annotate DEPENDENCIES/generic/include/boost/math/special_functions/detail/bessel_j0.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 // Copyright (c) 2006 Xiaogang Zhang
Chris@16 2 // Use, modification and distribution are subject to the
Chris@16 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5
Chris@16 6 #ifndef BOOST_MATH_BESSEL_J0_HPP
Chris@16 7 #define BOOST_MATH_BESSEL_J0_HPP
Chris@16 8
Chris@16 9 #ifdef _MSC_VER
Chris@16 10 #pragma once
Chris@16 11 #endif
Chris@16 12
Chris@16 13 #include <boost/math/constants/constants.hpp>
Chris@16 14 #include <boost/math/tools/rational.hpp>
Chris@16 15 #include <boost/math/tools/big_constant.hpp>
Chris@16 16 #include <boost/assert.hpp>
Chris@16 17
Chris@16 18 // Bessel function of the first kind of order zero
Chris@16 19 // x <= 8, minimax rational approximations on root-bracketing intervals
Chris@16 20 // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
Chris@16 21
Chris@16 22 namespace boost { namespace math { namespace detail{
Chris@16 23
Chris@16 24 template <typename T>
Chris@16 25 T bessel_j0(T x);
Chris@16 26
Chris@16 27 template <class T>
Chris@16 28 struct bessel_j0_initializer
Chris@16 29 {
Chris@16 30 struct init
Chris@16 31 {
Chris@16 32 init()
Chris@16 33 {
Chris@16 34 do_init();
Chris@16 35 }
Chris@16 36 static void do_init()
Chris@16 37 {
Chris@16 38 bessel_j0(T(1));
Chris@16 39 }
Chris@16 40 void force_instantiate()const{}
Chris@16 41 };
Chris@16 42 static const init initializer;
Chris@16 43 static void force_instantiate()
Chris@16 44 {
Chris@16 45 initializer.force_instantiate();
Chris@16 46 }
Chris@16 47 };
Chris@16 48
Chris@16 49 template <class T>
Chris@16 50 const typename bessel_j0_initializer<T>::init bessel_j0_initializer<T>::initializer;
Chris@16 51
Chris@16 52 template <typename T>
Chris@16 53 T bessel_j0(T x)
Chris@16 54 {
Chris@16 55 bessel_j0_initializer<T>::force_instantiate();
Chris@16 56
Chris@16 57 static const T P1[] = {
Chris@16 58 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.1298668500990866786e+11)),
Chris@16 59 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7282507878605942706e+10)),
Chris@16 60 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.2140700423540120665e+08)),
Chris@16 61 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6302997904833794242e+06)),
Chris@16 62 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6629814655107086448e+04)),
Chris@16 63 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0344222815443188943e+02)),
Chris@16 64 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2117036164593528341e-01))
Chris@16 65 };
Chris@16 66 static const T Q1[] = {
Chris@16 67 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3883787996332290397e+12)),
Chris@16 68 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.6328198300859648632e+10)),
Chris@16 69 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3985097372263433271e+08)),
Chris@16 70 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.5612696224219938200e+05)),
Chris@16 71 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.3614022392337710626e+02)),
Chris@16 72 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
Chris@16 73 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
Chris@16 74 };
Chris@16 75 static const T P2[] = {
Chris@16 76 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8319397969392084011e+03)),
Chris@16 77 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2254078161378989535e+04)),
Chris@16 78 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.2879702464464618998e+03)),
Chris@16 79 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0341910641583726701e+04)),
Chris@16 80 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1725046279757103576e+04)),
Chris@16 81 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4176707025325087628e+03)),
Chris@16 82 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4321196680624245801e+02)),
Chris@16 83 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8591703355916499363e+01))
Chris@16 84 };
Chris@16 85 static const T Q2[] = {
Chris@16 86 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.5783478026152301072e+05)),
Chris@16 87 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4599102262586308984e+05)),
Chris@16 88 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4055062591169562211e+04)),
Chris@16 89 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8680990008359188352e+04)),
Chris@16 90 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9458766545509337327e+03)),
Chris@16 91 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3307310774649071172e+02)),
Chris@16 92 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5258076240801555057e+01)),
Chris@16 93 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
Chris@16 94 };
Chris@16 95 static const T PC[] = {
Chris@16 96 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)),
Chris@16 97 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)),
Chris@16 98 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)),
Chris@16 99 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)),
Chris@16 100 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)),
Chris@16 101 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01))
Chris@16 102 };
Chris@16 103 static const T QC[] = {
Chris@16 104 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)),
Chris@16 105 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)),
Chris@16 106 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)),
Chris@16 107 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)),
Chris@16 108 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)),
Chris@16 109 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
Chris@16 110 };
Chris@16 111 static const T PS[] = {
Chris@16 112 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)),
Chris@16 113 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)),
Chris@16 114 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)),
Chris@16 115 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)),
Chris@16 116 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)),
Chris@16 117 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03))
Chris@16 118 };
Chris@16 119 static const T QS[] = {
Chris@16 120 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)),
Chris@16 121 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)),
Chris@16 122 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)),
Chris@16 123 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)),
Chris@16 124 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)),
Chris@16 125 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
Chris@16 126 };
Chris@16 127 static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4048255576957727686e+00)),
Chris@16 128 x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5200781102863106496e+00)),
Chris@16 129 x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.160e+02)),
Chris@16 130 x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.42444230422723137837e-03)),
Chris@16 131 x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4130e+03)),
Chris@16 132 x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.46860286310649596604e-04));
Chris@16 133
Chris@16 134 T value, factor, r, rc, rs;
Chris@16 135
Chris@16 136 BOOST_MATH_STD_USING
Chris@16 137 using namespace boost::math::tools;
Chris@16 138 using namespace boost::math::constants;
Chris@16 139
Chris@16 140 if (x < 0)
Chris@16 141 {
Chris@16 142 x = -x; // even function
Chris@16 143 }
Chris@16 144 if (x == 0)
Chris@16 145 {
Chris@16 146 return static_cast<T>(1);
Chris@16 147 }
Chris@16 148 if (x <= 4) // x in (0, 4]
Chris@16 149 {
Chris@16 150 T y = x * x;
Chris@16 151 BOOST_ASSERT(sizeof(P1) == sizeof(Q1));
Chris@16 152 r = evaluate_rational(P1, Q1, y);
Chris@16 153 factor = (x + x1) * ((x - x11/256) - x12);
Chris@16 154 value = factor * r;
Chris@16 155 }
Chris@16 156 else if (x <= 8.0) // x in (4, 8]
Chris@16 157 {
Chris@16 158 T y = 1 - (x * x)/64;
Chris@16 159 BOOST_ASSERT(sizeof(P2) == sizeof(Q2));
Chris@16 160 r = evaluate_rational(P2, Q2, y);
Chris@16 161 factor = (x + x2) * ((x - x21/256) - x22);
Chris@16 162 value = factor * r;
Chris@16 163 }
Chris@16 164 else // x in (8, \infty)
Chris@16 165 {
Chris@16 166 T y = 8 / x;
Chris@16 167 T y2 = y * y;
Chris@16 168 BOOST_ASSERT(sizeof(PC) == sizeof(QC));
Chris@16 169 BOOST_ASSERT(sizeof(PS) == sizeof(QS));
Chris@16 170 rc = evaluate_rational(PC, QC, y2);
Chris@16 171 rs = evaluate_rational(PS, QS, y2);
Chris@16 172 factor = constants::one_div_root_pi<T>() / sqrt(x);
Chris@16 173 //
Chris@16 174 // What follows is really just:
Chris@16 175 //
Chris@16 176 // T z = x - pi/4;
Chris@16 177 // value = factor * (rc * cos(z) - y * rs * sin(z));
Chris@16 178 //
Chris@16 179 // But using the addition formulae for sin and cos, plus
Chris@16 180 // the special values for sin/cos of pi/4.
Chris@16 181 //
Chris@16 182 T sx = sin(x);
Chris@16 183 T cx = cos(x);
Chris@16 184 value = factor * (rc * (cx + sx) - y * rs * (sx - cx));
Chris@16 185 }
Chris@16 186
Chris@16 187 return value;
Chris@16 188 }
Chris@16 189
Chris@16 190 }}} // namespaces
Chris@16 191
Chris@16 192 #endif // BOOST_MATH_BESSEL_J0_HPP
Chris@16 193