Chris@16
|
1 // Copyright 2008 Gautam Sewani
|
Chris@16
|
2 // Copyright 2008 John Maddock
|
Chris@16
|
3 //
|
Chris@16
|
4 // Use, modification and distribution are subject to the
|
Chris@16
|
5 // Boost Software License, Version 1.0.
|
Chris@16
|
6 // (See accompanying file LICENSE_1_0.txt
|
Chris@16
|
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
8
|
Chris@16
|
9 #ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
|
Chris@16
|
10 #define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
|
Chris@16
|
11
|
Chris@16
|
12 #include <boost/math/constants/constants.hpp>
|
Chris@16
|
13 #include <boost/math/special_functions/lanczos.hpp>
|
Chris@16
|
14 #include <boost/math/special_functions/gamma.hpp>
|
Chris@16
|
15 #include <boost/math/special_functions/pow.hpp>
|
Chris@16
|
16 #include <boost/math/special_functions/prime.hpp>
|
Chris@16
|
17 #include <boost/math/policies/error_handling.hpp>
|
Chris@16
|
18
|
Chris@16
|
19 #ifdef BOOST_MATH_INSTRUMENT
|
Chris@16
|
20 #include <typeinfo>
|
Chris@16
|
21 #endif
|
Chris@16
|
22
|
Chris@16
|
23 namespace boost{ namespace math{ namespace detail{
|
Chris@16
|
24
|
Chris@16
|
25 template <class T, class Func>
|
Chris@16
|
26 void bubble_down_one(T* first, T* last, Func f)
|
Chris@16
|
27 {
|
Chris@16
|
28 using std::swap;
|
Chris@16
|
29 T* next = first;
|
Chris@16
|
30 ++next;
|
Chris@16
|
31 while((next != last) && (!f(*first, *next)))
|
Chris@16
|
32 {
|
Chris@16
|
33 swap(*first, *next);
|
Chris@16
|
34 ++first;
|
Chris@16
|
35 ++next;
|
Chris@16
|
36 }
|
Chris@16
|
37 }
|
Chris@16
|
38
|
Chris@16
|
39 template <class T>
|
Chris@16
|
40 struct sort_functor
|
Chris@16
|
41 {
|
Chris@16
|
42 sort_functor(const T* exponents) : m_exponents(exponents){}
|
Chris@16
|
43 bool operator()(int i, int j)
|
Chris@16
|
44 {
|
Chris@16
|
45 return m_exponents[i] > m_exponents[j];
|
Chris@16
|
46 }
|
Chris@16
|
47 private:
|
Chris@16
|
48 const T* m_exponents;
|
Chris@16
|
49 };
|
Chris@16
|
50
|
Chris@16
|
51 template <class T, class Lanczos, class Policy>
|
Chris@16
|
52 T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const Lanczos&, const Policy&)
|
Chris@16
|
53 {
|
Chris@16
|
54 BOOST_MATH_STD_USING
|
Chris@16
|
55
|
Chris@16
|
56 BOOST_MATH_INSTRUMENT_FPU
|
Chris@16
|
57 BOOST_MATH_INSTRUMENT_VARIABLE(x);
|
Chris@16
|
58 BOOST_MATH_INSTRUMENT_VARIABLE(r);
|
Chris@16
|
59 BOOST_MATH_INSTRUMENT_VARIABLE(n);
|
Chris@16
|
60 BOOST_MATH_INSTRUMENT_VARIABLE(N);
|
Chris@16
|
61 BOOST_MATH_INSTRUMENT_VARIABLE(typeid(Lanczos).name());
|
Chris@16
|
62
|
Chris@16
|
63 T bases[9] = {
|
Chris@101
|
64 T(n) + static_cast<T>(Lanczos::g()) + 0.5f,
|
Chris@101
|
65 T(r) + static_cast<T>(Lanczos::g()) + 0.5f,
|
Chris@101
|
66 T(N - n) + static_cast<T>(Lanczos::g()) + 0.5f,
|
Chris@101
|
67 T(N - r) + static_cast<T>(Lanczos::g()) + 0.5f,
|
Chris@101
|
68 1 / (T(N) + static_cast<T>(Lanczos::g()) + 0.5f),
|
Chris@101
|
69 1 / (T(x) + static_cast<T>(Lanczos::g()) + 0.5f),
|
Chris@101
|
70 1 / (T(n - x) + static_cast<T>(Lanczos::g()) + 0.5f),
|
Chris@101
|
71 1 / (T(r - x) + static_cast<T>(Lanczos::g()) + 0.5f),
|
Chris@101
|
72 1 / (T(N - n - r + x) + static_cast<T>(Lanczos::g()) + 0.5f)
|
Chris@16
|
73 };
|
Chris@16
|
74 T exponents[9] = {
|
Chris@16
|
75 n + T(0.5f),
|
Chris@16
|
76 r + T(0.5f),
|
Chris@16
|
77 N - n + T(0.5f),
|
Chris@16
|
78 N - r + T(0.5f),
|
Chris@16
|
79 N + T(0.5f),
|
Chris@16
|
80 x + T(0.5f),
|
Chris@16
|
81 n - x + T(0.5f),
|
Chris@16
|
82 r - x + T(0.5f),
|
Chris@16
|
83 N - n - r + x + T(0.5f)
|
Chris@16
|
84 };
|
Chris@16
|
85 int base_e_factors[9] = {
|
Chris@16
|
86 -1, -1, -1, -1, 1, 1, 1, 1, 1
|
Chris@16
|
87 };
|
Chris@16
|
88 int sorted_indexes[9] = {
|
Chris@16
|
89 0, 1, 2, 3, 4, 5, 6, 7, 8
|
Chris@16
|
90 };
|
Chris@16
|
91 #ifdef BOOST_MATH_INSTRUMENT
|
Chris@16
|
92 BOOST_MATH_INSTRUMENT_FPU
|
Chris@16
|
93 for(unsigned i = 0; i < 9; ++i)
|
Chris@16
|
94 {
|
Chris@16
|
95 BOOST_MATH_INSTRUMENT_VARIABLE(i);
|
Chris@16
|
96 BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
|
Chris@16
|
97 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
|
Chris@16
|
98 BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
|
Chris@16
|
99 BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
|
Chris@16
|
100 }
|
Chris@16
|
101 #endif
|
Chris@16
|
102 std::sort(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
|
Chris@16
|
103 #ifdef BOOST_MATH_INSTRUMENT
|
Chris@16
|
104 BOOST_MATH_INSTRUMENT_FPU
|
Chris@16
|
105 for(unsigned i = 0; i < 9; ++i)
|
Chris@16
|
106 {
|
Chris@16
|
107 BOOST_MATH_INSTRUMENT_VARIABLE(i);
|
Chris@16
|
108 BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
|
Chris@16
|
109 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
|
Chris@16
|
110 BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
|
Chris@16
|
111 BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
|
Chris@16
|
112 }
|
Chris@16
|
113 #endif
|
Chris@16
|
114
|
Chris@16
|
115 do{
|
Chris@16
|
116 exponents[sorted_indexes[0]] -= exponents[sorted_indexes[1]];
|
Chris@16
|
117 bases[sorted_indexes[1]] *= bases[sorted_indexes[0]];
|
Chris@16
|
118 if((bases[sorted_indexes[1]] < tools::min_value<T>()) && (exponents[sorted_indexes[1]] != 0))
|
Chris@16
|
119 {
|
Chris@16
|
120 return 0;
|
Chris@16
|
121 }
|
Chris@16
|
122 base_e_factors[sorted_indexes[1]] += base_e_factors[sorted_indexes[0]];
|
Chris@16
|
123 bubble_down_one(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
|
Chris@16
|
124
|
Chris@16
|
125 #ifdef BOOST_MATH_INSTRUMENT
|
Chris@16
|
126 for(unsigned i = 0; i < 9; ++i)
|
Chris@16
|
127 {
|
Chris@16
|
128 BOOST_MATH_INSTRUMENT_VARIABLE(i);
|
Chris@16
|
129 BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
|
Chris@16
|
130 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
|
Chris@16
|
131 BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
|
Chris@16
|
132 BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
|
Chris@16
|
133 }
|
Chris@16
|
134 #endif
|
Chris@16
|
135 }while(exponents[sorted_indexes[1]] > 1);
|
Chris@16
|
136
|
Chris@16
|
137 //
|
Chris@16
|
138 // Combine equal powers:
|
Chris@16
|
139 //
|
Chris@16
|
140 int j = 8;
|
Chris@16
|
141 while(exponents[sorted_indexes[j]] == 0) --j;
|
Chris@16
|
142 while(j)
|
Chris@16
|
143 {
|
Chris@16
|
144 while(j && (exponents[sorted_indexes[j-1]] == exponents[sorted_indexes[j]]))
|
Chris@16
|
145 {
|
Chris@16
|
146 bases[sorted_indexes[j-1]] *= bases[sorted_indexes[j]];
|
Chris@16
|
147 exponents[sorted_indexes[j]] = 0;
|
Chris@16
|
148 base_e_factors[sorted_indexes[j-1]] += base_e_factors[sorted_indexes[j]];
|
Chris@16
|
149 bubble_down_one(sorted_indexes + j, sorted_indexes + 9, sort_functor<T>(exponents));
|
Chris@16
|
150 --j;
|
Chris@16
|
151 }
|
Chris@16
|
152 --j;
|
Chris@16
|
153
|
Chris@16
|
154 #ifdef BOOST_MATH_INSTRUMENT
|
Chris@16
|
155 BOOST_MATH_INSTRUMENT_VARIABLE(j);
|
Chris@16
|
156 for(unsigned i = 0; i < 9; ++i)
|
Chris@16
|
157 {
|
Chris@16
|
158 BOOST_MATH_INSTRUMENT_VARIABLE(i);
|
Chris@16
|
159 BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
|
Chris@16
|
160 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
|
Chris@16
|
161 BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
|
Chris@16
|
162 BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
|
Chris@16
|
163 }
|
Chris@16
|
164 #endif
|
Chris@16
|
165 }
|
Chris@16
|
166
|
Chris@16
|
167 #ifdef BOOST_MATH_INSTRUMENT
|
Chris@16
|
168 BOOST_MATH_INSTRUMENT_FPU
|
Chris@16
|
169 for(unsigned i = 0; i < 9; ++i)
|
Chris@16
|
170 {
|
Chris@16
|
171 BOOST_MATH_INSTRUMENT_VARIABLE(i);
|
Chris@16
|
172 BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
|
Chris@16
|
173 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
|
Chris@16
|
174 BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
|
Chris@16
|
175 BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
|
Chris@16
|
176 }
|
Chris@16
|
177 #endif
|
Chris@16
|
178
|
Chris@16
|
179 T result;
|
Chris@16
|
180 BOOST_MATH_INSTRUMENT_VARIABLE(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])));
|
Chris@16
|
181 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[sorted_indexes[0]]);
|
Chris@16
|
182 {
|
Chris@16
|
183 BOOST_FPU_EXCEPTION_GUARD
|
Chris@16
|
184 result = pow(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])), exponents[sorted_indexes[0]]);
|
Chris@16
|
185 }
|
Chris@16
|
186 BOOST_MATH_INSTRUMENT_VARIABLE(result);
|
Chris@16
|
187 for(unsigned i = 1; (i < 9) && (exponents[sorted_indexes[i]] > 0); ++i)
|
Chris@16
|
188 {
|
Chris@16
|
189 BOOST_FPU_EXCEPTION_GUARD
|
Chris@16
|
190 if(result < tools::min_value<T>())
|
Chris@16
|
191 return 0; // short circuit further evaluation
|
Chris@16
|
192 if(exponents[sorted_indexes[i]] == 1)
|
Chris@16
|
193 result *= bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]]));
|
Chris@16
|
194 else if(exponents[sorted_indexes[i]] == 0.5f)
|
Chris@16
|
195 result *= sqrt(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])));
|
Chris@16
|
196 else
|
Chris@16
|
197 result *= pow(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])), exponents[sorted_indexes[i]]);
|
Chris@16
|
198
|
Chris@16
|
199 BOOST_MATH_INSTRUMENT_VARIABLE(result);
|
Chris@16
|
200 }
|
Chris@16
|
201
|
Chris@16
|
202 result *= Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n + 1))
|
Chris@16
|
203 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r + 1))
|
Chris@16
|
204 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n + 1))
|
Chris@16
|
205 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - r + 1))
|
Chris@16
|
206 /
|
Chris@16
|
207 ( Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N + 1))
|
Chris@16
|
208 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(x + 1))
|
Chris@16
|
209 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n - x + 1))
|
Chris@16
|
210 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r - x + 1))
|
Chris@16
|
211 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n - r + x + 1)));
|
Chris@16
|
212
|
Chris@16
|
213 BOOST_MATH_INSTRUMENT_VARIABLE(result);
|
Chris@16
|
214 return result;
|
Chris@16
|
215 }
|
Chris@16
|
216
|
Chris@16
|
217 template <class T, class Policy>
|
Chris@16
|
218 T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const boost::math::lanczos::undefined_lanczos&, const Policy& pol)
|
Chris@16
|
219 {
|
Chris@16
|
220 BOOST_MATH_STD_USING
|
Chris@16
|
221 return exp(
|
Chris@16
|
222 boost::math::lgamma(T(n + 1), pol)
|
Chris@16
|
223 + boost::math::lgamma(T(r + 1), pol)
|
Chris@16
|
224 + boost::math::lgamma(T(N - n + 1), pol)
|
Chris@16
|
225 + boost::math::lgamma(T(N - r + 1), pol)
|
Chris@16
|
226 - boost::math::lgamma(T(N + 1), pol)
|
Chris@16
|
227 - boost::math::lgamma(T(x + 1), pol)
|
Chris@16
|
228 - boost::math::lgamma(T(n - x + 1), pol)
|
Chris@16
|
229 - boost::math::lgamma(T(r - x + 1), pol)
|
Chris@16
|
230 - boost::math::lgamma(T(N - n - r + x + 1), pol));
|
Chris@16
|
231 }
|
Chris@16
|
232
|
Chris@16
|
233 template <class T>
|
Chris@16
|
234 inline T integer_power(const T& x, int ex)
|
Chris@16
|
235 {
|
Chris@16
|
236 if(ex < 0)
|
Chris@16
|
237 return 1 / integer_power(x, -ex);
|
Chris@16
|
238 switch(ex)
|
Chris@16
|
239 {
|
Chris@16
|
240 case 0:
|
Chris@16
|
241 return 1;
|
Chris@16
|
242 case 1:
|
Chris@16
|
243 return x;
|
Chris@16
|
244 case 2:
|
Chris@16
|
245 return x * x;
|
Chris@16
|
246 case 3:
|
Chris@16
|
247 return x * x * x;
|
Chris@16
|
248 case 4:
|
Chris@16
|
249 return boost::math::pow<4>(x);
|
Chris@16
|
250 case 5:
|
Chris@16
|
251 return boost::math::pow<5>(x);
|
Chris@16
|
252 case 6:
|
Chris@16
|
253 return boost::math::pow<6>(x);
|
Chris@16
|
254 case 7:
|
Chris@16
|
255 return boost::math::pow<7>(x);
|
Chris@16
|
256 case 8:
|
Chris@16
|
257 return boost::math::pow<8>(x);
|
Chris@16
|
258 }
|
Chris@16
|
259 BOOST_MATH_STD_USING
|
Chris@16
|
260 #ifdef __SUNPRO_CC
|
Chris@16
|
261 return pow(x, T(ex));
|
Chris@16
|
262 #else
|
Chris@16
|
263 return pow(x, ex);
|
Chris@16
|
264 #endif
|
Chris@16
|
265 }
|
Chris@16
|
266 template <class T>
|
Chris@16
|
267 struct hypergeometric_pdf_prime_loop_result_entry
|
Chris@16
|
268 {
|
Chris@16
|
269 T value;
|
Chris@16
|
270 const hypergeometric_pdf_prime_loop_result_entry* next;
|
Chris@16
|
271 };
|
Chris@16
|
272
|
Chris@16
|
273 #ifdef BOOST_MSVC
|
Chris@16
|
274 #pragma warning(push)
|
Chris@16
|
275 #pragma warning(disable:4510 4512 4610)
|
Chris@16
|
276 #endif
|
Chris@16
|
277
|
Chris@16
|
278 struct hypergeometric_pdf_prime_loop_data
|
Chris@16
|
279 {
|
Chris@16
|
280 const unsigned x;
|
Chris@16
|
281 const unsigned r;
|
Chris@16
|
282 const unsigned n;
|
Chris@16
|
283 const unsigned N;
|
Chris@16
|
284 unsigned prime_index;
|
Chris@16
|
285 unsigned current_prime;
|
Chris@16
|
286 };
|
Chris@16
|
287
|
Chris@16
|
288 #ifdef BOOST_MSVC
|
Chris@16
|
289 #pragma warning(pop)
|
Chris@16
|
290 #endif
|
Chris@16
|
291
|
Chris@16
|
292 template <class T>
|
Chris@16
|
293 T hypergeometric_pdf_prime_loop_imp(hypergeometric_pdf_prime_loop_data& data, hypergeometric_pdf_prime_loop_result_entry<T>& result)
|
Chris@16
|
294 {
|
Chris@16
|
295 while(data.current_prime <= data.N)
|
Chris@16
|
296 {
|
Chris@16
|
297 unsigned base = data.current_prime;
|
Chris@16
|
298 int prime_powers = 0;
|
Chris@16
|
299 while(base <= data.N)
|
Chris@16
|
300 {
|
Chris@16
|
301 prime_powers += data.n / base;
|
Chris@16
|
302 prime_powers += data.r / base;
|
Chris@16
|
303 prime_powers += (data.N - data.n) / base;
|
Chris@16
|
304 prime_powers += (data.N - data.r) / base;
|
Chris@16
|
305 prime_powers -= data.N / base;
|
Chris@16
|
306 prime_powers -= data.x / base;
|
Chris@16
|
307 prime_powers -= (data.n - data.x) / base;
|
Chris@16
|
308 prime_powers -= (data.r - data.x) / base;
|
Chris@16
|
309 prime_powers -= (data.N - data.n - data.r + data.x) / base;
|
Chris@16
|
310 base *= data.current_prime;
|
Chris@16
|
311 }
|
Chris@16
|
312 if(prime_powers)
|
Chris@16
|
313 {
|
Chris@16
|
314 T p = integer_power<T>(data.current_prime, prime_powers);
|
Chris@16
|
315 if((p > 1) && (tools::max_value<T>() / p < result.value))
|
Chris@16
|
316 {
|
Chris@16
|
317 //
|
Chris@16
|
318 // The next calculation would overflow, use recursion
|
Chris@16
|
319 // to sidestep the issue:
|
Chris@16
|
320 //
|
Chris@16
|
321 hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
|
Chris@16
|
322 data.current_prime = prime(++data.prime_index);
|
Chris@16
|
323 return hypergeometric_pdf_prime_loop_imp<T>(data, t);
|
Chris@16
|
324 }
|
Chris@16
|
325 if((p < 1) && (tools::min_value<T>() / p > result.value))
|
Chris@16
|
326 {
|
Chris@16
|
327 //
|
Chris@16
|
328 // The next calculation would underflow, use recursion
|
Chris@16
|
329 // to sidestep the issue:
|
Chris@16
|
330 //
|
Chris@16
|
331 hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
|
Chris@16
|
332 data.current_prime = prime(++data.prime_index);
|
Chris@16
|
333 return hypergeometric_pdf_prime_loop_imp<T>(data, t);
|
Chris@16
|
334 }
|
Chris@16
|
335 result.value *= p;
|
Chris@16
|
336 }
|
Chris@16
|
337 data.current_prime = prime(++data.prime_index);
|
Chris@16
|
338 }
|
Chris@16
|
339 //
|
Chris@16
|
340 // When we get to here we have run out of prime factors,
|
Chris@16
|
341 // the overall result is the product of all the partial
|
Chris@16
|
342 // results we have accumulated on the stack so far, these
|
Chris@16
|
343 // are in a linked list starting with "data.head" and ending
|
Chris@16
|
344 // with "result".
|
Chris@16
|
345 //
|
Chris@16
|
346 // All that remains is to multiply them together, taking
|
Chris@16
|
347 // care not to overflow or underflow.
|
Chris@16
|
348 //
|
Chris@16
|
349 // Enumerate partial results >= 1 in variable i
|
Chris@16
|
350 // and partial results < 1 in variable j:
|
Chris@16
|
351 //
|
Chris@16
|
352 hypergeometric_pdf_prime_loop_result_entry<T> const *i, *j;
|
Chris@16
|
353 i = &result;
|
Chris@16
|
354 while(i && i->value < 1)
|
Chris@16
|
355 i = i->next;
|
Chris@16
|
356 j = &result;
|
Chris@16
|
357 while(j && j->value >= 1)
|
Chris@16
|
358 j = j->next;
|
Chris@16
|
359
|
Chris@16
|
360 T prod = 1;
|
Chris@16
|
361
|
Chris@16
|
362 while(i || j)
|
Chris@16
|
363 {
|
Chris@16
|
364 while(i && ((prod <= 1) || (j == 0)))
|
Chris@16
|
365 {
|
Chris@16
|
366 prod *= i->value;
|
Chris@16
|
367 i = i->next;
|
Chris@16
|
368 while(i && i->value < 1)
|
Chris@16
|
369 i = i->next;
|
Chris@16
|
370 }
|
Chris@16
|
371 while(j && ((prod >= 1) || (i == 0)))
|
Chris@16
|
372 {
|
Chris@16
|
373 prod *= j->value;
|
Chris@16
|
374 j = j->next;
|
Chris@16
|
375 while(j && j->value >= 1)
|
Chris@16
|
376 j = j->next;
|
Chris@16
|
377 }
|
Chris@16
|
378 }
|
Chris@16
|
379
|
Chris@16
|
380 return prod;
|
Chris@16
|
381 }
|
Chris@16
|
382
|
Chris@16
|
383 template <class T, class Policy>
|
Chris@16
|
384 inline T hypergeometric_pdf_prime_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
|
Chris@16
|
385 {
|
Chris@16
|
386 hypergeometric_pdf_prime_loop_result_entry<T> result = { 1, 0 };
|
Chris@16
|
387 hypergeometric_pdf_prime_loop_data data = { x, r, n, N, 0, prime(0) };
|
Chris@16
|
388 return hypergeometric_pdf_prime_loop_imp<T>(data, result);
|
Chris@16
|
389 }
|
Chris@16
|
390
|
Chris@16
|
391 template <class T, class Policy>
|
Chris@16
|
392 T hypergeometric_pdf_factorial_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
|
Chris@16
|
393 {
|
Chris@16
|
394 BOOST_MATH_STD_USING
|
Chris@16
|
395 BOOST_ASSERT(N <= boost::math::max_factorial<T>::value);
|
Chris@16
|
396 T result = boost::math::unchecked_factorial<T>(n);
|
Chris@16
|
397 T num[3] = {
|
Chris@16
|
398 boost::math::unchecked_factorial<T>(r),
|
Chris@16
|
399 boost::math::unchecked_factorial<T>(N - n),
|
Chris@16
|
400 boost::math::unchecked_factorial<T>(N - r)
|
Chris@16
|
401 };
|
Chris@16
|
402 T denom[5] = {
|
Chris@16
|
403 boost::math::unchecked_factorial<T>(N),
|
Chris@16
|
404 boost::math::unchecked_factorial<T>(x),
|
Chris@16
|
405 boost::math::unchecked_factorial<T>(n - x),
|
Chris@16
|
406 boost::math::unchecked_factorial<T>(r - x),
|
Chris@16
|
407 boost::math::unchecked_factorial<T>(N - n - r + x)
|
Chris@16
|
408 };
|
Chris@16
|
409 int i = 0;
|
Chris@16
|
410 int j = 0;
|
Chris@16
|
411 while((i < 3) || (j < 5))
|
Chris@16
|
412 {
|
Chris@16
|
413 while((j < 5) && ((result >= 1) || (i >= 3)))
|
Chris@16
|
414 {
|
Chris@16
|
415 result /= denom[j];
|
Chris@16
|
416 ++j;
|
Chris@16
|
417 }
|
Chris@16
|
418 while((i < 3) && ((result <= 1) || (j >= 5)))
|
Chris@16
|
419 {
|
Chris@16
|
420 result *= num[i];
|
Chris@16
|
421 ++i;
|
Chris@16
|
422 }
|
Chris@16
|
423 }
|
Chris@16
|
424 return result;
|
Chris@16
|
425 }
|
Chris@16
|
426
|
Chris@16
|
427
|
Chris@16
|
428 template <class T, class Policy>
|
Chris@16
|
429 inline typename tools::promote_args<T>::type
|
Chris@16
|
430 hypergeometric_pdf(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
|
Chris@16
|
431 {
|
Chris@16
|
432 BOOST_FPU_EXCEPTION_GUARD
|
Chris@16
|
433 typedef typename tools::promote_args<T>::type result_type;
|
Chris@16
|
434 typedef typename policies::evaluation<result_type, Policy>::type value_type;
|
Chris@16
|
435 typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
|
Chris@16
|
436 typedef typename policies::normalise<
|
Chris@16
|
437 Policy,
|
Chris@16
|
438 policies::promote_float<false>,
|
Chris@16
|
439 policies::promote_double<false>,
|
Chris@16
|
440 policies::discrete_quantile<>,
|
Chris@16
|
441 policies::assert_undefined<> >::type forwarding_policy;
|
Chris@16
|
442
|
Chris@16
|
443 value_type result;
|
Chris@16
|
444 if(N <= boost::math::max_factorial<value_type>::value)
|
Chris@16
|
445 {
|
Chris@16
|
446 //
|
Chris@16
|
447 // If N is small enough then we can evaluate the PDF via the factorials
|
Chris@16
|
448 // directly: table lookup of the factorials gives the best performance
|
Chris@16
|
449 // of the methods available:
|
Chris@16
|
450 //
|
Chris@16
|
451 result = detail::hypergeometric_pdf_factorial_imp<value_type>(x, r, n, N, forwarding_policy());
|
Chris@16
|
452 }
|
Chris@16
|
453 else if(N <= boost::math::prime(boost::math::max_prime - 1))
|
Chris@16
|
454 {
|
Chris@16
|
455 //
|
Chris@16
|
456 // If N is no larger than the largest prime number in our lookup table
|
Chris@16
|
457 // (104729) then we can use prime factorisation to evaluate the PDF,
|
Chris@16
|
458 // this is slow but accurate:
|
Chris@16
|
459 //
|
Chris@16
|
460 result = detail::hypergeometric_pdf_prime_imp<value_type>(x, r, n, N, forwarding_policy());
|
Chris@16
|
461 }
|
Chris@16
|
462 else
|
Chris@16
|
463 {
|
Chris@16
|
464 //
|
Chris@16
|
465 // Catch all case - use the lanczos approximation - where available -
|
Chris@16
|
466 // to evaluate the ratio of factorials. This is reasonably fast
|
Chris@16
|
467 // (almost as quick as using logarithmic evaluation in terms of lgamma)
|
Chris@16
|
468 // but only a few digits better in accuracy than using lgamma:
|
Chris@16
|
469 //
|
Chris@16
|
470 result = detail::hypergeometric_pdf_lanczos_imp(value_type(), x, r, n, N, evaluation_type(), forwarding_policy());
|
Chris@16
|
471 }
|
Chris@16
|
472
|
Chris@16
|
473 if(result > 1)
|
Chris@16
|
474 {
|
Chris@16
|
475 result = 1;
|
Chris@16
|
476 }
|
Chris@16
|
477 if(result < 0)
|
Chris@16
|
478 {
|
Chris@16
|
479 result = 0;
|
Chris@16
|
480 }
|
Chris@16
|
481
|
Chris@16
|
482 return policies::checked_narrowing_cast<result_type, forwarding_policy>(result, "boost::math::hypergeometric_pdf<%1%>(%1%,%1%,%1%,%1%)");
|
Chris@16
|
483 }
|
Chris@16
|
484
|
Chris@16
|
485 }}} // namespaces
|
Chris@16
|
486
|
Chris@16
|
487 #endif
|
Chris@16
|
488
|