annotate DEPENDENCIES/generic/include/boost/math/special_functions/detail/bessel_jy.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // Copyright (c) 2006 Xiaogang Zhang
Chris@16 2 // Use, modification and distribution are subject to the
Chris@16 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5
Chris@16 6 #ifndef BOOST_MATH_BESSEL_JY_HPP
Chris@16 7 #define BOOST_MATH_BESSEL_JY_HPP
Chris@16 8
Chris@16 9 #ifdef _MSC_VER
Chris@16 10 #pragma once
Chris@16 11 #endif
Chris@16 12
Chris@16 13 #include <boost/math/tools/config.hpp>
Chris@16 14 #include <boost/math/special_functions/gamma.hpp>
Chris@16 15 #include <boost/math/special_functions/sign.hpp>
Chris@16 16 #include <boost/math/special_functions/hypot.hpp>
Chris@16 17 #include <boost/math/special_functions/sin_pi.hpp>
Chris@16 18 #include <boost/math/special_functions/cos_pi.hpp>
Chris@16 19 #include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
Chris@16 20 #include <boost/math/special_functions/detail/bessel_jy_series.hpp>
Chris@16 21 #include <boost/math/constants/constants.hpp>
Chris@16 22 #include <boost/math/policies/error_handling.hpp>
Chris@16 23 #include <boost/mpl/if.hpp>
Chris@16 24 #include <boost/type_traits/is_floating_point.hpp>
Chris@16 25 #include <complex>
Chris@16 26
Chris@16 27 // Bessel functions of the first and second kind of fractional order
Chris@16 28
Chris@16 29 namespace boost { namespace math {
Chris@16 30
Chris@16 31 namespace detail {
Chris@16 32
Chris@16 33 //
Chris@16 34 // Simultaneous calculation of A&S 9.2.9 and 9.2.10
Chris@16 35 // for use in A&S 9.2.5 and 9.2.6.
Chris@16 36 // This series is quick to evaluate, but divergent unless
Chris@16 37 // x is very large, in fact it's pretty hard to figure out
Chris@16 38 // with any degree of precision when this series actually
Chris@16 39 // *will* converge!! Consequently, we may just have to
Chris@16 40 // try it and see...
Chris@16 41 //
Chris@16 42 template <class T, class Policy>
Chris@16 43 bool hankel_PQ(T v, T x, T* p, T* q, const Policy& )
Chris@16 44 {
Chris@16 45 BOOST_MATH_STD_USING
Chris@16 46 T tolerance = 2 * policies::get_epsilon<T, Policy>();
Chris@16 47 *p = 1;
Chris@16 48 *q = 0;
Chris@16 49 T k = 1;
Chris@16 50 T z8 = 8 * x;
Chris@16 51 T sq = 1;
Chris@16 52 T mu = 4 * v * v;
Chris@16 53 T term = 1;
Chris@16 54 bool ok = true;
Chris@16 55 do
Chris@16 56 {
Chris@16 57 term *= (mu - sq * sq) / (k * z8);
Chris@16 58 *q += term;
Chris@16 59 k += 1;
Chris@16 60 sq += 2;
Chris@16 61 T mult = (sq * sq - mu) / (k * z8);
Chris@16 62 ok = fabs(mult) < 0.5f;
Chris@16 63 term *= mult;
Chris@16 64 *p += term;
Chris@16 65 k += 1;
Chris@16 66 sq += 2;
Chris@16 67 }
Chris@16 68 while((fabs(term) > tolerance * *p) && ok);
Chris@16 69 return ok;
Chris@16 70 }
Chris@16 71
Chris@16 72 // Calculate Y(v, x) and Y(v+1, x) by Temme's method, see
Chris@16 73 // Temme, Journal of Computational Physics, vol 21, 343 (1976)
Chris@16 74 template <typename T, typename Policy>
Chris@16 75 int temme_jy(T v, T x, T* Y, T* Y1, const Policy& pol)
Chris@16 76 {
Chris@16 77 T g, h, p, q, f, coef, sum, sum1, tolerance;
Chris@16 78 T a, d, e, sigma;
Chris@16 79 unsigned long k;
Chris@16 80
Chris@16 81 BOOST_MATH_STD_USING
Chris@16 82 using namespace boost::math::tools;
Chris@16 83 using namespace boost::math::constants;
Chris@16 84
Chris@16 85 BOOST_ASSERT(fabs(v) <= 0.5f); // precondition for using this routine
Chris@16 86
Chris@16 87 T gp = boost::math::tgamma1pm1(v, pol);
Chris@16 88 T gm = boost::math::tgamma1pm1(-v, pol);
Chris@16 89 T spv = boost::math::sin_pi(v, pol);
Chris@16 90 T spv2 = boost::math::sin_pi(v/2, pol);
Chris@16 91 T xp = pow(x/2, v);
Chris@16 92
Chris@16 93 a = log(x / 2);
Chris@16 94 sigma = -a * v;
Chris@16 95 d = abs(sigma) < tools::epsilon<T>() ?
Chris@16 96 T(1) : sinh(sigma) / sigma;
Chris@16 97 e = abs(v) < tools::epsilon<T>() ? T(v*pi<T>()*pi<T>() / 2)
Chris@16 98 : T(2 * spv2 * spv2 / v);
Chris@16 99
Chris@16 100 T g1 = (v == 0) ? T(-euler<T>()) : T((gp - gm) / ((1 + gp) * (1 + gm) * 2 * v));
Chris@16 101 T g2 = (2 + gp + gm) / ((1 + gp) * (1 + gm) * 2);
Chris@16 102 T vspv = (fabs(v) < tools::epsilon<T>()) ? T(1/constants::pi<T>()) : T(v / spv);
Chris@16 103 f = (g1 * cosh(sigma) - g2 * a * d) * 2 * vspv;
Chris@16 104
Chris@16 105 p = vspv / (xp * (1 + gm));
Chris@16 106 q = vspv * xp / (1 + gp);
Chris@16 107
Chris@16 108 g = f + e * q;
Chris@16 109 h = p;
Chris@16 110 coef = 1;
Chris@16 111 sum = coef * g;
Chris@16 112 sum1 = coef * h;
Chris@16 113
Chris@16 114 T v2 = v * v;
Chris@16 115 T coef_mult = -x * x / 4;
Chris@16 116
Chris@16 117 // series summation
Chris@16 118 tolerance = policies::get_epsilon<T, Policy>();
Chris@16 119 for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++)
Chris@16 120 {
Chris@16 121 f = (k * f + p + q) / (k*k - v2);
Chris@16 122 p /= k - v;
Chris@16 123 q /= k + v;
Chris@16 124 g = f + e * q;
Chris@16 125 h = p - k * g;
Chris@16 126 coef *= coef_mult / k;
Chris@16 127 sum += coef * g;
Chris@16 128 sum1 += coef * h;
Chris@16 129 if (abs(coef * g) < abs(sum) * tolerance)
Chris@16 130 {
Chris@16 131 break;
Chris@16 132 }
Chris@16 133 }
Chris@16 134 policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in temme_jy", k, pol);
Chris@16 135 *Y = -sum;
Chris@16 136 *Y1 = -2 * sum1 / x;
Chris@16 137
Chris@16 138 return 0;
Chris@16 139 }
Chris@16 140
Chris@16 141 // Evaluate continued fraction fv = J_(v+1) / J_v, see
Chris@16 142 // Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73
Chris@16 143 template <typename T, typename Policy>
Chris@16 144 int CF1_jy(T v, T x, T* fv, int* sign, const Policy& pol)
Chris@16 145 {
Chris@16 146 T C, D, f, a, b, delta, tiny, tolerance;
Chris@16 147 unsigned long k;
Chris@16 148 int s = 1;
Chris@16 149
Chris@16 150 BOOST_MATH_STD_USING
Chris@16 151
Chris@16 152 // |x| <= |v|, CF1_jy converges rapidly
Chris@16 153 // |x| > |v|, CF1_jy needs O(|x|) iterations to converge
Chris@16 154
Chris@16 155 // modified Lentz's method, see
Chris@16 156 // Lentz, Applied Optics, vol 15, 668 (1976)
Chris@16 157 tolerance = 2 * policies::get_epsilon<T, Policy>();;
Chris@16 158 tiny = sqrt(tools::min_value<T>());
Chris@16 159 C = f = tiny; // b0 = 0, replace with tiny
Chris@16 160 D = 0;
Chris@16 161 for (k = 1; k < policies::get_max_series_iterations<Policy>() * 100; k++)
Chris@16 162 {
Chris@16 163 a = -1;
Chris@16 164 b = 2 * (v + k) / x;
Chris@16 165 C = b + a / C;
Chris@16 166 D = b + a * D;
Chris@16 167 if (C == 0) { C = tiny; }
Chris@16 168 if (D == 0) { D = tiny; }
Chris@16 169 D = 1 / D;
Chris@16 170 delta = C * D;
Chris@16 171 f *= delta;
Chris@16 172 if (D < 0) { s = -s; }
Chris@16 173 if (abs(delta - 1) < tolerance)
Chris@16 174 { break; }
Chris@16 175 }
Chris@16 176 policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF1_jy", k / 100, pol);
Chris@16 177 *fv = -f;
Chris@16 178 *sign = s; // sign of denominator
Chris@16 179
Chris@16 180 return 0;
Chris@16 181 }
Chris@16 182 //
Chris@16 183 // This algorithm was originally written by Xiaogang Zhang
Chris@16 184 // using std::complex to perform the complex arithmetic.
Chris@16 185 // However, that turns out to 10x or more slower than using
Chris@16 186 // all real-valued arithmetic, so it's been rewritten using
Chris@16 187 // real values only.
Chris@16 188 //
Chris@16 189 template <typename T, typename Policy>
Chris@16 190 int CF2_jy(T v, T x, T* p, T* q, const Policy& pol)
Chris@16 191 {
Chris@16 192 BOOST_MATH_STD_USING
Chris@16 193
Chris@16 194 T Cr, Ci, Dr, Di, fr, fi, a, br, bi, delta_r, delta_i, temp;
Chris@16 195 T tiny;
Chris@16 196 unsigned long k;
Chris@16 197
Chris@16 198 // |x| >= |v|, CF2_jy converges rapidly
Chris@16 199 // |x| -> 0, CF2_jy fails to converge
Chris@16 200 BOOST_ASSERT(fabs(x) > 1);
Chris@16 201
Chris@16 202 // modified Lentz's method, complex numbers involved, see
Chris@16 203 // Lentz, Applied Optics, vol 15, 668 (1976)
Chris@16 204 T tolerance = 2 * policies::get_epsilon<T, Policy>();
Chris@16 205 tiny = sqrt(tools::min_value<T>());
Chris@16 206 Cr = fr = -0.5f / x;
Chris@16 207 Ci = fi = 1;
Chris@16 208 //Dr = Di = 0;
Chris@16 209 T v2 = v * v;
Chris@16 210 a = (0.25f - v2) / x; // Note complex this one time only!
Chris@16 211 br = 2 * x;
Chris@16 212 bi = 2;
Chris@16 213 temp = Cr * Cr + 1;
Chris@16 214 Ci = bi + a * Cr / temp;
Chris@16 215 Cr = br + a / temp;
Chris@16 216 Dr = br;
Chris@16 217 Di = bi;
Chris@16 218 if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; }
Chris@16 219 if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; }
Chris@16 220 temp = Dr * Dr + Di * Di;
Chris@16 221 Dr = Dr / temp;
Chris@16 222 Di = -Di / temp;
Chris@16 223 delta_r = Cr * Dr - Ci * Di;
Chris@16 224 delta_i = Ci * Dr + Cr * Di;
Chris@16 225 temp = fr;
Chris@16 226 fr = temp * delta_r - fi * delta_i;
Chris@16 227 fi = temp * delta_i + fi * delta_r;
Chris@16 228 for (k = 2; k < policies::get_max_series_iterations<Policy>(); k++)
Chris@16 229 {
Chris@16 230 a = k - 0.5f;
Chris@16 231 a *= a;
Chris@16 232 a -= v2;
Chris@16 233 bi += 2;
Chris@16 234 temp = Cr * Cr + Ci * Ci;
Chris@16 235 Cr = br + a * Cr / temp;
Chris@16 236 Ci = bi - a * Ci / temp;
Chris@16 237 Dr = br + a * Dr;
Chris@16 238 Di = bi + a * Di;
Chris@16 239 if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; }
Chris@16 240 if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; }
Chris@16 241 temp = Dr * Dr + Di * Di;
Chris@16 242 Dr = Dr / temp;
Chris@16 243 Di = -Di / temp;
Chris@16 244 delta_r = Cr * Dr - Ci * Di;
Chris@16 245 delta_i = Ci * Dr + Cr * Di;
Chris@16 246 temp = fr;
Chris@16 247 fr = temp * delta_r - fi * delta_i;
Chris@16 248 fi = temp * delta_i + fi * delta_r;
Chris@16 249 if (fabs(delta_r - 1) + fabs(delta_i) < tolerance)
Chris@16 250 break;
Chris@16 251 }
Chris@16 252 policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF2_jy", k, pol);
Chris@16 253 *p = fr;
Chris@16 254 *q = fi;
Chris@16 255
Chris@16 256 return 0;
Chris@16 257 }
Chris@16 258
Chris@16 259 static const int need_j = 1;
Chris@16 260 static const int need_y = 2;
Chris@16 261
Chris@16 262 // Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see
Chris@16 263 // Barnett et al, Computer Physics Communications, vol 8, 377 (1974)
Chris@16 264 template <typename T, typename Policy>
Chris@16 265 int bessel_jy(T v, T x, T* J, T* Y, int kind, const Policy& pol)
Chris@16 266 {
Chris@16 267 BOOST_ASSERT(x >= 0);
Chris@16 268
Chris@16 269 T u, Jv, Ju, Yv, Yv1, Yu, Yu1(0), fv, fu;
Chris@16 270 T W, p, q, gamma, current, prev, next;
Chris@16 271 bool reflect = false;
Chris@16 272 unsigned n, k;
Chris@16 273 int s;
Chris@16 274 int org_kind = kind;
Chris@16 275 T cp = 0;
Chris@16 276 T sp = 0;
Chris@16 277
Chris@16 278 static const char* function = "boost::math::bessel_jy<%1%>(%1%,%1%)";
Chris@16 279
Chris@16 280 BOOST_MATH_STD_USING
Chris@16 281 using namespace boost::math::tools;
Chris@16 282 using namespace boost::math::constants;
Chris@16 283
Chris@16 284 if (v < 0)
Chris@16 285 {
Chris@16 286 reflect = true;
Chris@16 287 v = -v; // v is non-negative from here
Chris@16 288 }
Chris@101 289 if (v > static_cast<T>((std::numeric_limits<int>::max)()))
Chris@101 290 {
Chris@101 291 *J = *Y = policies::raise_evaluation_error<T>(function, "Order of Bessel function is too large to evaluate: got %1%", v, pol);
Chris@101 292 return 1;
Chris@101 293 }
Chris@16 294 n = iround(v, pol);
Chris@16 295 u = v - n; // -1/2 <= u < 1/2
Chris@16 296
Chris@16 297 if(reflect)
Chris@16 298 {
Chris@16 299 T z = (u + n % 2);
Chris@16 300 cp = boost::math::cos_pi(z, pol);
Chris@16 301 sp = boost::math::sin_pi(z, pol);
Chris@16 302 if(u != 0)
Chris@16 303 kind = need_j|need_y; // need both for reflection formula
Chris@16 304 }
Chris@16 305
Chris@16 306 if(x == 0)
Chris@16 307 {
Chris@16 308 if(v == 0)
Chris@16 309 *J = 1;
Chris@16 310 else if((u == 0) || !reflect)
Chris@16 311 *J = 0;
Chris@16 312 else if(kind & need_j)
Chris@16 313 *J = policies::raise_domain_error<T>(function, "Value of Bessel J_v(x) is complex-infinity at %1%", x, pol); // complex infinity
Chris@16 314 else
Chris@16 315 *J = std::numeric_limits<T>::quiet_NaN(); // any value will do, not using J.
Chris@16 316
Chris@16 317 if((kind & need_y) == 0)
Chris@16 318 *Y = std::numeric_limits<T>::quiet_NaN(); // any value will do, not using Y.
Chris@16 319 else if(v == 0)
Chris@16 320 *Y = -policies::raise_overflow_error<T>(function, 0, pol);
Chris@16 321 else
Chris@16 322 *Y = policies::raise_domain_error<T>(function, "Value of Bessel Y_v(x) is complex-infinity at %1%", x, pol); // complex infinity
Chris@16 323 return 1;
Chris@16 324 }
Chris@16 325
Chris@16 326 // x is positive until reflection
Chris@16 327 W = T(2) / (x * pi<T>()); // Wronskian
Chris@16 328 T Yv_scale = 1;
Chris@16 329 if(((kind & need_y) == 0) && ((x < 1) || (v > x * x / 4) || (x < 5)))
Chris@16 330 {
Chris@16 331 //
Chris@16 332 // This series will actually converge rapidly for all small
Chris@16 333 // x - say up to x < 20 - but the first few terms are large
Chris@16 334 // and divergent which leads to large errors :-(
Chris@16 335 //
Chris@16 336 Jv = bessel_j_small_z_series(v, x, pol);
Chris@16 337 Yv = std::numeric_limits<T>::quiet_NaN();
Chris@16 338 }
Chris@16 339 else if((x < 1) && (u != 0) && (log(policies::get_epsilon<T, Policy>() / 2) > v * log((x/2) * (x/2) / v)))
Chris@16 340 {
Chris@16 341 // Evaluate using series representations.
Chris@16 342 // This is particularly important for x << v as in this
Chris@16 343 // area temme_jy may be slow to converge, if it converges at all.
Chris@16 344 // Requires x is not an integer.
Chris@16 345 if(kind&need_j)
Chris@16 346 Jv = bessel_j_small_z_series(v, x, pol);
Chris@16 347 else
Chris@16 348 Jv = std::numeric_limits<T>::quiet_NaN();
Chris@16 349 if((org_kind&need_y && (!reflect || (cp != 0)))
Chris@16 350 || (org_kind & need_j && (reflect && (sp != 0))))
Chris@16 351 {
Chris@16 352 // Only calculate if we need it, and if the reflection formula will actually use it:
Chris@16 353 Yv = bessel_y_small_z_series(v, x, &Yv_scale, pol);
Chris@16 354 }
Chris@16 355 else
Chris@16 356 Yv = std::numeric_limits<T>::quiet_NaN();
Chris@16 357 }
Chris@16 358 else if((u == 0) && (x < policies::get_epsilon<T, Policy>()))
Chris@16 359 {
Chris@16 360 // Truncated series evaluation for small x and v an integer,
Chris@16 361 // much quicker in this area than temme_jy below.
Chris@16 362 if(kind&need_j)
Chris@16 363 Jv = bessel_j_small_z_series(v, x, pol);
Chris@16 364 else
Chris@16 365 Jv = std::numeric_limits<T>::quiet_NaN();
Chris@16 366 if((org_kind&need_y && (!reflect || (cp != 0)))
Chris@16 367 || (org_kind & need_j && (reflect && (sp != 0))))
Chris@16 368 {
Chris@16 369 // Only calculate if we need it, and if the reflection formula will actually use it:
Chris@16 370 Yv = bessel_yn_small_z(n, x, &Yv_scale, pol);
Chris@16 371 }
Chris@16 372 else
Chris@16 373 Yv = std::numeric_limits<T>::quiet_NaN();
Chris@16 374 }
Chris@16 375 else if(asymptotic_bessel_large_x_limit(v, x))
Chris@16 376 {
Chris@16 377 if(kind&need_y)
Chris@16 378 {
Chris@16 379 Yv = asymptotic_bessel_y_large_x_2(v, x);
Chris@16 380 }
Chris@16 381 else
Chris@16 382 Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
Chris@16 383 if(kind&need_j)
Chris@16 384 {
Chris@16 385 Jv = asymptotic_bessel_j_large_x_2(v, x);
Chris@16 386 }
Chris@16 387 else
Chris@16 388 Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
Chris@16 389 }
Chris@16 390 else if((x > 8) && hankel_PQ(v, x, &p, &q, pol))
Chris@16 391 {
Chris@16 392 //
Chris@16 393 // Hankel approximation: note that this method works best when x
Chris@16 394 // is large, but in that case we end up calculating sines and cosines
Chris@16 395 // of large values, with horrendous resulting accuracy. It is fast though
Chris@16 396 // when it works....
Chris@16 397 //
Chris@16 398 // Normally we calculate sin/cos(chi) where:
Chris@16 399 //
Chris@16 400 // chi = x - fmod(T(v / 2 + 0.25f), T(2)) * boost::math::constants::pi<T>();
Chris@16 401 //
Chris@16 402 // But this introduces large errors, so use sin/cos addition formulae to
Chris@16 403 // improve accuracy:
Chris@16 404 //
Chris@16 405 T mod_v = fmod(T(v / 2 + 0.25f), T(2));
Chris@16 406 T sx = sin(x);
Chris@16 407 T cx = cos(x);
Chris@16 408 T sv = sin_pi(mod_v);
Chris@16 409 T cv = cos_pi(mod_v);
Chris@16 410
Chris@16 411 T sc = sx * cv - sv * cx; // == sin(chi);
Chris@16 412 T cc = cx * cv + sx * sv; // == cos(chi);
Chris@16 413 T chi = boost::math::constants::root_two<T>() / (boost::math::constants::root_pi<T>() * sqrt(x)); //sqrt(2 / (boost::math::constants::pi<T>() * x));
Chris@16 414 Yv = chi * (p * sc + q * cc);
Chris@16 415 Jv = chi * (p * cc - q * sc);
Chris@16 416 }
Chris@16 417 else if (x <= 2) // x in (0, 2]
Chris@16 418 {
Chris@16 419 if(temme_jy(u, x, &Yu, &Yu1, pol)) // Temme series
Chris@16 420 {
Chris@16 421 // domain error:
Chris@16 422 *J = *Y = Yu;
Chris@16 423 return 1;
Chris@16 424 }
Chris@16 425 prev = Yu;
Chris@16 426 current = Yu1;
Chris@16 427 T scale = 1;
Chris@16 428 policies::check_series_iterations<T>(function, n, pol);
Chris@16 429 for (k = 1; k <= n; k++) // forward recurrence for Y
Chris@16 430 {
Chris@16 431 T fact = 2 * (u + k) / x;
Chris@16 432 if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current))
Chris@16 433 {
Chris@16 434 scale /= current;
Chris@16 435 prev /= current;
Chris@16 436 current = 1;
Chris@16 437 }
Chris@16 438 next = fact * current - prev;
Chris@16 439 prev = current;
Chris@16 440 current = next;
Chris@16 441 }
Chris@16 442 Yv = prev;
Chris@16 443 Yv1 = current;
Chris@16 444 if(kind&need_j)
Chris@16 445 {
Chris@16 446 CF1_jy(v, x, &fv, &s, pol); // continued fraction CF1_jy
Chris@16 447 Jv = scale * W / (Yv * fv - Yv1); // Wronskian relation
Chris@16 448 }
Chris@16 449 else
Chris@16 450 Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
Chris@16 451 Yv_scale = scale;
Chris@16 452 }
Chris@16 453 else // x in (2, \infty)
Chris@16 454 {
Chris@16 455 // Get Y(u, x):
Chris@16 456
Chris@16 457 T ratio;
Chris@16 458 CF1_jy(v, x, &fv, &s, pol);
Chris@16 459 // tiny initial value to prevent overflow
Chris@16 460 T init = sqrt(tools::min_value<T>());
Chris@101 461 BOOST_MATH_INSTRUMENT_VARIABLE(init);
Chris@16 462 prev = fv * s * init;
Chris@16 463 current = s * init;
Chris@16 464 if(v < max_factorial<T>::value)
Chris@16 465 {
Chris@16 466 policies::check_series_iterations<T>(function, n, pol);
Chris@16 467 for (k = n; k > 0; k--) // backward recurrence for J
Chris@16 468 {
Chris@16 469 next = 2 * (u + k) * current / x - prev;
Chris@16 470 prev = current;
Chris@16 471 current = next;
Chris@16 472 }
Chris@16 473 ratio = (s * init) / current; // scaling ratio
Chris@16 474 // can also call CF1_jy() to get fu, not much difference in precision
Chris@16 475 fu = prev / current;
Chris@16 476 }
Chris@16 477 else
Chris@16 478 {
Chris@16 479 //
Chris@16 480 // When v is large we may get overflow in this calculation
Chris@16 481 // leading to NaN's and other nasty surprises:
Chris@16 482 //
Chris@16 483 policies::check_series_iterations<T>(function, n, pol);
Chris@16 484 bool over = false;
Chris@16 485 for (k = n; k > 0; k--) // backward recurrence for J
Chris@16 486 {
Chris@16 487 T t = 2 * (u + k) / x;
Chris@16 488 if((t > 1) && (tools::max_value<T>() / t < current))
Chris@16 489 {
Chris@16 490 over = true;
Chris@16 491 break;
Chris@16 492 }
Chris@16 493 next = t * current - prev;
Chris@16 494 prev = current;
Chris@16 495 current = next;
Chris@16 496 }
Chris@16 497 if(!over)
Chris@16 498 {
Chris@16 499 ratio = (s * init) / current; // scaling ratio
Chris@16 500 // can also call CF1_jy() to get fu, not much difference in precision
Chris@16 501 fu = prev / current;
Chris@16 502 }
Chris@16 503 else
Chris@16 504 {
Chris@16 505 ratio = 0;
Chris@16 506 fu = 1;
Chris@16 507 }
Chris@16 508 }
Chris@16 509 CF2_jy(u, x, &p, &q, pol); // continued fraction CF2_jy
Chris@16 510 T t = u / x - fu; // t = J'/J
Chris@16 511 gamma = (p - t) / q;
Chris@16 512 //
Chris@16 513 // We can't allow gamma to cancel out to zero competely as it messes up
Chris@16 514 // the subsequent logic. So pretend that one bit didn't cancel out
Chris@16 515 // and set to a suitably small value. The only test case we've been able to
Chris@16 516 // find for this, is when v = 8.5 and x = 4*PI.
Chris@16 517 //
Chris@16 518 if(gamma == 0)
Chris@16 519 {
Chris@16 520 gamma = u * tools::epsilon<T>() / x;
Chris@16 521 }
Chris@101 522 BOOST_MATH_INSTRUMENT_VARIABLE(current);
Chris@101 523 BOOST_MATH_INSTRUMENT_VARIABLE(W);
Chris@101 524 BOOST_MATH_INSTRUMENT_VARIABLE(q);
Chris@101 525 BOOST_MATH_INSTRUMENT_VARIABLE(gamma);
Chris@101 526 BOOST_MATH_INSTRUMENT_VARIABLE(p);
Chris@101 527 BOOST_MATH_INSTRUMENT_VARIABLE(t);
Chris@16 528 Ju = sign(current) * sqrt(W / (q + gamma * (p - t)));
Chris@101 529 BOOST_MATH_INSTRUMENT_VARIABLE(Ju);
Chris@16 530
Chris@16 531 Jv = Ju * ratio; // normalization
Chris@16 532
Chris@16 533 Yu = gamma * Ju;
Chris@16 534 Yu1 = Yu * (u/x - p - q/gamma);
Chris@16 535
Chris@16 536 if(kind&need_y)
Chris@16 537 {
Chris@16 538 // compute Y:
Chris@16 539 prev = Yu;
Chris@16 540 current = Yu1;
Chris@16 541 policies::check_series_iterations<T>(function, n, pol);
Chris@16 542 for (k = 1; k <= n; k++) // forward recurrence for Y
Chris@16 543 {
Chris@16 544 T fact = 2 * (u + k) / x;
Chris@16 545 if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current))
Chris@16 546 {
Chris@16 547 prev /= current;
Chris@16 548 Yv_scale /= current;
Chris@16 549 current = 1;
Chris@16 550 }
Chris@16 551 next = fact * current - prev;
Chris@16 552 prev = current;
Chris@16 553 current = next;
Chris@16 554 }
Chris@16 555 Yv = prev;
Chris@16 556 }
Chris@16 557 else
Chris@16 558 Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
Chris@16 559 }
Chris@16 560
Chris@16 561 if (reflect)
Chris@16 562 {
Chris@16 563 if((sp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(sp * Yv)))
Chris@16 564 *J = org_kind & need_j ? T(-sign(sp) * sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
Chris@16 565 else
Chris@16 566 *J = cp * Jv - (sp == 0 ? T(0) : T((sp * Yv) / Yv_scale)); // reflection formula
Chris@16 567 if((cp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(cp * Yv)))
Chris@16 568 *Y = org_kind & need_y ? T(-sign(cp) * sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
Chris@16 569 else
Chris@16 570 *Y = (sp != 0 ? sp * Jv : T(0)) + (cp == 0 ? T(0) : T((cp * Yv) / Yv_scale));
Chris@16 571 }
Chris@16 572 else
Chris@16 573 {
Chris@16 574 *J = Jv;
Chris@16 575 if(tools::max_value<T>() * fabs(Yv_scale) < fabs(Yv))
Chris@16 576 *Y = org_kind & need_y ? T(sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
Chris@16 577 else
Chris@16 578 *Y = Yv / Yv_scale;
Chris@16 579 }
Chris@16 580
Chris@16 581 return 0;
Chris@16 582 }
Chris@16 583
Chris@16 584 } // namespace detail
Chris@16 585
Chris@16 586 }} // namespaces
Chris@16 587
Chris@16 588 #endif // BOOST_MATH_BESSEL_JY_HPP
Chris@16 589