Chris@16
|
1 // Copyright (c) 2006 Xiaogang Zhang
|
Chris@16
|
2 // Use, modification and distribution are subject to the
|
Chris@16
|
3 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5
|
Chris@16
|
6 #ifndef BOOST_MATH_BESSEL_J1_HPP
|
Chris@16
|
7 #define BOOST_MATH_BESSEL_J1_HPP
|
Chris@16
|
8
|
Chris@16
|
9 #ifdef _MSC_VER
|
Chris@16
|
10 #pragma once
|
Chris@16
|
11 #endif
|
Chris@16
|
12
|
Chris@16
|
13 #include <boost/math/constants/constants.hpp>
|
Chris@16
|
14 #include <boost/math/tools/rational.hpp>
|
Chris@16
|
15 #include <boost/math/tools/big_constant.hpp>
|
Chris@16
|
16 #include <boost/assert.hpp>
|
Chris@16
|
17
|
Chris@16
|
18 // Bessel function of the first kind of order one
|
Chris@16
|
19 // x <= 8, minimax rational approximations on root-bracketing intervals
|
Chris@16
|
20 // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
|
Chris@16
|
21
|
Chris@16
|
22 namespace boost { namespace math{ namespace detail{
|
Chris@16
|
23
|
Chris@16
|
24 template <typename T>
|
Chris@16
|
25 T bessel_j1(T x);
|
Chris@16
|
26
|
Chris@16
|
27 template <class T>
|
Chris@16
|
28 struct bessel_j1_initializer
|
Chris@16
|
29 {
|
Chris@16
|
30 struct init
|
Chris@16
|
31 {
|
Chris@16
|
32 init()
|
Chris@16
|
33 {
|
Chris@16
|
34 do_init();
|
Chris@16
|
35 }
|
Chris@16
|
36 static void do_init()
|
Chris@16
|
37 {
|
Chris@16
|
38 bessel_j1(T(1));
|
Chris@16
|
39 }
|
Chris@16
|
40 void force_instantiate()const{}
|
Chris@16
|
41 };
|
Chris@16
|
42 static const init initializer;
|
Chris@16
|
43 static void force_instantiate()
|
Chris@16
|
44 {
|
Chris@16
|
45 initializer.force_instantiate();
|
Chris@16
|
46 }
|
Chris@16
|
47 };
|
Chris@16
|
48
|
Chris@16
|
49 template <class T>
|
Chris@16
|
50 const typename bessel_j1_initializer<T>::init bessel_j1_initializer<T>::initializer;
|
Chris@16
|
51
|
Chris@16
|
52 template <typename T>
|
Chris@16
|
53 T bessel_j1(T x)
|
Chris@16
|
54 {
|
Chris@16
|
55 bessel_j1_initializer<T>::force_instantiate();
|
Chris@16
|
56
|
Chris@16
|
57 static const T P1[] = {
|
Chris@16
|
58 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4258509801366645672e+11)),
|
Chris@16
|
59 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6781041261492395835e+09)),
|
Chris@16
|
60 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1548696764841276794e+08)),
|
Chris@16
|
61 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.8062904098958257677e+05)),
|
Chris@16
|
62 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4615792982775076130e+03)),
|
Chris@16
|
63 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0650724020080236441e+01)),
|
Chris@16
|
64 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0767857011487300348e-02))
|
Chris@16
|
65 };
|
Chris@16
|
66 static const T Q1[] = {
|
Chris@16
|
67 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1868604460820175290e+12)),
|
Chris@16
|
68 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.2091902282580133541e+10)),
|
Chris@16
|
69 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0228375140097033958e+08)),
|
Chris@16
|
70 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.9117614494174794095e+05)),
|
Chris@16
|
71 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0742272239517380498e+03)),
|
Chris@16
|
72 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
|
Chris@16
|
73 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
|
Chris@16
|
74 };
|
Chris@16
|
75 static const T P2[] = {
|
Chris@16
|
76 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7527881995806511112e+16)),
|
Chris@16
|
77 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.6608531731299018674e+15)),
|
Chris@16
|
78 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6658018905416665164e+13)),
|
Chris@16
|
79 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5580665670910619166e+11)),
|
Chris@16
|
80 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8113931269860667829e+09)),
|
Chris@16
|
81 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.0793266148011179143e+06)),
|
Chris@16
|
82 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.5023342220781607561e+03)),
|
Chris@16
|
83 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6179191852758252278e+00))
|
Chris@16
|
84 };
|
Chris@16
|
85 static const T Q2[] = {
|
Chris@16
|
86 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7253905888447681194e+18)),
|
Chris@16
|
87 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7128800897135812012e+16)),
|
Chris@16
|
88 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.4899346165481429307e+13)),
|
Chris@16
|
89 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7622777286244082666e+11)),
|
Chris@16
|
90 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4872502899596389593e+08)),
|
Chris@16
|
91 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1267125065029138050e+06)),
|
Chris@16
|
92 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3886978985861357615e+03)),
|
Chris@16
|
93 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
|
Chris@16
|
94 };
|
Chris@16
|
95 static const T PC[] = {
|
Chris@16
|
96 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)),
|
Chris@16
|
97 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)),
|
Chris@16
|
98 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)),
|
Chris@16
|
99 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)),
|
Chris@16
|
100 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)),
|
Chris@16
|
101 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)),
|
Chris@16
|
102 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
|
Chris@16
|
103 };
|
Chris@16
|
104 static const T QC[] = {
|
Chris@16
|
105 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)),
|
Chris@16
|
106 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)),
|
Chris@16
|
107 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)),
|
Chris@16
|
108 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)),
|
Chris@16
|
109 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)),
|
Chris@16
|
110 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)),
|
Chris@16
|
111 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
|
Chris@16
|
112 };
|
Chris@16
|
113 static const T PS[] = {
|
Chris@16
|
114 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)),
|
Chris@16
|
115 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)),
|
Chris@16
|
116 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)),
|
Chris@16
|
117 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)),
|
Chris@16
|
118 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)),
|
Chris@16
|
119 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)),
|
Chris@16
|
120 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
|
Chris@16
|
121 };
|
Chris@16
|
122 static const T QS[] = {
|
Chris@16
|
123 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)),
|
Chris@16
|
124 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)),
|
Chris@16
|
125 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)),
|
Chris@16
|
126 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)),
|
Chris@16
|
127 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)),
|
Chris@16
|
128 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)),
|
Chris@16
|
129 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
|
Chris@16
|
130 };
|
Chris@16
|
131 static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8317059702075123156e+00)),
|
Chris@16
|
132 x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0155866698156187535e+00)),
|
Chris@16
|
133 x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.810e+02)),
|
Chris@16
|
134 x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2527979248768438556e-04)),
|
Chris@16
|
135 x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7960e+03)),
|
Chris@16
|
136 x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8330184381246462950e-05));
|
Chris@16
|
137
|
Chris@16
|
138 T value, factor, r, rc, rs, w;
|
Chris@16
|
139
|
Chris@16
|
140 BOOST_MATH_STD_USING
|
Chris@16
|
141 using namespace boost::math::tools;
|
Chris@16
|
142 using namespace boost::math::constants;
|
Chris@16
|
143
|
Chris@16
|
144 w = abs(x);
|
Chris@16
|
145 if (x == 0)
|
Chris@16
|
146 {
|
Chris@16
|
147 return static_cast<T>(0);
|
Chris@16
|
148 }
|
Chris@16
|
149 if (w <= 4) // w in (0, 4]
|
Chris@16
|
150 {
|
Chris@16
|
151 T y = x * x;
|
Chris@16
|
152 BOOST_ASSERT(sizeof(P1) == sizeof(Q1));
|
Chris@16
|
153 r = evaluate_rational(P1, Q1, y);
|
Chris@16
|
154 factor = w * (w + x1) * ((w - x11/256) - x12);
|
Chris@16
|
155 value = factor * r;
|
Chris@16
|
156 }
|
Chris@16
|
157 else if (w <= 8) // w in (4, 8]
|
Chris@16
|
158 {
|
Chris@16
|
159 T y = x * x;
|
Chris@16
|
160 BOOST_ASSERT(sizeof(P2) == sizeof(Q2));
|
Chris@16
|
161 r = evaluate_rational(P2, Q2, y);
|
Chris@16
|
162 factor = w * (w + x2) * ((w - x21/256) - x22);
|
Chris@16
|
163 value = factor * r;
|
Chris@16
|
164 }
|
Chris@16
|
165 else // w in (8, \infty)
|
Chris@16
|
166 {
|
Chris@16
|
167 T y = 8 / w;
|
Chris@16
|
168 T y2 = y * y;
|
Chris@16
|
169 BOOST_ASSERT(sizeof(PC) == sizeof(QC));
|
Chris@16
|
170 BOOST_ASSERT(sizeof(PS) == sizeof(QS));
|
Chris@16
|
171 rc = evaluate_rational(PC, QC, y2);
|
Chris@16
|
172 rs = evaluate_rational(PS, QS, y2);
|
Chris@16
|
173 factor = 1 / (sqrt(w) * constants::root_pi<T>());
|
Chris@16
|
174 //
|
Chris@16
|
175 // What follows is really just:
|
Chris@16
|
176 //
|
Chris@16
|
177 // T z = w - 0.75f * pi<T>();
|
Chris@16
|
178 // value = factor * (rc * cos(z) - y * rs * sin(z));
|
Chris@16
|
179 //
|
Chris@16
|
180 // but using the sin/cos addition rules plus constants
|
Chris@16
|
181 // for the values of sin/cos of 3PI/4 which then cancel
|
Chris@16
|
182 // out with corresponding terms in "factor".
|
Chris@16
|
183 //
|
Chris@16
|
184 T sx = sin(x);
|
Chris@16
|
185 T cx = cos(x);
|
Chris@16
|
186 value = factor * (rc * (sx - cx) + y * rs * (sx + cx));
|
Chris@16
|
187 }
|
Chris@16
|
188
|
Chris@16
|
189 if (x < 0)
|
Chris@16
|
190 {
|
Chris@16
|
191 value *= -1; // odd function
|
Chris@16
|
192 }
|
Chris@16
|
193 return value;
|
Chris@16
|
194 }
|
Chris@16
|
195
|
Chris@16
|
196 }}} // namespaces
|
Chris@16
|
197
|
Chris@16
|
198 #endif // BOOST_MATH_BESSEL_J1_HPP
|
Chris@16
|
199
|