annotate DEPENDENCIES/generic/include/boost/math/distributions/non_central_t.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // boost\math\distributions\non_central_t.hpp
Chris@16 2
Chris@16 3 // Copyright John Maddock 2008.
Chris@16 4
Chris@16 5 // Use, modification and distribution are subject to the
Chris@16 6 // Boost Software License, Version 1.0.
Chris@16 7 // (See accompanying file LICENSE_1_0.txt
Chris@16 8 // or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 9
Chris@16 10 #ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
Chris@16 11 #define BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
Chris@16 12
Chris@16 13 #include <boost/math/distributions/fwd.hpp>
Chris@16 14 #include <boost/math/distributions/non_central_beta.hpp> // for nc beta
Chris@16 15 #include <boost/math/distributions/normal.hpp> // for normal CDF and quantile
Chris@16 16 #include <boost/math/distributions/students_t.hpp>
Chris@16 17 #include <boost/math/distributions/detail/generic_quantile.hpp> // quantile
Chris@16 18
Chris@16 19 namespace boost
Chris@16 20 {
Chris@16 21 namespace math
Chris@16 22 {
Chris@16 23
Chris@16 24 template <class RealType, class Policy>
Chris@16 25 class non_central_t_distribution;
Chris@16 26
Chris@16 27 namespace detail{
Chris@16 28
Chris@16 29 template <class T, class Policy>
Chris@16 30 T non_central_t2_p(T v, T delta, T x, T y, const Policy& pol, T init_val)
Chris@16 31 {
Chris@16 32 BOOST_MATH_STD_USING
Chris@16 33 //
Chris@16 34 // Variables come first:
Chris@16 35 //
Chris@16 36 boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
Chris@16 37 T errtol = policies::get_epsilon<T, Policy>();
Chris@16 38 T d2 = delta * delta / 2;
Chris@16 39 //
Chris@16 40 // k is the starting point for iteration, and is the
Chris@16 41 // maximum of the poisson weighting term, we don't
Chris@16 42 // ever allow k == 0 as this can lead to catastrophic
Chris@16 43 // cancellation errors later (test case is v = 1621286869049072.3
Chris@16 44 // delta = 0.16212868690490723, x = 0.86987415482475994).
Chris@16 45 //
Chris@16 46 int k = itrunc(d2);
Chris@16 47 T pois;
Chris@16 48 if(k == 0) k = 1;
Chris@16 49 // Starting Poisson weight:
Chris@16 50 pois = gamma_p_derivative(T(k+1), d2, pol)
Chris@16 51 * tgamma_delta_ratio(T(k + 1), T(0.5f))
Chris@16 52 * delta / constants::root_two<T>();
Chris@16 53 if(pois == 0)
Chris@16 54 return init_val;
Chris@16 55 T xterm, beta;
Chris@16 56 // Recurrance & starting beta terms:
Chris@16 57 beta = x < y
Chris@16 58 ? detail::ibeta_imp(T(k + 1), T(v / 2), x, pol, false, true, &xterm)
Chris@16 59 : detail::ibeta_imp(T(v / 2), T(k + 1), y, pol, true, true, &xterm);
Chris@16 60 xterm *= y / (v / 2 + k);
Chris@16 61 T poisf(pois), betaf(beta), xtermf(xterm);
Chris@16 62 T sum = init_val;
Chris@16 63 if((xterm == 0) && (beta == 0))
Chris@16 64 return init_val;
Chris@16 65
Chris@16 66 //
Chris@16 67 // Backwards recursion first, this is the stable
Chris@16 68 // direction for recursion:
Chris@16 69 //
Chris@16 70 boost::uintmax_t count = 0;
Chris@16 71 T last_term = 0;
Chris@16 72 for(int i = k; i >= 0; --i)
Chris@16 73 {
Chris@16 74 T term = beta * pois;
Chris@16 75 sum += term;
Chris@16 76 // Don't terminate on first term in case we "fixed" k above:
Chris@16 77 if((fabs(last_term) > fabs(term)) && fabs(term/sum) < errtol)
Chris@16 78 break;
Chris@16 79 last_term = term;
Chris@16 80 pois *= (i + 0.5f) / d2;
Chris@16 81 beta += xterm;
Chris@16 82 xterm *= (i) / (x * (v / 2 + i - 1));
Chris@16 83 ++count;
Chris@16 84 }
Chris@16 85 last_term = 0;
Chris@16 86 for(int i = k + 1; ; ++i)
Chris@16 87 {
Chris@16 88 poisf *= d2 / (i + 0.5f);
Chris@16 89 xtermf *= (x * (v / 2 + i - 1)) / (i);
Chris@16 90 betaf -= xtermf;
Chris@16 91 T term = poisf * betaf;
Chris@16 92 sum += term;
Chris@16 93 if((fabs(last_term) > fabs(term)) && (fabs(term/sum) < errtol))
Chris@16 94 break;
Chris@16 95 last_term = term;
Chris@16 96 ++count;
Chris@16 97 if(count > max_iter)
Chris@16 98 {
Chris@16 99 return policies::raise_evaluation_error(
Chris@16 100 "cdf(non_central_t_distribution<%1%>, %1%)",
Chris@16 101 "Series did not converge, closest value was %1%", sum, pol);
Chris@16 102 }
Chris@16 103 }
Chris@16 104 return sum;
Chris@16 105 }
Chris@16 106
Chris@16 107 template <class T, class Policy>
Chris@16 108 T non_central_t2_q(T v, T delta, T x, T y, const Policy& pol, T init_val)
Chris@16 109 {
Chris@16 110 BOOST_MATH_STD_USING
Chris@16 111 //
Chris@16 112 // Variables come first:
Chris@16 113 //
Chris@16 114 boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
Chris@16 115 T errtol = boost::math::policies::get_epsilon<T, Policy>();
Chris@16 116 T d2 = delta * delta / 2;
Chris@16 117 //
Chris@16 118 // k is the starting point for iteration, and is the
Chris@16 119 // maximum of the poisson weighting term, we don't allow
Chris@16 120 // k == 0 as this can cause catastrophic cancellation errors
Chris@16 121 // (test case is v = 561908036470413.25, delta = 0.056190803647041321,
Chris@16 122 // x = 1.6155232703966216):
Chris@16 123 //
Chris@16 124 int k = itrunc(d2);
Chris@16 125 if(k == 0) k = 1;
Chris@16 126 // Starting Poisson weight:
Chris@16 127 T pois;
Chris@16 128 if((k < (int)(max_factorial<T>::value)) && (d2 < tools::log_max_value<T>()) && (log(d2) * k < tools::log_max_value<T>()))
Chris@16 129 {
Chris@16 130 //
Chris@16 131 // For small k we can optimise this calculation by using
Chris@16 132 // a simpler reduced formula:
Chris@16 133 //
Chris@16 134 pois = exp(-d2);
Chris@16 135 pois *= pow(d2, static_cast<T>(k));
Chris@16 136 pois /= boost::math::tgamma(T(k + 1 + 0.5), pol);
Chris@16 137 pois *= delta / constants::root_two<T>();
Chris@16 138 }
Chris@16 139 else
Chris@16 140 {
Chris@16 141 pois = gamma_p_derivative(T(k+1), d2, pol)
Chris@16 142 * tgamma_delta_ratio(T(k + 1), T(0.5f))
Chris@16 143 * delta / constants::root_two<T>();
Chris@16 144 }
Chris@16 145 if(pois == 0)
Chris@16 146 return init_val;
Chris@16 147 // Recurance term:
Chris@16 148 T xterm;
Chris@16 149 T beta;
Chris@16 150 // Starting beta term:
Chris@16 151 if(k != 0)
Chris@16 152 {
Chris@16 153 beta = x < y
Chris@16 154 ? detail::ibeta_imp(T(k + 1), T(v / 2), x, pol, true, true, &xterm)
Chris@16 155 : detail::ibeta_imp(T(v / 2), T(k + 1), y, pol, false, true, &xterm);
Chris@16 156
Chris@16 157 xterm *= y / (v / 2 + k);
Chris@16 158 }
Chris@16 159 else
Chris@16 160 {
Chris@16 161 beta = pow(y, v / 2);
Chris@16 162 xterm = beta;
Chris@16 163 }
Chris@16 164 T poisf(pois), betaf(beta), xtermf(xterm);
Chris@16 165 T sum = init_val;
Chris@16 166 if((xterm == 0) && (beta == 0))
Chris@16 167 return init_val;
Chris@16 168
Chris@16 169 //
Chris@16 170 // Fused forward and backwards recursion:
Chris@16 171 //
Chris@16 172 boost::uintmax_t count = 0;
Chris@16 173 T last_term = 0;
Chris@16 174 for(int i = k + 1, j = k; ; ++i, --j)
Chris@16 175 {
Chris@16 176 poisf *= d2 / (i + 0.5f);
Chris@16 177 xtermf *= (x * (v / 2 + i - 1)) / (i);
Chris@16 178 betaf += xtermf;
Chris@16 179 T term = poisf * betaf;
Chris@16 180
Chris@16 181 if(j >= 0)
Chris@16 182 {
Chris@16 183 term += beta * pois;
Chris@16 184 pois *= (j + 0.5f) / d2;
Chris@16 185 beta -= xterm;
Chris@16 186 xterm *= (j) / (x * (v / 2 + j - 1));
Chris@16 187 }
Chris@16 188
Chris@16 189 sum += term;
Chris@16 190 // Don't terminate on first term in case we "fixed" the value of k above:
Chris@16 191 if((fabs(last_term) > fabs(term)) && fabs(term/sum) < errtol)
Chris@16 192 break;
Chris@16 193 last_term = term;
Chris@16 194 if(count > max_iter)
Chris@16 195 {
Chris@16 196 return policies::raise_evaluation_error(
Chris@16 197 "cdf(non_central_t_distribution<%1%>, %1%)",
Chris@16 198 "Series did not converge, closest value was %1%", sum, pol);
Chris@16 199 }
Chris@16 200 ++count;
Chris@16 201 }
Chris@16 202 return sum;
Chris@16 203 }
Chris@16 204
Chris@16 205 template <class T, class Policy>
Chris@16 206 T non_central_t_cdf(T v, T delta, T t, bool invert, const Policy& pol)
Chris@16 207 {
Chris@16 208 BOOST_MATH_STD_USING
Chris@16 209 if ((boost::math::isinf)(v))
Chris@16 210 { // Infinite degrees of freedom, so use normal distribution located at delta.
Chris@16 211 normal_distribution<T, Policy> n(delta, 1);
Chris@16 212 return cdf(n, t);
Chris@16 213 }
Chris@16 214 //
Chris@16 215 // Otherwise, for t < 0 we have to use the reflection formula:
Chris@16 216 if(t < 0)
Chris@16 217 {
Chris@16 218 t = -t;
Chris@16 219 delta = -delta;
Chris@16 220 invert = !invert;
Chris@16 221 }
Chris@16 222 if(fabs(delta / (4 * v)) < policies::get_epsilon<T, Policy>())
Chris@16 223 {
Chris@16 224 // Approximate with a Student's T centred on delta,
Chris@16 225 // the crossover point is based on eq 2.6 from
Chris@16 226 // "A Comparison of Approximations To Percentiles of the
Chris@16 227 // Noncentral t-Distribution". H. Sahai and M. M. Ojeda,
Chris@16 228 // Revista Investigacion Operacional Vol 21, No 2, 2000.
Chris@16 229 // Original sources referenced in the above are:
Chris@16 230 // "Some Approximations to the Percentage Points of the Noncentral
Chris@16 231 // t-Distribution". C. van Eeden. International Statistical Review, 29, 4-31.
Chris@16 232 // "Continuous Univariate Distributions". N.L. Johnson, S. Kotz and
Chris@16 233 // N. Balkrishnan. 1995. John Wiley and Sons New York.
Chris@16 234 T result = cdf(students_t_distribution<T, Policy>(v), t - delta);
Chris@16 235 return invert ? 1 - result : result;
Chris@16 236 }
Chris@16 237 //
Chris@16 238 // x and y are the corresponding random
Chris@16 239 // variables for the noncentral beta distribution,
Chris@16 240 // with y = 1 - x:
Chris@16 241 //
Chris@16 242 T x = t * t / (v + t * t);
Chris@16 243 T y = v / (v + t * t);
Chris@16 244 T d2 = delta * delta;
Chris@16 245 T a = 0.5f;
Chris@16 246 T b = v / 2;
Chris@16 247 T c = a + b + d2 / 2;
Chris@16 248 //
Chris@16 249 // Crossover point for calculating p or q is the same
Chris@16 250 // as for the noncentral beta:
Chris@16 251 //
Chris@16 252 T cross = 1 - (b / c) * (1 + d2 / (2 * c * c));
Chris@16 253 T result;
Chris@16 254 if(x < cross)
Chris@16 255 {
Chris@16 256 //
Chris@16 257 // Calculate p:
Chris@16 258 //
Chris@16 259 if(x != 0)
Chris@16 260 {
Chris@16 261 result = non_central_beta_p(a, b, d2, x, y, pol);
Chris@16 262 result = non_central_t2_p(v, delta, x, y, pol, result);
Chris@16 263 result /= 2;
Chris@16 264 }
Chris@16 265 else
Chris@16 266 result = 0;
Chris@16 267 result += cdf(boost::math::normal_distribution<T, Policy>(), -delta);
Chris@16 268 }
Chris@16 269 else
Chris@16 270 {
Chris@16 271 //
Chris@16 272 // Calculate q:
Chris@16 273 //
Chris@16 274 invert = !invert;
Chris@16 275 if(x != 0)
Chris@16 276 {
Chris@16 277 result = non_central_beta_q(a, b, d2, x, y, pol);
Chris@16 278 result = non_central_t2_q(v, delta, x, y, pol, result);
Chris@16 279 result /= 2;
Chris@16 280 }
Chris@16 281 else // x == 0
Chris@16 282 result = cdf(complement(boost::math::normal_distribution<T, Policy>(), -delta));
Chris@16 283 }
Chris@16 284 if(invert)
Chris@16 285 result = 1 - result;
Chris@16 286 return result;
Chris@16 287 }
Chris@16 288
Chris@16 289 template <class T, class Policy>
Chris@16 290 T non_central_t_quantile(const char* function, T v, T delta, T p, T q, const Policy&)
Chris@16 291 {
Chris@16 292 BOOST_MATH_STD_USING
Chris@16 293 // static const char* function = "quantile(non_central_t_distribution<%1%>, %1%)";
Chris@16 294 // now passed as function
Chris@16 295 typedef typename policies::evaluation<T, Policy>::type value_type;
Chris@16 296 typedef typename policies::normalise<
Chris@16 297 Policy,
Chris@16 298 policies::promote_float<false>,
Chris@16 299 policies::promote_double<false>,
Chris@16 300 policies::discrete_quantile<>,
Chris@16 301 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 302
Chris@16 303 T r;
Chris@16 304 if(!detail::check_df_gt0_to_inf(
Chris@16 305 function,
Chris@16 306 v, &r, Policy())
Chris@16 307 ||
Chris@16 308 !detail::check_finite(
Chris@16 309 function,
Chris@16 310 delta,
Chris@16 311 &r,
Chris@16 312 Policy())
Chris@16 313 ||
Chris@16 314 !detail::check_probability(
Chris@16 315 function,
Chris@16 316 p,
Chris@16 317 &r,
Chris@16 318 Policy()))
Chris@16 319 return r;
Chris@16 320
Chris@16 321
Chris@16 322 value_type guess = 0;
Chris@16 323 if ( ((boost::math::isinf)(v)) || (v > 1 / boost::math::tools::epsilon<T>()) )
Chris@16 324 { // Infinite or very large degrees of freedom, so use normal distribution located at delta.
Chris@16 325 normal_distribution<T, Policy> n(delta, 1);
Chris@16 326 if (p < q)
Chris@16 327 {
Chris@16 328 return quantile(n, p);
Chris@16 329 }
Chris@16 330 else
Chris@16 331 {
Chris@16 332 return quantile(complement(n, q));
Chris@16 333 }
Chris@16 334 }
Chris@16 335 else if(v > 3)
Chris@16 336 { // Use normal distribution to calculate guess.
Chris@16 337 value_type mean = (v > 1 / policies::get_epsilon<T, Policy>()) ? delta : delta * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, T(0.5f));
Chris@16 338 value_type var = (v > 1 / policies::get_epsilon<T, Policy>()) ? value_type(1) : (((delta * delta + 1) * v) / (v - 2) - mean * mean);
Chris@16 339 if(p < q)
Chris@16 340 guess = quantile(normal_distribution<value_type, forwarding_policy>(mean, var), p);
Chris@16 341 else
Chris@16 342 guess = quantile(complement(normal_distribution<value_type, forwarding_policy>(mean, var), q));
Chris@16 343 }
Chris@16 344 //
Chris@16 345 // We *must* get the sign of the initial guess correct,
Chris@16 346 // or our root-finder will fail, so double check it now:
Chris@16 347 //
Chris@16 348 value_type pzero = non_central_t_cdf(
Chris@16 349 static_cast<value_type>(v),
Chris@16 350 static_cast<value_type>(delta),
Chris@16 351 static_cast<value_type>(0),
Chris@16 352 !(p < q),
Chris@16 353 forwarding_policy());
Chris@16 354 int s;
Chris@16 355 if(p < q)
Chris@16 356 s = boost::math::sign(p - pzero);
Chris@16 357 else
Chris@16 358 s = boost::math::sign(pzero - q);
Chris@16 359 if(s != boost::math::sign(guess))
Chris@16 360 {
Chris@16 361 guess = s;
Chris@16 362 }
Chris@16 363
Chris@16 364 value_type result = detail::generic_quantile(
Chris@16 365 non_central_t_distribution<value_type, forwarding_policy>(v, delta),
Chris@16 366 (p < q ? p : q),
Chris@16 367 guess,
Chris@16 368 (p >= q),
Chris@16 369 function);
Chris@16 370 return policies::checked_narrowing_cast<T, forwarding_policy>(
Chris@16 371 result,
Chris@16 372 function);
Chris@16 373 }
Chris@16 374
Chris@16 375 template <class T, class Policy>
Chris@16 376 T non_central_t2_pdf(T n, T delta, T x, T y, const Policy& pol, T init_val)
Chris@16 377 {
Chris@16 378 BOOST_MATH_STD_USING
Chris@16 379 //
Chris@16 380 // Variables come first:
Chris@16 381 //
Chris@16 382 boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
Chris@16 383 T errtol = boost::math::policies::get_epsilon<T, Policy>();
Chris@16 384 T d2 = delta * delta / 2;
Chris@16 385 //
Chris@16 386 // k is the starting point for iteration, and is the
Chris@16 387 // maximum of the poisson weighting term:
Chris@16 388 //
Chris@16 389 int k = itrunc(d2);
Chris@16 390 T pois, xterm;
Chris@16 391 if(k == 0)
Chris@16 392 k = 1;
Chris@16 393 // Starting Poisson weight:
Chris@16 394 pois = gamma_p_derivative(T(k+1), d2, pol)
Chris@16 395 * tgamma_delta_ratio(T(k + 1), T(0.5f))
Chris@16 396 * delta / constants::root_two<T>();
Chris@16 397 // Starting beta term:
Chris@16 398 xterm = x < y
Chris@16 399 ? ibeta_derivative(T(k + 1), n / 2, x, pol)
Chris@16 400 : ibeta_derivative(n / 2, T(k + 1), y, pol);
Chris@16 401 T poisf(pois), xtermf(xterm);
Chris@16 402 T sum = init_val;
Chris@16 403 if((pois == 0) || (xterm == 0))
Chris@16 404 return init_val;
Chris@16 405
Chris@16 406 //
Chris@16 407 // Backwards recursion first, this is the stable
Chris@16 408 // direction for recursion:
Chris@16 409 //
Chris@16 410 boost::uintmax_t count = 0;
Chris@16 411 for(int i = k; i >= 0; --i)
Chris@16 412 {
Chris@16 413 T term = xterm * pois;
Chris@16 414 sum += term;
Chris@16 415 if(((fabs(term/sum) < errtol) && (i != k)) || (term == 0))
Chris@16 416 break;
Chris@16 417 pois *= (i + 0.5f) / d2;
Chris@16 418 xterm *= (i) / (x * (n / 2 + i));
Chris@16 419 ++count;
Chris@16 420 if(count > max_iter)
Chris@16 421 {
Chris@16 422 return policies::raise_evaluation_error(
Chris@16 423 "pdf(non_central_t_distribution<%1%>, %1%)",
Chris@16 424 "Series did not converge, closest value was %1%", sum, pol);
Chris@16 425 }
Chris@16 426 }
Chris@16 427 for(int i = k + 1; ; ++i)
Chris@16 428 {
Chris@16 429 poisf *= d2 / (i + 0.5f);
Chris@16 430 xtermf *= (x * (n / 2 + i)) / (i);
Chris@16 431 T term = poisf * xtermf;
Chris@16 432 sum += term;
Chris@16 433 if((fabs(term/sum) < errtol) || (term == 0))
Chris@16 434 break;
Chris@16 435 ++count;
Chris@16 436 if(count > max_iter)
Chris@16 437 {
Chris@16 438 return policies::raise_evaluation_error(
Chris@16 439 "pdf(non_central_t_distribution<%1%>, %1%)",
Chris@16 440 "Series did not converge, closest value was %1%", sum, pol);
Chris@16 441 }
Chris@16 442 }
Chris@16 443 return sum;
Chris@16 444 }
Chris@16 445
Chris@16 446 template <class T, class Policy>
Chris@16 447 T non_central_t_pdf(T n, T delta, T t, const Policy& pol)
Chris@16 448 {
Chris@16 449 BOOST_MATH_STD_USING
Chris@16 450 if ((boost::math::isinf)(n))
Chris@16 451 { // Infinite degrees of freedom, so use normal distribution located at delta.
Chris@16 452 normal_distribution<T, Policy> norm(delta, 1);
Chris@16 453 return pdf(norm, t);
Chris@16 454 }
Chris@16 455 //
Chris@16 456 // Otherwise, for t < 0 we have to use the reflection formula:
Chris@16 457 if(t < 0)
Chris@16 458 {
Chris@16 459 t = -t;
Chris@16 460 delta = -delta;
Chris@16 461 }
Chris@16 462 if(t == 0)
Chris@16 463 {
Chris@16 464 //
Chris@16 465 // Handle this as a special case, using the formula
Chris@16 466 // from Weisstein, Eric W.
Chris@16 467 // "Noncentral Student's t-Distribution."
Chris@16 468 // From MathWorld--A Wolfram Web Resource.
Chris@16 469 // http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html
Chris@16 470 //
Chris@16 471 // The formula is simplified thanks to the relation
Chris@16 472 // 1F1(a,b,0) = 1.
Chris@16 473 //
Chris@16 474 return tgamma_delta_ratio(n / 2 + 0.5f, T(0.5f))
Chris@16 475 * sqrt(n / constants::pi<T>())
Chris@16 476 * exp(-delta * delta / 2) / 2;
Chris@16 477 }
Chris@16 478 if(fabs(delta / (4 * n)) < policies::get_epsilon<T, Policy>())
Chris@16 479 {
Chris@16 480 // Approximate with a Student's T centred on delta,
Chris@16 481 // the crossover point is based on eq 2.6 from
Chris@16 482 // "A Comparison of Approximations To Percentiles of the
Chris@16 483 // Noncentral t-Distribution". H. Sahai and M. M. Ojeda,
Chris@16 484 // Revista Investigacion Operacional Vol 21, No 2, 2000.
Chris@16 485 // Original sources referenced in the above are:
Chris@16 486 // "Some Approximations to the Percentage Points of the Noncentral
Chris@16 487 // t-Distribution". C. van Eeden. International Statistical Review, 29, 4-31.
Chris@16 488 // "Continuous Univariate Distributions". N.L. Johnson, S. Kotz and
Chris@16 489 // N. Balkrishnan. 1995. John Wiley and Sons New York.
Chris@16 490 return pdf(students_t_distribution<T, Policy>(n), t - delta);
Chris@16 491 }
Chris@16 492 //
Chris@16 493 // x and y are the corresponding random
Chris@16 494 // variables for the noncentral beta distribution,
Chris@16 495 // with y = 1 - x:
Chris@16 496 //
Chris@16 497 T x = t * t / (n + t * t);
Chris@16 498 T y = n / (n + t * t);
Chris@16 499 T a = 0.5f;
Chris@16 500 T b = n / 2;
Chris@16 501 T d2 = delta * delta;
Chris@16 502 //
Chris@16 503 // Calculate pdf:
Chris@16 504 //
Chris@16 505 T dt = n * t / (n * n + 2 * n * t * t + t * t * t * t);
Chris@16 506 T result = non_central_beta_pdf(a, b, d2, x, y, pol);
Chris@16 507 T tol = tools::epsilon<T>() * result * 500;
Chris@16 508 result = non_central_t2_pdf(n, delta, x, y, pol, result);
Chris@16 509 if(result <= tol)
Chris@16 510 result = 0;
Chris@16 511 result *= dt;
Chris@16 512 return result;
Chris@16 513 }
Chris@16 514
Chris@16 515 template <class T, class Policy>
Chris@16 516 T mean(T v, T delta, const Policy& pol)
Chris@16 517 {
Chris@16 518 if ((boost::math::isinf)(v))
Chris@16 519 {
Chris@16 520 return delta;
Chris@16 521 }
Chris@16 522 BOOST_MATH_STD_USING
Chris@16 523 if (v > 1 / boost::math::tools::epsilon<T>() )
Chris@16 524 {
Chris@16 525 //normal_distribution<T, Policy> n(delta, 1);
Chris@16 526 //return boost::math::mean(n);
Chris@16 527 return delta;
Chris@16 528 }
Chris@16 529 else
Chris@16 530 {
Chris@16 531 return delta * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, T(0.5f), pol);
Chris@16 532 }
Chris@16 533 // Other moments use mean so using normal distribution is propagated.
Chris@16 534 }
Chris@16 535
Chris@16 536 template <class T, class Policy>
Chris@16 537 T variance(T v, T delta, const Policy& pol)
Chris@16 538 {
Chris@16 539 if ((boost::math::isinf)(v))
Chris@16 540 {
Chris@16 541 return 1;
Chris@16 542 }
Chris@16 543 if (delta == 0)
Chris@16 544 { // == Student's t
Chris@16 545 return v / (v - 2);
Chris@16 546 }
Chris@16 547 T result = ((delta * delta + 1) * v) / (v - 2);
Chris@16 548 T m = mean(v, delta, pol);
Chris@16 549 result -= m * m;
Chris@16 550 return result;
Chris@16 551 }
Chris@16 552
Chris@16 553 template <class T, class Policy>
Chris@16 554 T skewness(T v, T delta, const Policy& pol)
Chris@16 555 {
Chris@16 556 BOOST_MATH_STD_USING
Chris@16 557 if ((boost::math::isinf)(v))
Chris@16 558 {
Chris@16 559 return 0;
Chris@16 560 }
Chris@16 561 if(delta == 0)
Chris@16 562 { // == Student's t
Chris@16 563 return 0;
Chris@16 564 }
Chris@16 565 T mean = boost::math::detail::mean(v, delta, pol);
Chris@16 566 T l2 = delta * delta;
Chris@16 567 T var = ((l2 + 1) * v) / (v - 2) - mean * mean;
Chris@16 568 T result = -2 * var;
Chris@16 569 result += v * (l2 + 2 * v - 3) / ((v - 3) * (v - 2));
Chris@16 570 result *= mean;
Chris@16 571 result /= pow(var, T(1.5f));
Chris@16 572 return result;
Chris@16 573 }
Chris@16 574
Chris@16 575 template <class T, class Policy>
Chris@16 576 T kurtosis_excess(T v, T delta, const Policy& pol)
Chris@16 577 {
Chris@16 578 BOOST_MATH_STD_USING
Chris@16 579 if ((boost::math::isinf)(v))
Chris@16 580 {
Chris@16 581 return 3;
Chris@16 582 }
Chris@16 583 if (delta == 0)
Chris@16 584 { // == Student's t
Chris@16 585 return 3;
Chris@16 586 }
Chris@16 587 T mean = boost::math::detail::mean(v, delta, pol);
Chris@16 588 T l2 = delta * delta;
Chris@16 589 T var = ((l2 + 1) * v) / (v - 2) - mean * mean;
Chris@16 590 T result = -3 * var;
Chris@16 591 result += v * (l2 * (v + 1) + 3 * (3 * v - 5)) / ((v - 3) * (v - 2));
Chris@16 592 result *= -mean * mean;
Chris@16 593 result += v * v * (l2 * l2 + 6 * l2 + 3) / ((v - 4) * (v - 2));
Chris@16 594 result /= var * var;
Chris@16 595 return result;
Chris@16 596 }
Chris@16 597
Chris@16 598 #if 0
Chris@16 599 //
Chris@16 600 // This code is disabled, since there can be multiple answers to the
Chris@16 601 // question, and it's not clear how to find the "right" one.
Chris@16 602 //
Chris@16 603 template <class RealType, class Policy>
Chris@16 604 struct t_degrees_of_freedom_finder
Chris@16 605 {
Chris@16 606 t_degrees_of_freedom_finder(
Chris@16 607 RealType delta_, RealType x_, RealType p_, bool c)
Chris@16 608 : delta(delta_), x(x_), p(p_), comp(c) {}
Chris@16 609
Chris@16 610 RealType operator()(const RealType& v)
Chris@16 611 {
Chris@16 612 non_central_t_distribution<RealType, Policy> d(v, delta);
Chris@16 613 return comp ?
Chris@16 614 p - cdf(complement(d, x))
Chris@16 615 : cdf(d, x) - p;
Chris@16 616 }
Chris@16 617 private:
Chris@16 618 RealType delta;
Chris@16 619 RealType x;
Chris@16 620 RealType p;
Chris@16 621 bool comp;
Chris@16 622 };
Chris@16 623
Chris@16 624 template <class RealType, class Policy>
Chris@16 625 inline RealType find_t_degrees_of_freedom(
Chris@16 626 RealType delta, RealType x, RealType p, RealType q, const Policy& pol)
Chris@16 627 {
Chris@16 628 const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
Chris@16 629 if((p == 0) || (q == 0))
Chris@16 630 {
Chris@16 631 //
Chris@16 632 // Can't a thing if one of p and q is zero:
Chris@16 633 //
Chris@16 634 return policies::raise_evaluation_error<RealType>(function,
Chris@16 635 "Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%",
Chris@16 636 RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
Chris@16 637 }
Chris@16 638 t_degrees_of_freedom_finder<RealType, Policy> f(delta, x, p < q ? p : q, p < q ? false : true);
Chris@16 639 tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
Chris@16 640 boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
Chris@16 641 //
Chris@16 642 // Pick an initial guess:
Chris@16 643 //
Chris@16 644 RealType guess = 200;
Chris@16 645 std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
Chris@16 646 f, guess, RealType(2), false, tol, max_iter, pol);
Chris@16 647 RealType result = ir.first + (ir.second - ir.first) / 2;
Chris@16 648 if(max_iter >= policies::get_max_root_iterations<Policy>())
Chris@16 649 {
Chris@101 650 return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
Chris@16 651 " or there is no answer to problem. Current best guess is %1%", result, Policy());
Chris@16 652 }
Chris@16 653 return result;
Chris@16 654 }
Chris@16 655
Chris@16 656 template <class RealType, class Policy>
Chris@16 657 struct t_non_centrality_finder
Chris@16 658 {
Chris@16 659 t_non_centrality_finder(
Chris@16 660 RealType v_, RealType x_, RealType p_, bool c)
Chris@16 661 : v(v_), x(x_), p(p_), comp(c) {}
Chris@16 662
Chris@16 663 RealType operator()(const RealType& delta)
Chris@16 664 {
Chris@16 665 non_central_t_distribution<RealType, Policy> d(v, delta);
Chris@16 666 return comp ?
Chris@16 667 p - cdf(complement(d, x))
Chris@16 668 : cdf(d, x) - p;
Chris@16 669 }
Chris@16 670 private:
Chris@16 671 RealType v;
Chris@16 672 RealType x;
Chris@16 673 RealType p;
Chris@16 674 bool comp;
Chris@16 675 };
Chris@16 676
Chris@16 677 template <class RealType, class Policy>
Chris@16 678 inline RealType find_t_non_centrality(
Chris@16 679 RealType v, RealType x, RealType p, RealType q, const Policy& pol)
Chris@16 680 {
Chris@16 681 const char* function = "non_central_t<%1%>::find_t_non_centrality";
Chris@16 682 if((p == 0) || (q == 0))
Chris@16 683 {
Chris@16 684 //
Chris@16 685 // Can't do a thing if one of p and q is zero:
Chris@16 686 //
Chris@16 687 return policies::raise_evaluation_error<RealType>(function,
Chris@16 688 "Can't find non-centrality parameter when the probability is 0 or 1, only possible answer is %1%",
Chris@16 689 RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
Chris@16 690 }
Chris@16 691 t_non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true);
Chris@16 692 tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
Chris@16 693 boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
Chris@16 694 //
Chris@16 695 // Pick an initial guess that we know is the right side of
Chris@16 696 // zero:
Chris@16 697 //
Chris@16 698 RealType guess;
Chris@16 699 if(f(0) < 0)
Chris@16 700 guess = 1;
Chris@16 701 else
Chris@16 702 guess = -1;
Chris@16 703 std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
Chris@16 704 f, guess, RealType(2), false, tol, max_iter, pol);
Chris@16 705 RealType result = ir.first + (ir.second - ir.first) / 2;
Chris@16 706 if(max_iter >= policies::get_max_root_iterations<Policy>())
Chris@16 707 {
Chris@101 708 return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
Chris@16 709 " or there is no answer to problem. Current best guess is %1%", result, Policy());
Chris@16 710 }
Chris@16 711 return result;
Chris@16 712 }
Chris@16 713 #endif
Chris@16 714 } // namespace detail ======================================================================
Chris@16 715
Chris@16 716 template <class RealType = double, class Policy = policies::policy<> >
Chris@16 717 class non_central_t_distribution
Chris@16 718 {
Chris@16 719 public:
Chris@16 720 typedef RealType value_type;
Chris@16 721 typedef Policy policy_type;
Chris@16 722
Chris@16 723 non_central_t_distribution(RealType v_, RealType lambda) : v(v_), ncp(lambda)
Chris@16 724 {
Chris@16 725 const char* function = "boost::math::non_central_t_distribution<%1%>::non_central_t_distribution(%1%,%1%)";
Chris@16 726 RealType r;
Chris@16 727 detail::check_df_gt0_to_inf(
Chris@16 728 function,
Chris@16 729 v, &r, Policy());
Chris@16 730 detail::check_finite(
Chris@16 731 function,
Chris@16 732 lambda,
Chris@16 733 &r,
Chris@16 734 Policy());
Chris@16 735 } // non_central_t_distribution constructor.
Chris@16 736
Chris@16 737 RealType degrees_of_freedom() const
Chris@16 738 { // Private data getter function.
Chris@16 739 return v;
Chris@16 740 }
Chris@16 741 RealType non_centrality() const
Chris@16 742 { // Private data getter function.
Chris@16 743 return ncp;
Chris@16 744 }
Chris@16 745 #if 0
Chris@16 746 //
Chris@16 747 // This code is disabled, since there can be multiple answers to the
Chris@16 748 // question, and it's not clear how to find the "right" one.
Chris@16 749 //
Chris@16 750 static RealType find_degrees_of_freedom(RealType delta, RealType x, RealType p)
Chris@16 751 {
Chris@16 752 const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
Chris@16 753 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 754 typedef typename policies::normalise<
Chris@16 755 Policy,
Chris@16 756 policies::promote_float<false>,
Chris@16 757 policies::promote_double<false>,
Chris@16 758 policies::discrete_quantile<>,
Chris@16 759 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 760 value_type result = detail::find_t_degrees_of_freedom(
Chris@16 761 static_cast<value_type>(delta),
Chris@16 762 static_cast<value_type>(x),
Chris@16 763 static_cast<value_type>(p),
Chris@16 764 static_cast<value_type>(1-p),
Chris@16 765 forwarding_policy());
Chris@16 766 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 767 result,
Chris@16 768 function);
Chris@16 769 }
Chris@16 770 template <class A, class B, class C>
Chris@16 771 static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c)
Chris@16 772 {
Chris@16 773 const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
Chris@16 774 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 775 typedef typename policies::normalise<
Chris@16 776 Policy,
Chris@16 777 policies::promote_float<false>,
Chris@16 778 policies::promote_double<false>,
Chris@16 779 policies::discrete_quantile<>,
Chris@16 780 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 781 value_type result = detail::find_t_degrees_of_freedom(
Chris@16 782 static_cast<value_type>(c.dist),
Chris@16 783 static_cast<value_type>(c.param1),
Chris@16 784 static_cast<value_type>(1-c.param2),
Chris@16 785 static_cast<value_type>(c.param2),
Chris@16 786 forwarding_policy());
Chris@16 787 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 788 result,
Chris@16 789 function);
Chris@16 790 }
Chris@16 791 static RealType find_non_centrality(RealType v, RealType x, RealType p)
Chris@16 792 {
Chris@16 793 const char* function = "non_central_t<%1%>::find_t_non_centrality";
Chris@16 794 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 795 typedef typename policies::normalise<
Chris@16 796 Policy,
Chris@16 797 policies::promote_float<false>,
Chris@16 798 policies::promote_double<false>,
Chris@16 799 policies::discrete_quantile<>,
Chris@16 800 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 801 value_type result = detail::find_t_non_centrality(
Chris@16 802 static_cast<value_type>(v),
Chris@16 803 static_cast<value_type>(x),
Chris@16 804 static_cast<value_type>(p),
Chris@16 805 static_cast<value_type>(1-p),
Chris@16 806 forwarding_policy());
Chris@16 807 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 808 result,
Chris@16 809 function);
Chris@16 810 }
Chris@16 811 template <class A, class B, class C>
Chris@16 812 static RealType find_non_centrality(const complemented3_type<A,B,C>& c)
Chris@16 813 {
Chris@16 814 const char* function = "non_central_t<%1%>::find_t_non_centrality";
Chris@16 815 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 816 typedef typename policies::normalise<
Chris@16 817 Policy,
Chris@16 818 policies::promote_float<false>,
Chris@16 819 policies::promote_double<false>,
Chris@16 820 policies::discrete_quantile<>,
Chris@16 821 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 822 value_type result = detail::find_t_non_centrality(
Chris@16 823 static_cast<value_type>(c.dist),
Chris@16 824 static_cast<value_type>(c.param1),
Chris@16 825 static_cast<value_type>(1-c.param2),
Chris@16 826 static_cast<value_type>(c.param2),
Chris@16 827 forwarding_policy());
Chris@16 828 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 829 result,
Chris@16 830 function);
Chris@16 831 }
Chris@16 832 #endif
Chris@16 833 private:
Chris@16 834 // Data member, initialized by constructor.
Chris@16 835 RealType v; // degrees of freedom
Chris@16 836 RealType ncp; // non-centrality parameter
Chris@16 837 }; // template <class RealType, class Policy> class non_central_t_distribution
Chris@16 838
Chris@16 839 typedef non_central_t_distribution<double> non_central_t; // Reserved name of type double.
Chris@16 840
Chris@16 841 // Non-member functions to give properties of the distribution.
Chris@16 842
Chris@16 843 template <class RealType, class Policy>
Chris@16 844 inline const std::pair<RealType, RealType> range(const non_central_t_distribution<RealType, Policy>& /* dist */)
Chris@16 845 { // Range of permissible values for random variable k.
Chris@16 846 using boost::math::tools::max_value;
Chris@16 847 return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
Chris@16 848 }
Chris@16 849
Chris@16 850 template <class RealType, class Policy>
Chris@16 851 inline const std::pair<RealType, RealType> support(const non_central_t_distribution<RealType, Policy>& /* dist */)
Chris@16 852 { // Range of supported values for random variable k.
Chris@16 853 // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
Chris@16 854 using boost::math::tools::max_value;
Chris@16 855 return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
Chris@16 856 }
Chris@16 857
Chris@16 858 template <class RealType, class Policy>
Chris@16 859 inline RealType mode(const non_central_t_distribution<RealType, Policy>& dist)
Chris@16 860 { // mode.
Chris@16 861 static const char* function = "mode(non_central_t_distribution<%1%> const&)";
Chris@16 862 RealType v = dist.degrees_of_freedom();
Chris@16 863 RealType l = dist.non_centrality();
Chris@16 864 RealType r;
Chris@16 865 if(!detail::check_df_gt0_to_inf(
Chris@16 866 function,
Chris@16 867 v, &r, Policy())
Chris@16 868 ||
Chris@16 869 !detail::check_finite(
Chris@16 870 function,
Chris@16 871 l,
Chris@16 872 &r,
Chris@16 873 Policy()))
Chris@16 874 return (RealType)r;
Chris@16 875
Chris@16 876 BOOST_MATH_STD_USING
Chris@16 877
Chris@16 878 RealType m = v < 3 ? 0 : detail::mean(v, l, Policy());
Chris@16 879 RealType var = v < 4 ? 1 : detail::variance(v, l, Policy());
Chris@16 880
Chris@16 881 return detail::generic_find_mode(
Chris@16 882 dist,
Chris@16 883 m,
Chris@16 884 function,
Chris@16 885 sqrt(var));
Chris@16 886 }
Chris@16 887
Chris@16 888 template <class RealType, class Policy>
Chris@16 889 inline RealType mean(const non_central_t_distribution<RealType, Policy>& dist)
Chris@16 890 {
Chris@16 891 BOOST_MATH_STD_USING
Chris@16 892 const char* function = "mean(const non_central_t_distribution<%1%>&)";
Chris@16 893 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 894 typedef typename policies::normalise<
Chris@16 895 Policy,
Chris@16 896 policies::promote_float<false>,
Chris@16 897 policies::promote_double<false>,
Chris@16 898 policies::discrete_quantile<>,
Chris@16 899 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 900 RealType v = dist.degrees_of_freedom();
Chris@16 901 RealType l = dist.non_centrality();
Chris@16 902 RealType r;
Chris@16 903 if(!detail::check_df_gt0_to_inf(
Chris@16 904 function,
Chris@16 905 v, &r, Policy())
Chris@16 906 ||
Chris@16 907 !detail::check_finite(
Chris@16 908 function,
Chris@16 909 l,
Chris@16 910 &r,
Chris@16 911 Policy()))
Chris@16 912 return (RealType)r;
Chris@16 913 if(v <= 1)
Chris@16 914 return policies::raise_domain_error<RealType>(
Chris@16 915 function,
Chris@16 916 "The non-central t distribution has no defined mean for degrees of freedom <= 1: got v=%1%.", v, Policy());
Chris@16 917 // return l * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, RealType(0.5f));
Chris@16 918 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 919 detail::mean(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
Chris@16 920
Chris@16 921 } // mean
Chris@16 922
Chris@16 923 template <class RealType, class Policy>
Chris@16 924 inline RealType variance(const non_central_t_distribution<RealType, Policy>& dist)
Chris@16 925 { // variance.
Chris@16 926 const char* function = "variance(const non_central_t_distribution<%1%>&)";
Chris@16 927 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 928 typedef typename policies::normalise<
Chris@16 929 Policy,
Chris@16 930 policies::promote_float<false>,
Chris@16 931 policies::promote_double<false>,
Chris@16 932 policies::discrete_quantile<>,
Chris@16 933 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 934 BOOST_MATH_STD_USING
Chris@16 935 RealType v = dist.degrees_of_freedom();
Chris@16 936 RealType l = dist.non_centrality();
Chris@16 937 RealType r;
Chris@16 938 if(!detail::check_df_gt0_to_inf(
Chris@16 939 function,
Chris@16 940 v, &r, Policy())
Chris@16 941 ||
Chris@16 942 !detail::check_finite(
Chris@16 943 function,
Chris@16 944 l,
Chris@16 945 &r,
Chris@16 946 Policy()))
Chris@16 947 return (RealType)r;
Chris@16 948 if(v <= 2)
Chris@16 949 return policies::raise_domain_error<RealType>(
Chris@16 950 function,
Chris@16 951 "The non-central t distribution has no defined variance for degrees of freedom <= 2: got v=%1%.", v, Policy());
Chris@16 952 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 953 detail::variance(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
Chris@16 954 }
Chris@16 955
Chris@16 956 // RealType standard_deviation(const non_central_t_distribution<RealType, Policy>& dist)
Chris@16 957 // standard_deviation provided by derived accessors.
Chris@16 958
Chris@16 959 template <class RealType, class Policy>
Chris@16 960 inline RealType skewness(const non_central_t_distribution<RealType, Policy>& dist)
Chris@16 961 { // skewness = sqrt(l).
Chris@16 962 const char* function = "skewness(const non_central_t_distribution<%1%>&)";
Chris@16 963 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 964 typedef typename policies::normalise<
Chris@16 965 Policy,
Chris@16 966 policies::promote_float<false>,
Chris@16 967 policies::promote_double<false>,
Chris@16 968 policies::discrete_quantile<>,
Chris@16 969 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 970 RealType v = dist.degrees_of_freedom();
Chris@16 971 RealType l = dist.non_centrality();
Chris@16 972 RealType r;
Chris@16 973 if(!detail::check_df_gt0_to_inf(
Chris@16 974 function,
Chris@16 975 v, &r, Policy())
Chris@16 976 ||
Chris@16 977 !detail::check_finite(
Chris@16 978 function,
Chris@16 979 l,
Chris@16 980 &r,
Chris@16 981 Policy()))
Chris@16 982 return (RealType)r;
Chris@16 983 if(v <= 3)
Chris@16 984 return policies::raise_domain_error<RealType>(
Chris@16 985 function,
Chris@16 986 "The non-central t distribution has no defined skewness for degrees of freedom <= 3: got v=%1%.", v, Policy());;
Chris@16 987 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 988 detail::skewness(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
Chris@16 989 }
Chris@16 990
Chris@16 991 template <class RealType, class Policy>
Chris@16 992 inline RealType kurtosis_excess(const non_central_t_distribution<RealType, Policy>& dist)
Chris@16 993 {
Chris@16 994 const char* function = "kurtosis_excess(const non_central_t_distribution<%1%>&)";
Chris@16 995 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 996 typedef typename policies::normalise<
Chris@16 997 Policy,
Chris@16 998 policies::promote_float<false>,
Chris@16 999 policies::promote_double<false>,
Chris@16 1000 policies::discrete_quantile<>,
Chris@16 1001 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 1002 RealType v = dist.degrees_of_freedom();
Chris@16 1003 RealType l = dist.non_centrality();
Chris@16 1004 RealType r;
Chris@16 1005 if(!detail::check_df_gt0_to_inf(
Chris@16 1006 function,
Chris@16 1007 v, &r, Policy())
Chris@16 1008 ||
Chris@16 1009 !detail::check_finite(
Chris@16 1010 function,
Chris@16 1011 l,
Chris@16 1012 &r,
Chris@16 1013 Policy()))
Chris@16 1014 return (RealType)r;
Chris@16 1015 if(v <= 4)
Chris@16 1016 return policies::raise_domain_error<RealType>(
Chris@16 1017 function,
Chris@16 1018 "The non-central t distribution has no defined kurtosis for degrees of freedom <= 4: got v=%1%.", v, Policy());;
Chris@16 1019 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 1020 detail::kurtosis_excess(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
Chris@16 1021 } // kurtosis_excess
Chris@16 1022
Chris@16 1023 template <class RealType, class Policy>
Chris@16 1024 inline RealType kurtosis(const non_central_t_distribution<RealType, Policy>& dist)
Chris@16 1025 {
Chris@16 1026 return kurtosis_excess(dist) + 3;
Chris@16 1027 }
Chris@16 1028
Chris@16 1029 template <class RealType, class Policy>
Chris@16 1030 inline RealType pdf(const non_central_t_distribution<RealType, Policy>& dist, const RealType& t)
Chris@16 1031 { // Probability Density/Mass Function.
Chris@16 1032 const char* function = "pdf(non_central_t_distribution<%1%>, %1%)";
Chris@16 1033 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 1034 typedef typename policies::normalise<
Chris@16 1035 Policy,
Chris@16 1036 policies::promote_float<false>,
Chris@16 1037 policies::promote_double<false>,
Chris@16 1038 policies::discrete_quantile<>,
Chris@16 1039 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 1040
Chris@16 1041 RealType v = dist.degrees_of_freedom();
Chris@16 1042 RealType l = dist.non_centrality();
Chris@16 1043 RealType r;
Chris@16 1044 if(!detail::check_df_gt0_to_inf(
Chris@16 1045 function,
Chris@16 1046 v, &r, Policy())
Chris@16 1047 ||
Chris@16 1048 !detail::check_finite(
Chris@16 1049 function,
Chris@16 1050 l,
Chris@16 1051 &r,
Chris@16 1052 Policy())
Chris@16 1053 ||
Chris@16 1054 !detail::check_x(
Chris@16 1055 function,
Chris@16 1056 t,
Chris@16 1057 &r,
Chris@16 1058 Policy()))
Chris@16 1059 return (RealType)r;
Chris@16 1060 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 1061 detail::non_central_t_pdf(static_cast<value_type>(v),
Chris@16 1062 static_cast<value_type>(l),
Chris@16 1063 static_cast<value_type>(t),
Chris@16 1064 Policy()),
Chris@16 1065 function);
Chris@16 1066 } // pdf
Chris@16 1067
Chris@16 1068 template <class RealType, class Policy>
Chris@16 1069 RealType cdf(const non_central_t_distribution<RealType, Policy>& dist, const RealType& x)
Chris@16 1070 {
Chris@16 1071 const char* function = "boost::math::cdf(non_central_t_distribution<%1%>&, %1%)";
Chris@16 1072 // was const char* function = "boost::math::non_central_t_distribution<%1%>::cdf(%1%)";
Chris@16 1073 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 1074 typedef typename policies::normalise<
Chris@16 1075 Policy,
Chris@16 1076 policies::promote_float<false>,
Chris@16 1077 policies::promote_double<false>,
Chris@16 1078 policies::discrete_quantile<>,
Chris@16 1079 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 1080
Chris@16 1081 RealType v = dist.degrees_of_freedom();
Chris@16 1082 RealType l = dist.non_centrality();
Chris@16 1083 RealType r;
Chris@16 1084 if(!detail::check_df_gt0_to_inf(
Chris@16 1085 function,
Chris@16 1086 v, &r, Policy())
Chris@16 1087 ||
Chris@16 1088 !detail::check_finite(
Chris@16 1089 function,
Chris@16 1090 l,
Chris@16 1091 &r,
Chris@16 1092 Policy())
Chris@16 1093 ||
Chris@16 1094 !detail::check_x(
Chris@16 1095 function,
Chris@16 1096 x,
Chris@16 1097 &r,
Chris@16 1098 Policy()))
Chris@16 1099 return (RealType)r;
Chris@16 1100 if ((boost::math::isinf)(v))
Chris@16 1101 { // Infinite degrees of freedom, so use normal distribution located at delta.
Chris@16 1102 normal_distribution<RealType, Policy> n(l, 1);
Chris@16 1103 cdf(n, x);
Chris@16 1104 //return cdf(normal_distribution<RealType, Policy>(l, 1), x);
Chris@16 1105 }
Chris@16 1106
Chris@16 1107 if(l == 0)
Chris@16 1108 { // NO non-centrality, so use Student's t instead.
Chris@16 1109 return cdf(students_t_distribution<RealType, Policy>(v), x);
Chris@16 1110 }
Chris@16 1111 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 1112 detail::non_central_t_cdf(
Chris@16 1113 static_cast<value_type>(v),
Chris@16 1114 static_cast<value_type>(l),
Chris@16 1115 static_cast<value_type>(x),
Chris@16 1116 false, Policy()),
Chris@16 1117 function);
Chris@16 1118 } // cdf
Chris@16 1119
Chris@16 1120 template <class RealType, class Policy>
Chris@16 1121 RealType cdf(const complemented2_type<non_central_t_distribution<RealType, Policy>, RealType>& c)
Chris@16 1122 { // Complemented Cumulative Distribution Function
Chris@16 1123 // was const char* function = "boost::math::non_central_t_distribution<%1%>::cdf(%1%)";
Chris@16 1124 const char* function = "boost::math::cdf(const complement(non_central_t_distribution<%1%>&), %1%)";
Chris@16 1125 typedef typename policies::evaluation<RealType, Policy>::type value_type;
Chris@16 1126 typedef typename policies::normalise<
Chris@16 1127 Policy,
Chris@16 1128 policies::promote_float<false>,
Chris@16 1129 policies::promote_double<false>,
Chris@16 1130 policies::discrete_quantile<>,
Chris@16 1131 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 1132
Chris@16 1133 non_central_t_distribution<RealType, Policy> const& dist = c.dist;
Chris@16 1134 RealType x = c.param;
Chris@16 1135 RealType v = dist.degrees_of_freedom();
Chris@16 1136 RealType l = dist.non_centrality(); // aka delta
Chris@16 1137 RealType r;
Chris@16 1138 if(!detail::check_df_gt0_to_inf(
Chris@16 1139 function,
Chris@16 1140 v, &r, Policy())
Chris@16 1141 ||
Chris@16 1142 !detail::check_finite(
Chris@16 1143 function,
Chris@16 1144 l,
Chris@16 1145 &r,
Chris@16 1146 Policy())
Chris@16 1147 ||
Chris@16 1148 !detail::check_x(
Chris@16 1149 function,
Chris@16 1150 x,
Chris@16 1151 &r,
Chris@16 1152 Policy()))
Chris@16 1153 return (RealType)r;
Chris@16 1154
Chris@16 1155 if ((boost::math::isinf)(v))
Chris@16 1156 { // Infinite degrees of freedom, so use normal distribution located at delta.
Chris@16 1157 normal_distribution<RealType, Policy> n(l, 1);
Chris@16 1158 return cdf(complement(n, x));
Chris@16 1159 }
Chris@16 1160 if(l == 0)
Chris@16 1161 { // zero non-centrality so use Student's t distribution.
Chris@16 1162 return cdf(complement(students_t_distribution<RealType, Policy>(v), x));
Chris@16 1163 }
Chris@16 1164 return policies::checked_narrowing_cast<RealType, forwarding_policy>(
Chris@16 1165 detail::non_central_t_cdf(
Chris@16 1166 static_cast<value_type>(v),
Chris@16 1167 static_cast<value_type>(l),
Chris@16 1168 static_cast<value_type>(x),
Chris@16 1169 true, Policy()),
Chris@16 1170 function);
Chris@16 1171 } // ccdf
Chris@16 1172
Chris@16 1173 template <class RealType, class Policy>
Chris@16 1174 inline RealType quantile(const non_central_t_distribution<RealType, Policy>& dist, const RealType& p)
Chris@16 1175 { // Quantile (or Percent Point) function.
Chris@16 1176 static const char* function = "quantile(const non_central_t_distribution<%1%>, %1%)";
Chris@16 1177 RealType v = dist.degrees_of_freedom();
Chris@16 1178 RealType l = dist.non_centrality();
Chris@16 1179 return detail::non_central_t_quantile(function, v, l, p, RealType(1-p), Policy());
Chris@16 1180 } // quantile
Chris@16 1181
Chris@16 1182 template <class RealType, class Policy>
Chris@16 1183 inline RealType quantile(const complemented2_type<non_central_t_distribution<RealType, Policy>, RealType>& c)
Chris@16 1184 { // Quantile (or Percent Point) function.
Chris@16 1185 static const char* function = "quantile(const complement(non_central_t_distribution<%1%>, %1%))";
Chris@16 1186 non_central_t_distribution<RealType, Policy> const& dist = c.dist;
Chris@16 1187 RealType q = c.param;
Chris@16 1188 RealType v = dist.degrees_of_freedom();
Chris@16 1189 RealType l = dist.non_centrality();
Chris@16 1190 return detail::non_central_t_quantile(function, v, l, RealType(1-q), q, Policy());
Chris@16 1191 } // quantile complement.
Chris@16 1192
Chris@16 1193 } // namespace math
Chris@16 1194 } // namespace boost
Chris@16 1195
Chris@16 1196 // This include must be at the end, *after* the accessors
Chris@16 1197 // for this distribution have been defined, in order to
Chris@16 1198 // keep compilers that support two-phase lookup happy.
Chris@16 1199 #include <boost/math/distributions/detail/derived_accessors.hpp>
Chris@16 1200
Chris@16 1201 #endif // BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
Chris@16 1202