16 28 temme_root_finder(const T t_, const T a_) : t(t_), a(a_) {}
Chris@16 29
Chris@16 30 boost::math::tuple<T, T> operator()(T x)
Chris@16 31 {
Chris@16 32 BOOST_MATH_STD_USING // ADL of std names
Chris@16 33
Chris@16 34 T y = 1 - x;
Chris@16 35 if(y == 0)
Chris@16 36 {
Chris@16 37 T big = tools::max_value<T>() / 4;
Chris@16 38 return boost::math::make_tuple(static_cast<T>(-big), static_cast<T>(-big));
Chris@16 39 }
Chris@16 40 if(x == 0)
Chris@16 41 {
Chris@16 42 T big = tools::max_value<T>() / 4;
Chris@16 43 return boost::math::make_tuple(static_cast<T>(-big), big);
Chris@16 44 }
Chris@16 45 T f = log(x) + a * log(y) + t;
Chris@16 46 T f1 = (1 / x) - (a / (y));
Chris@16 47 return boost::math::make_tuple(f, f1);
Chris@16 48 }
Chris@16 49 private:
Chris@16 50 T t, a;
Chris@16 51 };
Chris@16 52 //
Chris@16 53 // See:
Chris@16 54 // "Asymptotic Inversion of the Incomplete Beta Function"
Chris@16 55 // N.M. Temme
Chris@16 56 // Journal of Computation and Applied Mathematics 41 (1992) 145-157.
Chris@16 57 // Section 2.
Chris@16 58 //
Chris@16 59 template <class T, class Policy>
Chris@16 60 T temme_method_1_ibeta_inverse(T a, T b, T z, const Policy& pol)
Chris@16 61 {
Chris@16 62 BOOST_MATH_STD_USING // ADL of std names
Chris@16 63
Chris@16 64 const T r2 = sqrt(T(2));
Chris@16 65 //
Chris@16 66 // get the first approximation for eta from the inverse
Chris@16 67 // error function (Eq: 2.9 and 2.10).
Chris@16 68 //
Chris@16 69 T eta0 = boost::math::erfc_inv(2 * z, pol);
Chris@16 70 eta0 /= -sqrt(a / 2);
Chris@16 71
Chris@16 72 T terms[4] = { eta0 };
Chris@16 73 T workspace[7];
Chris@16 74 //
Chris@16 75 // calculate powers:
Chris@16 76 //
Chris@16 77 T B = b - a;
Chris@16 78 T B_2 = B * B;
Chris@16 79 T B_3 = B_2 * B;
Chris@16 80 //
Chris@16 81 // Calculate correction terms:
Chris@16 82 //
Chris@16 83
Chris@16 84 // See eq following 2.15:
Chris@16 85 workspace[0] = -B * r2 / 2;
Chris@16 86 workspace[1] = (1 - 2 * B) / 8;
Chris@16 87 workspace[2] = -(B * r2 / 48);
Chris@16 88 workspace[3] = T(-1) / 192;
Chris@16 89 workspace[4] = -B * r2 / 3840;
Chris@16 90 terms[1] = tools::evaluate_polynomial(workspace, eta0, 5);
Chris@16 91 // Eq Following 2.17:
Chris@16 92 workspace[0] = B * r2 * (3 * B - 2) / 12;
Chris@16 93 workspace[1] = (20 * B_2 - 12 * B + 1) / 128;
Chris@16 94 workspace[2] = B * r2 * (20 * B - 1) / 960;
Chris@16 95 workspace[3] = (16 * B_2 + 30 * B - 15) / 4608;
Chris@16 96 workspace[4] = B * r2 * (21 * B + 32) / 53760;
Chris@16 97 workspace[5] = (-32 * B_2 + 63) / 368640;
Chris@16 98 workspace[6] = -B * r2 * (120 * B + 17) / 25804480;
Chris@16 99 terms[2] = tools::evaluate_polynomial(workspace, eta0, 7);
Chris@16 100 // Eq Following 2.17:
Chris@16 101 workspace[0] = B * r2 * (-75 * B_2 + 80 * B - 16) / 480;
Chris@16 102 workspace[1] = (-1080 * B_3 + 868 * B_2 - 90 * B - 45) / 9216;
Chris@16 103 workspace[2] = B * r2 * (-1190 * B_2 + 84 * B + 373) / 53760;
Chris@16 104 workspace[3] = (-2240 * B_3 - 2508 * B_2 + 2100 * B - 165) / 368640;
Chris@16 105 terms[3] = tools::evaluate_polynomial(workspace, eta0, 4);
Chris@16 106 //
Chris@16 107 // Bring them together to get a final estimate for eta:
Chris@16 108 //
Chris@16 109 T eta = tools::evaluate_polynomial(terms, T(1/a), 4);
Chris@16 110 //
Chris@16 111 // now we need to convert eta to x, by solving the appropriate
Chris@16 112 // quadratic equation:
Chris@16 113 //
Chris@16 114 T eta_2 = eta * eta;
Chris@16 115 T c = -exp(-eta_2 / 2);
Chris@16 116 T x;
Chris@16 117 if(eta_2 == 0)
Chris@16 118 x = 0.5;
Chris@16 119 else
Chris@16 120 x = (1 + eta * sqrt((1 + c) / eta_2)) / 2;
Chris@16 121
Chris@16 122 BOOST_ASSERT(x >= 0);
Chris@16 123 BOOST_ASSERT(x <= 1);
Chris@16 124 BOOST_ASSERT(eta * (x - 0.5) >= 0);
Chris@16 125 #ifdef BOOST_INSTRUMENT
Chris@16 126 std::cout << "Estimating x with Temme method 1: " << x << std::endl;
Chris@16 127 #endif
Chris@16 128 return x;
Chris@16 129 }
Chris@16 130 //
Chris@16 131 // See:
Chris@16 132 // "Asymptotic Inversion of the Incomplete Beta Function"
Chris@16 133 // N.M. Temme
Chris@16 134 // Journal of Computation and Applied Mathematics 41 (1992) 145-157.
Chris@16 135 // Section 3.
Chris@16 136 //
Chris@16 137 template <class T, class Policy>
Chris@16 138 T temme_method_2_ibeta_inverse(T /*a*/, T /*b*/, T z, T r, T theta, const Policy& pol)
Chris@16 139 {
Chris@16 140 BOOST_MATH_STD_USING // ADL of std names
Chris@16 141
Chris@16 142 //
Chris@16 143 // Get first estimate for eta, see Eq 3.9 and 3.10,
Chris@16 144 // but note there is a typo in Eq 3.10:
Chris@16 145 //
Chris@16 146 T eta0 = boost::math::erfc_inv(2 * z, pol);
Chris@16 147 eta0 /= -sqrt(r / 2);
Chris@16 148
Chris@16 149 T s = sin(theta);
Chris@16 150 T c = cos(theta);
Chris@16 151 //
Chris@16 152 // Now we need to purturb eta0 to get eta, which we do by
Chris@16 153 // evaluating the polynomial in 1/r at the bottom of page 151,
Chris@16 154 // to do this we first need the error terms e1, e2 e3
Chris@16 155 // which we'll fill into the array "terms". Since these
Chris@16 156 // terms are themselves polynomials, we'll need another
Chris@16 157 // array "workspace" to calculate those...
Chris@16 158 //
Chris@16 159 T terms[4] = { eta0 };
Chris@16 160 T workspace[6];
Chris@16 161 //
Chris@16 162 // some powers of sin(theta)cos(theta) that we'll need later:
Chris@16 163 //
Chris@16 164 T sc = s * c;
Chris@16 165 T sc_2 = sc * sc;
Chris@16 166 T sc_3 = sc_2 * sc;
Chris@16 167 T sc_4 = sc_2 * sc_2;
Chris@16 168 T sc_5 = sc_2 * sc_3;
Chris@16 169 T sc_6 = sc_3 * sc_3;
Chris@16 170 T sc_7 = sc_4 * sc_3;
Chris@16 171 //
Chris@16 172 // Calculate e1 and put it in terms[1], see the middle of page 151:
Chris@16 173 //
Chris@16 174 workspace[0] = (2 * s * s - 1) / (3 * s * c);
Chris@16 175 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co1[] = { -1, -5, 5 };
Chris@16 176 workspace[1] = -tools::evaluate_even_polynomial(co1, s, 3) / (36 * sc_2);
Chris@16 177 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co2[] = { 1, 21, -69, 46 };
Chris@16 178 workspace[2] = tools::evaluate_even_polynomial(co2, s, 4) / (1620 * sc_3);
Chris@16 179 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co3[] = { 7, -2, 33, -62, 31 };
Chris@16 180 workspace[3] = -tools::evaluate_even_polynomial(co3, s, 5) / (6480 * sc_4);
Chris@16 181 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co4[] = { 25, -52, -17, 88, -115, 46 };
Chris@16 182 workspace[4] = tools::evaluate_even_polynomial(co4, s, 6) / (90720 * sc_5);
Chris@16 183 terms[1] = tools::evaluate_polynomial(workspace, eta0, 5);
Chris@16 184 //
Chris@16 185 // Now evaluate e2 and put it in terms[2]:
Chris@16 186 //
Chris@16 187 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co5[] = { 7, 12, -78, 52 };
Chris@16 188 workspace[0] = -tools::evaluate_even_polynomial(co5, s, 4) / (405 * sc_3);
Chris@16 189 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co6[] = { -7, 2, 183, -370, 185 };
Chris@16 190 workspace[1] = tools::evaluate_even_polynomial(co6, s, 5) / (2592 * sc_4);
Chris@16 191 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co7[] = { -533, 776, -1835, 10240, -13525, 5410 };
Chris@16 192 workspace[2] = -tools::evaluate_even_polynomial(co7, s, 6) / (204120 * sc_5);
Chris@16 193 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co8[] = { -1579, 3747, -3372, -15821, 45588, -45213, 15071 };
Chris@16 194 workspace[3] = -tools::evaluate_even_polynomial(co8, s, 7) / (2099520 * sc_6);
Chris@16 195 terms[2] = tools::evaluate_polynomial(workspace, eta0, 4);
Chris@16 196 //
Chris@16 197 // And e3, and put it in terms[3]:
Chris@16 198 //
Chris@16 199 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co9[] = {449, -1259, -769, 6686, -9260, 3704 };
Chris@16 200 workspace[0] = tools::evaluate_even_polynomial(co9, s, 6) / (102060 * sc_5);
Chris@16 201 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co10[] = { 63149, -151557, 140052, -727469, 2239932, -2251437, 750479 };
Chris@16 202 workspace[1] = -tools::evaluate_even_polynomial(co10, s, 7) / (20995200 * sc_6);
Chris@16 203 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co11[] = { 29233, -78755, 105222, 146879, -1602610, 3195183, -2554139, 729754 };
Chris@16 204 workspace[2] = tools::evaluate_even_polynomial(co11, s, 8) / (36741600 * sc_7);
Chris@16 205 terms[3] = tools::evaluate_polynomial(workspace, eta0, 3);
Chris@16 206 //
Chris@16 207 // Bring the correction terms together to evaluate eta,
Chris@16 208 // this is the last equation on page 151:
Chris@16 209 //
Chris@16 210 T eta = tools::evaluate_polynomial(terms, T(1/r), 4);
Chris@16 211 //
Chris@16 212 // Now that we have eta we need to back solve for x,
Chris@16 213 // we seek the value of x that gives eta in Eq 3.2.
Chris@16 214 // The two methods used are described in section 5.
Chris@16 215 //
Chris@16 216 // Begin by defining a few variables we'll need later:
Chris@16 217 //
Chris@16 218 T x;
Chris@16 219 T s_2 = s * s;
Chris@16 220 T c_2 = c * c;
Chris@16 221 T alpha = c / s;
Chris@16 222 alpha *= alpha;
Chris@16 223 T lu = (-(eta * eta) / (2 * s_2) + log(s_2) + c_2 * log(c_2) / s_2);
Chris@16 224 //
Chris@16 225 // Temme doesn't specify what value to switch on here,
Chris@16 226 // but this seems to work pretty well:
Chris@16 227 //
Chris@16 228 if(fabs(eta) < 0.7)
Chris@16 229 {
Chris@16 230 //
Chris@16 231 // Small eta use the expansion Temme gives in the second equation
Chris@16 232 // of section 5, it's a polynomial in eta:
Chris@16 233 //
Chris@16 234 workspace[0] = s * s;
Chris@16 235 workspace[1] = s * c;
Chris@16 236 workspace[2] = (1 - 2 * workspace[0]) / 3;
Chris@16 237 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co12[] = { 1, -13, 13 };
Chris@16 238 workspace[3] = tools::evaluate_polynomial(co12, workspace[0], 3) / (36 * s * c);
Chris@16 239 static const BOOST_MATH_INT_TABLE_TYPE(T, int) co13[] = { 1, 21, -69, 46 };
Chris@16 240 workspace[4] = tools::evaluate_polynomial(co13, workspace[0], 4) / (270 * workspace[0] * c * c);
Chris@16 241 x = tools::evaluate_polynomial(workspace, eta, 5);
Chris@16 242 #ifdef BOOST_INSTRUMENT
Chris@16 243 std::cout << "Estimating x with Temme method 2 (small eta): " << x << std::endl;
Chris@16 244 #endif
Chris@16 245 }
Chris@16 246 else
Chris@16 247 {
Chris@16 248 //
Chris@16 249 // If eta is large we need to solve Eq 3.2 more directly,
Chris@16 250 // begin by getting an initial approximation for x from
Chris@16 251 // the last equation on page 155, this is a polynomial in u:
Chris@16 252 //
Chris@16 253 T u = exp(lu);
Chris@16 254 workspace[0] = u;
Chris@16 255 workspace[1] = alpha;
Chris@16 256 workspace[2] = 0;
Chris@16 257 workspace[3] = 3 * alpha * (3 * alpha + 1) / 6;
Chris@16 258 workspace[4] = 4 * alpha * (4 * alpha + 1) * (4 * alpha + 2) / 24;
Chris@16 259 workspace[5] = 5 * alpha * (5 * alpha + 1) * (5 * alpha + 2) * (5 * alpha + 3) / 120;
Chris@16 260 x = tools::evaluate_polynomial(workspace, u, 6);
Chris@16 261 //
Chris@16 262 // At this point we may or may not have the right answer, Eq-3.2 has
Chris@16 263 // two solutions for x for any given eta, however the mapping in 3.2
Chris@16 264 // is 1:1 with the sign of eta and x-sin^2(theta) being the same.
Chris@16 265 // So we can check if we have the right root of 3.2, and if not
Chris@16 266 // switch x for 1-x. This transformation is motivated by the fact
Chris@16 267 // that the distribution is *almost* symetric so 1-x will be in the right
Chris@16 268 // ball park for the solution:
Chris@16 269 //
Chris@16 270 if((x - s_2) * eta < 0)
Chris@16 271 x = 1 - x;
Chris@16 272 #ifdef BOOST_INSTRUMENT
Chris@16 273 std::cout << "Estimating x with Temme method 2 (large eta): " << x << std::endl;
Chris@16 274 #endif
Chris@16 275 }
Chris@16 276 //
Chris@16 277 // The final step is a few Newton-Raphson iterations to
Chris@16 278 // clean up our approximation for x, this is pretty cheap
Chris@16 279 // in general, and very cheap compared to an incomplete beta
Chris@16 280 // evaluation. The limits set on x come from the observation
Chris@16 281 // that the sign of eta and x-sin^2(theta) are the same.
Chris@16 282 //
Chris@16 283 T lower, upper;
Chris@16 284 if(eta < 0)
Chris@16 285 {
Chris@16 286 lower = 0;
Chris@16 287 upper = s_2;
Chris@16 288 }
Chris@16 289 else
Chris@16 290 {
Chris@16 291 lower = s_2;
Chris@16 292 upper = 1;
Chris@16 293 }
Chris@16 294 //
Chris@16 295 // If our initial approximation is out of bounds then bisect:
Chris@16 296 //
Chris@16 297 if((x < lower) || (x > upper))
Chris@16 298 x = (lower+upper) / 2;
Chris@16 299 //
Chris@16 300 // And iterate:
Chris@16 301 //
Chris@16 302 x = tools::newton_raphson_iterate(
Chris@16 303 temme_root_finder<T>(-lu, alpha), x, lower, upper, policies::digits<T, Policy>() / 2);
Chris@16 304
Chris@16 305 return x;
Chris@16 306 }
Chris@16 307 //
Chris@16 308 // See:
Chris@16 309 // "Asymptotic Inversion of the Incomplete Beta Function"
Chris@16 310 // N.M. Temme
Chris@16 311 // Journal of Computation and Applied Mathematics 41 (1992) 145-157.
Chris@16 312 // Section 4.
Chris@16 313 //
Chris@16 314 template <class T, class Policy>
Chris@16 315 T temme_method_3_ibeta_inverse(T a, T b, T p, T q, const Policy& pol)
Chris@16 316 {
Chris@16 317 BOOST_MATH_STD_USING // ADL of std names
Chris@16 318
Chris@16 319 //
Chris@16 320 // Begin by getting an initial approximation for the quantity
Chris@16 321 // eta from the dominant part of the incomplete beta:
Chris@16 322 //
Chris@16 323 T eta0;
Chris@16 324 if(p < q)
Chris@16 325 eta0 = boost::math::gamma_q_inv(b, p, pol);
Chris@16 326 else
Chris@16 327 eta0 = boost::math::gamma_p_inv(b, q, pol);
Chris@16 328 eta0 /= a;
Chris@16 329 //
Chris@16 330 // Define the variables and powers we'll need later on:
Chris@16 331 //
Chris@16 332 T mu = b / a;
Chris@16 333 T w = sqrt(1 + mu);
Chris@16 334 T w_2 = w * w;
Chris@16 335 T w_3 = w_2 * w;
Chris@16 336 T w_4 = w_2 * w_2;
Chris@16 337 T w_5 = w_3 * w_2;
Chris@16 338 T w_6 = w_3 * w_3;
Chris@16 339 T w_7 = w_4 * w_3;
Chris@16 340 T w_8 = w_4 * w_4;
Chris@16 341 T w_9 = w_5 * w_4;
Chris@16 342 T w_10 = w_5 * w_5;
Chris@16 343 T d = eta0 - mu;
Chris@16 344 T d_2 = d * d;
Chris@16 345 T d_3 = d_2 * d;
Chris@16 346 T d_4 = d_2 * d_2;
Chris@16 347 T w1 = w + 1;
Chris@16 348 T w1_2 = w1 * w1;
Chris@16 349 T w1_3 = w1 * w1_2;
Chris@16 350 T w1_4 = w1_2 * w1_2;
Chris@16 351 //
Chris@16 352 // Now we need to compute the purturbation error terms that
Chris@16 353 // convert eta0 to eta, these are all polynomials of polynomials.
Chris@16 354 // Probably these should be re-written to use tabulated data
Chris@16 355 // (see examples above), but it's less of a win in this case as we
Chris@16 356 // need to calculate the individual powers for the denominator terms
Chris@16 357 // anyway, so we might as well use them for the numerator-polynomials
Chris@16 358 // as well....
Chris@16 359 //
Chris@16 360 // Refer to p154-p155 for the details of these expansions:
Chris@16 361 //
Chris@16 362 T e1 = (w + 2) * (w - 1) / (3 * w);
Chris@16 363 e1 += (w_3 + 9 * w_2 + 21 * w + 5) * d / (36 * w_2 * w1);
Chris@16 364 e1 -= (w_4 - 13 * w_3 + 69 * w_2 + 167 * w + 46) * d_2 / (1620 * w1_2 * w_3);
Chris@16 365 e1 -= (7 * w_5 + 21 * w_4 + 70 * w_3 + 26 * w_2 - 93 * w - 31) * d_3 / (6480 * w1_3 * w_4);
Chris@16 366 e1 -= (75 * w_6 + 202 * w_5 + 188 * w_4 - 888 * w_3 - 1345 * w_2 + 118 * w + 138) * d_4 / (272160 * w1_4 * w_5);
Chris@16 367
Chris@16 368 T e2 = (28 * w_4 + 131 * w_3 + 402 * w_2 + 581 * w + 208) * (w - 1) / (1620 * w1 * w_3);
Chris@16 369 e2 -= (35 * w_6 - 154 * w_5 - 623 * w_4 - 1636 * w_3 - 3983 * w_2 - 3514 * w - 925) * d / (12960 * w1_2 * w_4);
Chris@16 370 e2 -= (2132 * w_7 + 7915 * w_6 + 16821 * w_5 + 35066 * w_4 + 87490 * w_3 + 141183 * w_2 + 95993 * w + 21640) * d_2 / (816480 * w_5 * w1_3);
Chris@16 371 e2 -= (11053 * w_8 + 53308 * w_7 + 117010 * w_6 + 163924 * w_5 + 116188 * w_4 - 258428 * w_3 - 677042 * w_2 - 481940 * w - 105497) * d_3 / (14696640 * w1_4 * w_6);
Chris@16 372
Chris@16 373 T e3 = -((3592 * w_7 + 8375 * w_6 - 1323 * w_5 - 29198 * w_4 - 89578 * w_3 - 154413 * w_2 - 116063 * w - 29632) * (w - 1)) / (816480 * w_5 * w1_2);
Chris@16 374 e3 -= (442043 * w_9 + 2054169 * w_8 + 3803094 * w_7 + 3470754 * w_6 + 2141568 * w_5 - 2393568 * w_4 - 19904934 * w_3 - 34714674 * w_2 - 23128299 * w - 5253353) * d / (146966400 * w_6 * w1_3);
Chris@16 375 e3 -= (116932 * w_10 + 819281 * w_9 + 2378172 * w_8 + 4341330 * w_7 + 6806004 * w_6 + 10622748 * w_5 + 18739500 * w_4 + 30651894 * w_3 + 30869976 * w_2 + 15431867 * w + 2919016) * d_2 / (146966400 * w1_4 * w_7);
Chris@16 376 //
Chris@16 377 // Combine eta0 and the error terms to compute eta (Second eqaution p155):
Chris@16 378 //
Chris@16 379 T eta = eta0 + e1 / a + e2 / (a * a) + e3 / (a * a * a);
Chris@16 380 //
Chris@16 381 // Now we need to solve Eq 4.2 to obtain x. For any given value of
Chris@16 382 // eta there are two solutions to this equation, and since the distribtion
Chris@16 383 // may be very skewed, these are not related by x ~ 1-x we used when
Chris@16 384 // implementing section 3 above. However we know that:
Chris@16 385 //
Chris@16 386 // cross < x <= 1 ; iff eta < mu
Chris@16 387 // x == cross ; iff eta == mu
Chris@16 388 // 0 <= x < cross ; iff eta > mu
Chris@16 389 //
Chris@16 390 // Where cross == 1 / (1 + mu)
Chris@16 391 // Many thanks to Prof Temme for clarifying this point.
Chris@16 392 //
Chris@16 393 // Therefore we'll just jump straight into Newton iterations
Chris@16 394 // to solve Eq 4.2 using these bounds, and simple bisection
Chris@16 395 // as the first guess, in practice this converges pretty quickly
Chris@16 396 // and we only need a few digits correct anyway:
Chris@16 397 //
Chris@16 398 if(eta <= 0)
Chris@16 399 eta = tools::min_value<T>();
Chris@16 400 T u = eta - mu * log(eta) + (1 + mu) * log(1 + mu) - mu;
Chris@16 401 T cross = 1 / (1 + mu);
Chris@16 402 T lower = eta < mu ? cross : 0;
Chris@16 403 T upper = eta < mu ? 1 : cross;
Chris@16 404 T x = (lower + upper) / 2;
Chris@16 405 x = tools::newton_raphson_iterate(
Chris@16 406 temme_root_finder<T>(u, mu), x, lower, upper, policies::digits<T, Policy>() / 2);
Chris@16 407 #ifdef BOOST_INSTRUMENT
Chris@16 408 std::cout << "Estimating x with Temme method 3: " << x << std::endl;
Chris@16 409 #endif
Chris@16 410 return x;
Chris@16 411 }
Chris@16 412
Chris@16 413 template <class T, class Policy>
Chris@16 414 struct ibeta_roots
Chris@16 415 {
Chris@16 416 ibeta_roots(T _a, T _b, T t, bool inv = false)
Chris@16 417 : a(_a), b(_b), target(t), invert(inv) {}
Chris@16 418
Chris@16 419 boost::math::tuple<T, T, T> operator()(T x)
Chris@16 420 {
Chris@16 421 BOOST_MATH_STD_USING // ADL of std names
Chris@16 422
Chris@16 423 BOOST_FPU_EXCEPTION_GUARD
Chris@16 424
Chris@16 425 T f1;
Chris@16 426 T y = 1 - x;
Chris@16 427 T f = ibeta_imp(a, b, x, Policy(), invert, true, &f1) - target;
Chris@16 428 if(invert)
Chris@16 429 f1 = -f1;
Chris@16 430 if(y == 0)
Chris@16 431 y = tools::min_value<T>() * 64;
Chris@16 432 if(x == 0)
Chris@16 433 x = tools::min_value<T>() * 64;
Chris@16 434
Chris@16 435 T f2 = f1 * (-y * a + (b - 2) * x + 1);
Chris@16 436 if(fabs(f2) < y * x * tools::max_value<T>())
Chris@16 437 f2 /= (y * x);
Chris@16 438 if(invert)
Chris@16 439 f2 = -f2;
Chris@16 440
Chris@16 441 // make sure we don't have a zero derivative:
Chris@16 442 if(f1 == 0)
Chris@16 443 f1 = (invert ? -1 : 1) * tools::min_value<T>() * 64;
Chris@16 444
Chris@16 445 return boost::math::make_tuple(f, f1, f2);
Chris@16 446 }
Chris@16 447 private:
Chris@16 448 T a, b, target;
Chris@16 449 bool invert;
Chris@16 450 };
Chris@16 451
Chris@16 452 template <class T, class Policy>
Chris@16 453 T ibeta_inv_imp(T a, T b, T p, T q, const Policy& pol, T* py)
Chris@16 454 {
Chris@16 455 BOOST_MATH_STD_USING // For ADL of math functions.
Chris@16 456
Chris@16 457 //
Chris@16 458 // The flag invert is set to true if we swap a for b and p for q,
Chris@16 459 // in which case the result has to be subtracted from 1:
Chris@16 460 //
Chris@16 461 bool invert = false;
Chris@16 462 //
Chris@16 463 // Handle trivial cases first:
Chris@16 464 //
Chris@16 465 if(q == 0)
Chris@16 466 {
Chris@16 467 if(py) *py = 0;
Chris@16 468 return 1;
Chris@16 469 }
Chris@16 470 else if(p == 0)
Chris@16 471 {
Chris@16 472 if(py) *py = 1;
Chris@16 473 return 0;
Chris@16 474 }
Chris@16 475 else if(a == 1)
Chris@16 476 {
Chris@16 477 if(b == 1)
Chris@16 478 {
Chris@16 479 if(py) *py = 1 - p;
Chris@16 480 return p;
Chris@16 481 }
Chris@16 482 // Change things around so we can handle as b == 1 special case below:
Chris@16 483 std::swap(a, b);
Chris@16 484 std::swap(p, q);
Chris@16 485 invert = true;
Chris@16 486 }
Chris@16 487 //
Chris@16 488 // Depending upon which approximation method we use, we may end up
Chris@16 489 // calculating either x or y initially (where y = 1-x):
Chris@16 490 //
Chris@16 491 T x = 0; // Set to a safe zero to avoid a
Chris@16 492 // MSVC 2005 warning C4701: potentially uninitialized local variable 'x' used
Chris@16 493 // But code inspection appears to ensure that x IS assigned whatever the code path.
Chris@16 494 T y;
Chris@16 495
Chris@16 496 // For some of the methods we can put tighter bounds
Chris@16 497 // on the result than simply [0,1]:
Chris@16 498 //
Chris@16 499 T lower = 0;
Chris@16 500 T upper = 1;
Chris@16 501 //
Chris@16 502 // Student's T with b = 0.5 gets handled as a special case, swap
Chris@16 503 // around if the arguments are in the "wrong" order:
Chris@16 504 //
Chris@16 505 if(a == 0.5f)
Chris@16 506 {
Chris@16 507 if(b == 0.5f)
Chris@16 508 {
Chris@16 509 x = sin(p * constants::half_pi<T>());
Chris@16 510 x *= x;
Chris@16 511 if(py)
Chris@16 512 {
Chris@16 513 *py = sin(q * constants::half_pi<T>());
Chris@16 514 *py *= *py;
Chris@16 515 }
Chris@16 516 return x;
Chris@16 517 }
Chris@16 518 else if(b > 0.5f)
Chris@16 519 {
Chris@16 520 std::swap(a, b);
Chris@16 521 std::swap(p, q);
Chris@16 522 invert = !invert;
Chris@16 523 }
Chris@16 524 }
Chris@16 525 //
Chris@16 526 // Select calculation method for the initial estimate:
Chris@16 527 //
Chris@16 528 if((b == 0.5f) && (a >= 0.5f) && (p != 1))
Chris@16 529 {
Chris@16 530 //
Chris@16 531 // We have a Student's T distribution:
Chris@16 532 x = find_ibeta_inv_from_t_dist(a, p, q, &y, pol);
Chris@16 533 }
Chris@16 534 else if(b == 1)
Chris@16 535 {
Chris@16 536 if(p < q)
Chris@16 537 {
Chris@16 538 if(a > 1)
Chris@16 539 {
Chris@16 540 x = pow(p, 1 / a);
Chris@101 541 y = -boost::math::expm1(log(p) / a, pol);
Chris@16 542 }
Chris@16 543 else
Chris@16 544 {
Chris@16 545 x = pow(p, 1 / a);
Chris@16 546 y = 1 - x;
Chris@16 547 }
Chris@16 548 }
Chris@16 549 else
Chris@16 550 {
Chris@101 551 x = exp(boost::math::log1p(-q, pol) / a);
Chris@101 552 y = -boost::math::expm1(boost::math::log1p(-q, pol) / a, pol);
Chris@16 553 }
Chris@16 554 if(invert)
Chris@16 555 std::swap(x, y);
Chris@16 556 if(py)
Chris@16 557 *py = y;
Chris@16 558 return x;
Chris@16 559 }
Chris@16 560 else if(a + b > 5)
Chris@16 561 {
Chris@16 562 //
Chris@16 563 // When a+b is large then we can use one of Prof Temme's
Chris@16 564 // asymptotic expansions, begin by swapping things around
Chris@16 565 // so that p < 0.5, we do this to avoid cancellations errors
Chris@16 566 // when p is large.
Chris@16 567 //
Chris@16 568 if(p > 0.5)
Chris@16 569 {
Chris@16 570 std::swap(a, b);
Chris@16 571 std::swap(p, q);
Chris@16 572 invert = !invert;
Chris@16 573 }
Chris@16 574 T minv = (std::min)(a, b);
Chris@16 575 T maxv = (std::max)(a, b);
Chris@16 576 if((sqrt(minv) > (maxv - minv)) && (minv > 5))
Chris@16 577 {
Chris@16 578 //
Chris@16 579 // When a and b differ by a small amount
Chris@16 580 // the curve is quite symmetrical and we can use an error
Chris@16 581 // function to approximate the inverse. This is the cheapest
Chris@16 582 // of the three Temme expantions, and the calculated value
Chris@16 583 // for x will never be much larger than p, so we don't have
Chris@16 584 // to worry about cancellation as long as p is small.
Chris@16 585 //
Chris@16 586 x = temme_method_1_ibeta_inverse(a, b, p, pol);
Chris@16 587 y = 1 - x;
Chris@16 588 }
Chris@16 589 else
Chris@16 590 {
Chris@16 591 T r = a + b;
Chris@16 592 T theta = asin(sqrt(a / r));
Chris@16 593 T lambda = minv / r;
Chris@16 594 if((lambda >= 0.2) && (lambda <= 0.8) && (r >= 10))
Chris@16 595 {
Chris@16 596 //
Chris@16 597 // The second error function case is the next cheapest
Chris@16 598 // to use, it brakes down when the result is likely to be
Chris@16 599 // very small, if a+b is also small, but we can use a
Chris@16 600 // cheaper expansion there in any case. As before x won't
Chris@16 601 // be much larger than p, so as long as p is small we should
Chris@16 602 // be free of cancellation error.
Chris@16 603 //
Chris@16 604 T ppa = pow(p, 1/a);
Chris@16 605 if((ppa < 0.0025) && (a + b < 200))
Chris@16 606 {
Chris@16 607 x = ppa * pow(a * boost::math::beta(a, b, pol), 1/a);
Chris@16 608 }
Chris@16 609 else
Chris@16 610 x = temme_method_2_ibeta_inverse(a, b, p, r, theta, pol);
Chris@16 611 y = 1 - x;
Chris@16 612 }
Chris@16 613 else
Chris@16 614 {
Chris@16 615 //
Chris@16 616 // If we get here then a and b are very different in magnitude
Chris@16 617 // and we need to use the third of Temme's methods which
Chris@16 618 // involves inverting the incomplete gamma. This is much more
Chris@16 619 // expensive than the other methods. We also can only use this
Chris@16 620 // method when a > b, which can lead to cancellation errors
Chris@16 621 // if we really want y (as we will when x is close to 1), so
Chris@16 622 // a different expansion is used in that case.
Chris@16 623 //
Chris@16 624 if(a < b)
Chris@16 625 {
Chris@16 626 std::swap(a, b);
Chris@16 627 std::swap(p, q);
Chris@16 628 invert = !invert;
Chris@16 629 }
Chris@16 630 //
Chris@16 631 // Try and compute the easy way first:
Chris@16 632 //
Chris@16 633 T bet = 0;
Chris@16 634 if(b < 2)
Chris@16 635 bet = boost::math::beta(a, b, pol);
Chris@16 636 if(bet != 0)
Chris@16 637 {
Chris@16 638 y = pow(b * q * bet, 1/b);
Chris@16 639 x = 1 - y;
Chris@16 640 }
Chris@16 641 else
Chris@16 642 y = 1;
Chris@16 643 if(y > 1e-5)
Chris@16 644 {
Chris@16 645 x = temme_method_3_ibeta_inverse(a, b, p, q, pol);
Chris@16 646 y = 1 - x;
Chris@16 647 }
Chris@16 648 }
Chris@16 649 }
Chris@16 650 }
Chris@16 651 else if((a < 1) && (b < 1))
Chris@16 652 {
Chris@16 653 //
Chris@16 654 // Both a and b less than 1,
Chris@16 655 // there is a point of inflection at xs:
Chris@16 656 //
Chris@16 657 T xs = (1 - a) / (2 - a - b);
Chris@16 658 //
Chris@16 659 // Now we need to ensure that we start our iteration from the
Chris@16 660 // right side of the inflection point:
Chris@16 661 //
Chris@16 662 T fs = boost::math::ibeta(a, b, xs, pol) - p;
Chris@16 663 if(fabs(fs) / p < tools::epsilon<T>() * 3)
Chris@16 664 {
Chris@16 665 // The result is at the point of inflection, best just return it:
Chris@16 666 *py = invert ? xs : 1 - xs;
Chris@16 667 return invert ? 1-xs : xs;
Chris@16 668 }
Chris@16 669 if(fs < 0)
Chris@16 670 {
Chris@16 671 std::swap(a, b);
Chris@16 672 std::swap(p, q);
Chris@16 673 invert = !invert;
Chris@16 674 xs = 1 - xs;
Chris@16 675 }
Chris@16 676 T xg = pow(a * p * boost::math::beta(a, b, pol), 1/a);
Chris@16 677 x = xg / (1 + xg);
Chris@16 678 y = 1 / (1 + xg);
Chris@16 679 //
Chris@16 680 // And finally we know that our result is below the inflection
Chris@16 681 // point, so set an upper limit on our search:
Chris@16 682 //
Chris@16 683 if(x > xs)
Chris@16 684 x = xs;
Chris@16 685 upper = xs;
Chris@16 686 }
Chris@16 687 else if((a > 1) && (b > 1))
Chris@16 688 {
Chris@16 689 //
Chris@16 690 // Small a and b, both greater than 1,
Chris@16 691 // there is a point of inflection at xs,
Chris@16 692 // and it's complement is xs2, we must always
Chris@16 693 // start our iteration from the right side of the
Chris@16 694 // point of inflection.
Chris@16 695 //
Chris@16 696 T xs = (a - 1) / (a + b - 2);
Chris@16 697 T xs2 = (b - 1) / (a + b - 2);
Chris@16 698 T ps = boost::math::ibeta(a, b, xs, pol) - p;
Chris@16 699
Chris@16 700 if(ps < 0)
Chris@16 701 {
Chris@16 702 std::swap(a, b);
Chris@16 703 std::swap(p, q);
Chris@16 704 std::swap(xs, xs2);
Chris@16 705 invert = !invert;
Chris@16 706 }
Chris@16 707 //
Chris@16 708 // Estimate x and y, using expm1 to get a good estimate
Chris@16 709 // for y when it's very small:
Chris@16 710 //
Chris@16 711 T lx = log(p * a * boost::math::beta(a, b, pol)) / a;
Chris@16 712 x = exp(lx);
Chris@16 713 y = x < 0.9 ? T(1 - x) : (T)(-boost::math::expm1(lx, pol));
Chris@16 714
Chris@16 715 if((b < a) && (x < 0.2))
Chris@16 716 {
Chris@16 717 //
Chris@16 718 // Under a limited range of circumstances we can improve
Chris@16 719 // our estimate for x, frankly it's clear if this has much effect!
Chris@16 720 //
Chris@16 721 T ap1 = a - 1;
Chris@16 722 T bm1 = b - 1;
Chris@16 723 T a_2 = a * a;
Chris@16 724 T a_3 = a * a_2;
Chris@16 725 T b_2 = b * b;
Chris@16 726 T terms[5] = { 0, 1 };
Chris@16 727 terms[2] = bm1 / ap1;
Chris@16 728 ap1 *= ap1;
Chris@16 729 terms[3] = bm1 * (3 * a * b + 5 * b + a_2 - a - 4) / (2 * (a + 2) * ap1);
Chris@16 730 ap1 *= (a + 1);
Chris@16 731 terms[4] = bm1 * (33 * a * b_2 + 31 * b_2 + 8 * a_2 * b_2 - 30 * a * b - 47 * b + 11 * a_2 * b + 6 * a_3 * b + 18 + 4 * a - a_3 + a_2 * a_2 - 10 * a_2)
Chris@16 732 / (3 * (a + 3) * (a + 2) * ap1);
Chris@16 733 x = tools::evaluate_polynomial(terms, x, 5);
Chris@16 734 }
Chris@16 735 //
Chris@16 736 // And finally we know that our result is below the inflection
Chris@16 737 // point, so set an upper limit on our search:
Chris@16 738 //
Chris@16 739 if(x > xs)
Chris@16 740 x = xs;
Chris@16 741 upper = xs;
Chris@16 742 }
Chris@16 743 else /*if((a <= 1) != (b <= 1))*/
Chris@16 744 {
Chris@16 745 //
Chris@16 746 // If all else fails we get here, only one of a and b
Chris@16 747 // is above 1, and a+b is small. Start by swapping
Chris@16 748 // things around so that we have a concave curve with b > a
Chris@16 749 // and no points of inflection in [0,1]. As long as we expect
Chris@16 750 // x to be small then we can use the simple (and cheap) power
Chris@16 751 // term to estimate x, but when we expect x to be large then
Chris@16 752 // this greatly underestimates x and leaves us trying to
Chris@16 753 // iterate "round the corner" which may take almost forever...
Chris@16 754 //
Chris@16 755 // We could use Temme's inverse gamma function case in that case,
Chris@16 756 // this works really rather well (albeit expensively) even though
Chris@16 757 // strictly speaking we're outside it's defined range.
Chris@16 758 //
Chris@16 759 // However it's expensive to compute, and an alternative approach
Chris@16 760 // which models the curve as a distorted quarter circle is much
Chris@16 761 // cheaper to compute, and still keeps the number of iterations
Chris@16 762 // required down to a reasonable level. With thanks to Prof Temme
Chris@16 763 // for this suggestion.
Chris@16 764 //
Chris@16 765 if(b < a)
Chris@16 766 {
Chris@16 767 std::swap(a, b);
Chris@16 768 std::swap(p, q);
Chris@16 769 invert = !invert;
Chris@16 770 }
Chris@16 771 if(pow(p, 1/a) < 0.5)
Chris@16 772 {
Chris@16 773 x = pow(p * a * boost::math::beta(a, b, pol), 1 / a);
Chris@16 774 if(x == 0)
Chris@16 775 x = boost::math::tools::min_value<T>();
Chris@16 776 y = 1 - x;
Chris@16 777 }
Chris@16 778 else /*if(pow(q, 1/b) < 0.1)*/
Chris@16 779 {
Chris@16 780 // model a distorted quarter circle:
Chris@16 781 y = pow(1 - pow(p, b * boost::math::beta(a, b, pol)), 1/b);
Chris@16 782 if(y == 0)
Chris@16 783 y = boost::math::tools::min_value<T>();
Chris@16 784 x = 1 - y;
Chris@16 785 }
Chris@16 786 }
Chris@16 787
Chris@16 788 //
Chris@16 789 // Now we have a guess for x (and for y) we can set things up for
Chris@16 790 // iteration. If x > 0.5 it pays to swap things round:
Chris@16 791 //
Chris@16 792 if(x > 0.5)
Chris@16 793 {
Chris@16 794 std::swap(a, b);
Chris@16 795 std::swap(p, q);
Chris@16 796 std::swap(x, y);
Chris@16 797 invert = !invert;
Chris@16 798 T l = 1 - upper;
Chris@16 799 T u = 1 - lower;
Chris@16 800 lower = l;
Chris@16 801 upper = u;
Chris@16 802 }
Chris@16 803 //
Chris@16 804 // lower bound for our search:
Chris@16 805 //
Chris@16 806 // We're not interested in denormalised answers as these tend to
Chris@16 807 // these tend to take up lots of iterations, given that we can't get
Chris@16 808 // accurate derivatives in this area (they tend to be infinite).
Chris@16 809 //
Chris@16 810 if(lower == 0)
Chris@16 811 {
Chris@16 812 if(invert && (py == 0))
Chris@16 813 {
Chris@16 814 //
Chris@16 815 // We're not interested in answers smaller than machine epsilon:
Chris@16 816 //
Chris@16 817 lower = boost::math::tools::epsilon<T>();
Chris@16 818 if(x < lower)
Chris@16 819 x = lower;
Chris@16 820 }
Chris@16 821 else
Chris@16 822 lower = boost::math::tools::min_value<T>();
Chris@16 823 if(x < lower)
Chris@16 824 x = lower;
Chris@16 825 }
Chris@16 826 //
Chris@16 827 // Figure out how many digits to iterate towards:
Chris@16 828 //
Chris@16 829 int digits = boost::math::policies::digits<T, Policy>() / 2;
Chris@16 830 if((x < 1e-50) && ((a < 1) || (b < 1)))
Chris@16 831 {
Chris@16 832 //
Chris@16 833 // If we're in a region where the first derivative is very
Chris@16 834 // large, then we have to take care that the root-finder
Chris@16 835 // doesn't terminate prematurely. We'll bump the precision
Chris@16 836 // up to avoid this, but we have to take care not to set the
Chris@16 837 // precision too high or the last few iterations will just
Chris@16 838 // thrash around and convergence may be slow in this case.
Chris@16 839 // Try 3/4 of machine epsilon:
Chris@16 840 //
Chris@16 841 digits *= 3;
Chris@16 842 digits /= 2;
Chris@16 843 }
Chris@16 844 //
Chris@16 845 // Now iterate, we can use either p or q as the target here
Chris@16 846 // depending on which is smaller:
Chris@16 847 //
Chris@16 848 boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
Chris@16 849 x = boost::math::tools::halley_iterate(
Chris@16 850 boost::math::detail::ibeta_roots<T, Policy>(a, b, (p < q ? p : q), (p < q ? false : true)), x, lower, upper, digits, max_iter);
Chris@16 851 policies::check_root_iterations<T>("boost::math::ibeta<%1%>(%1%, %1%, %1%)", max_iter, pol);
Chris@16 852 //
Chris@16 853 // We don't really want these asserts here, but they are useful for sanity
Chris@16 854 // checking that we have the limits right, uncomment if you suspect bugs *only*.
Chris@16 855 //
Chris@16 856 //BOOST_ASSERT(x != upper);
Chris@16 857 //BOOST_ASSERT((x != lower) || (x == boost::math::tools::min_value<T>()) || (x == boost::math::tools::epsilon<T>()));
Chris@16 858 //
Chris@16 859 // Tidy up, if we "lower" was too high then zero is the best answer we have:
Chris@16 860 //
Chris@16 861 if(x == lower)
Chris@16 862 x = 0;
Chris@16 863 if(py)
Chris@16 864 *py = invert ? x : 1 - x;
Chris@16 865 return invert ? 1-x : x;
Chris@16 866 }
Chris@16 867
Chris@16 868 } // namespace detail
Chris@16 869
Chris@16 870 template <class T1, class T2, class T3, class T4, class Policy>
Chris@16 871 inline typename tools::promote_args<T1, T2, T3, T4>::type
Chris@16 872 ibeta_inv(T1 a, T2 b, T3 p, T4* py, const Policy& pol)
Chris@16 873 {
Chris@16 874 static const char* function = "boost::math::ibeta_inv<%1%>(%1%,%1%,%1%)";
Chris@16 875 BOOST_FPU_EXCEPTION_GUARD
Chris@16 876 typedef typename tools::promote_args<T1, T2, T3, T4>::type result_type;
Chris@16 877 typedef typename policies::evaluation<result_type, Policy>::type value_type;
Chris@16 878 typedef typename policies::normalise<
Chris@16 879 Policy,
Chris@16 880 policies::promote_float<false>,
Chris@16 881 policies::promote_double<false>,
Chris@16 882 policies::discrete_quantile<>,
Chris@16 883 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 884
Chris@16 885 if(a <= 0)
Chris@16 886 return policies::raise_domain_error<result_type>(function, "The argument a to the incomplete beta function inverse must be greater than zero (got a=%1%).", a, pol);
Chris@16 887 if(b <= 0)
Chris@16 888 return policies::raise_domain_error<result_type>(function, "The argument b to the incomplete beta function inverse must be greater than zero (got b=%1%).", b, pol);
Chris@16 889 if((p < 0) || (p > 1))
Chris@16 890 return policies::raise_domain_error<result_type>(function, "Argument p outside the range [0,1] in the incomplete beta function inverse (got p=%1%).", p, pol);
Chris@16 891
Chris@16 892 value_type rx, ry;
Chris@16 893
Chris@16 894 rx = detail::ibeta_inv_imp(
Chris@16 895 static_cast<value_type>(a),
Chris@16 896 static_cast<value_type>(b),
Chris@16 897 static_cast<value_type>(p),
Chris@16 898 static_cast<value_type>(1 - p),
Chris@16 899 forwarding_policy(), &ry);
Chris@16 900
Chris@16 901 if(py) *py = policies::checked_narrowing_cast<T4, forwarding_policy>(ry, function);
Chris@16 902 return policies::checked_narrowing_cast<result_type, forwarding_policy>(rx, function);
Chris@16 903 }
Chris@16 904
Chris@16 905 template <class T1, class T2, class T3, class T4>
Chris@16 906 inline typename tools::promote_args<T1, T2, T3, T4>::type
Chris@16 907 ibeta_inv(T1 a, T2 b, T3 p, T4* py)
Chris@16 908 {
Chris@16 909 return ibeta_inv(a, b, p, py, policies::policy<>());
Chris@16 910 }
Chris@16 911
Chris@16 912 template <class T1, class T2, class T3>
Chris@16 913 inline typename tools::promote_args<T1, T2, T3>::type
Chris@16 914 ibeta_inv(T1 a, T2 b, T3 p)
Chris@16 915 {
Chris@16 916 typedef typename tools::promote_args<T1, T2, T3>::type result_type;
Chris@16 917 return ibeta_inv(a, b, p, static_cast<result_type*>(0), policies::policy<>());
Chris@16 918 }
Chris@16 919
Chris@16 920 template <class T1, class T2, class T3, class Policy>
Chris@16 921 inline typename tools::promote_args<T1, T2, T3>::type
Chris@16 922 ibeta_inv(T1 a, T2 b, T3 p, const Policy& pol)
Chris@16 923 {
Chris@16 924 typedef typename tools::promote_args<T1, T2, T3>::type result_type;
Chris@16 925 return ibeta_inv(a, b, p, static_cast<result_type*>(0), pol);
Chris@16 926 }
Chris@16 927
Chris@16 928 template <class T1, class T2, class T3, class T4, class Policy>
Chris@16 929 inline typename tools::promote_args<T1, T2, T3, T4>::type
Chris@16 930 ibetac_inv(T1 a, T2 b, T3 q, T4* py, const Policy& pol)
Chris@16 931 {
Chris@16 932 static const char* function = "boost::math::ibetac_inv<%1%>(%1%,%1%,%1%)";
Chris@16 933 BOOST_FPU_EXCEPTION_GUARD
Chris@16 934 typedef typename tools::promote_args<T1, T2, T3, T4>::type result_type;
Chris@16 935 typedef typename policies::evaluation<result_type, Policy>::type value_type;
Chris@16 936 typedef typename policies::normalise<
Chris@16 937 Policy,
Chris@16 938 policies::promote_float<false>,
Chris@16 939 policies::promote_double<false>,
Chris@16 940 policies::discrete_quantile<>,
Chris@16 941 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 942
Chris@16 943 if(a <= 0)
Chris@101 944 return policies::raise_domain_error<result_type>(function, "The argument a to the incomplete beta function inverse must be greater than zero (got a=%1%).", a, pol);
Chris@16 945 if(b <= 0)
Chris@101 946 return policies::raise_domain_error<result_type>(function, "The argument b to the incomplete beta function inverse must be greater than zero (got b=%1%).", b, pol);
Chris@16 947 if((q < 0) || (q > 1))
Chris@101 948 return policies::raise_domain_error<result_type>(function, "Argument q outside the range [0,1] in the incomplete beta function inverse (got q=%1%).", q, pol);
Chris@16 949
Chris@16 950 value_type rx, ry;
Chris@16 951
Chris@16 952 rx = detail::ibeta_inv_imp(
Chris@16 953 static_cast<value_type>(a),
Chris@16 954 static_cast<value_type>(b),
Chris@16 955 static_cast<value_type>(1 - q),
Chris@16 956 static_cast<value_type>(q),
Chris@16 957 forwarding_policy(), &ry);
Chris@16 958
Chris@16 959 if(py) *py = policies::checked_narrowing_cast<T4, forwarding_policy>(ry, function);
Chris@16 960 return policies::checked_narrowing_cast<result_type, forwarding_policy>(rx, function);
Chris@16 961 }
Chris@16 962
Chris@16 963 template <class T1, class T2, class T3, class T4>
Chris@16 964 inline typename tools::promote_args<T1, T2, T3, T4>::type
Chris@16 965 ibetac_inv(T1 a, T2 b, T3 q, T4* py)
Chris@16 966 {
Chris@16 967 return ibetac_inv(a, b, q, py, policies::policy<>());
Chris@16 968 }
Chris@16 969
Chris@16 970 template <class RT1, class RT2, class RT3>
Chris@16 971 inline typename tools::promote_args<RT1, RT2, RT3>::type
Chris@16 972 ibetac_inv(RT1 a, RT2 b, RT3 q)
Chris@16 973 {
Chris@16 974 typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
Chris@16 975 return ibetac_inv(a, b, q, static_cast<result_type*>(0), policies::policy<>());
Chris@16 976 }
Chris@16 977
Chris@16 978 template <class RT1, class RT2, class RT3, class Policy>
Chris@16 979 inline typename tools::promote_args<RT1, RT2, RT3>::type
Chris@16 980 ibetac_inv(RT1 a, RT2 b, RT3 q, const Policy& pol)
Chris@16 981 {
Chris@16 982 typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
Chris@16 983 return ibetac_inv(a, b, q, static_cast<result_type*>(0), pol);
Chris@16 984 }
Chris@16 985
Chris@16 986 } // namespace math
Chris@16 987 } // namespace boost
Chris@16 988
Chris@16 989 #endif // BOOST_MATH_SPECIAL_FUNCTIONS_IGAMMA_INVERSE_HPP
Chris@16 990
Chris@16 991
Chris@16 992
Chris@16 993