annotate DEPENDENCIES/generic/include/boost/math/complex/asin.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 // (C) Copyright John Maddock 2005.
Chris@16 2 // Distributed under the Boost Software License, Version 1.0. (See accompanying
Chris@16 3 // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 4
Chris@16 5 #ifndef BOOST_MATH_COMPLEX_ASIN_INCLUDED
Chris@16 6 #define BOOST_MATH_COMPLEX_ASIN_INCLUDED
Chris@16 7
Chris@16 8 #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
Chris@16 9 # include <boost/math/complex/details.hpp>
Chris@16 10 #endif
Chris@16 11 #ifndef BOOST_MATH_LOG1P_INCLUDED
Chris@16 12 # include <boost/math/special_functions/log1p.hpp>
Chris@16 13 #endif
Chris@16 14 #include <boost/assert.hpp>
Chris@16 15
Chris@16 16 #ifdef BOOST_NO_STDC_NAMESPACE
Chris@16 17 namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
Chris@16 18 #endif
Chris@16 19
Chris@16 20 namespace boost{ namespace math{
Chris@16 21
Chris@16 22 template<class T>
Chris@16 23 inline std::complex<T> asin(const std::complex<T>& z)
Chris@16 24 {
Chris@16 25 //
Chris@16 26 // This implementation is a transcription of the pseudo-code in:
Chris@16 27 //
Chris@16 28 // "Implementing the complex Arcsine and Arccosine Functions using Exception Handling."
Chris@16 29 // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang.
Chris@16 30 // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997.
Chris@16 31 //
Chris@16 32
Chris@16 33 //
Chris@16 34 // These static constants should really be in a maths constants library,
Chris@16 35 // note that we have tweaked the value of a_crossover as per https://svn.boost.org/trac/boost/ticket/7290:
Chris@16 36 //
Chris@16 37 static const T one = static_cast<T>(1);
Chris@16 38 //static const T two = static_cast<T>(2);
Chris@16 39 static const T half = static_cast<T>(0.5L);
Chris@16 40 static const T a_crossover = static_cast<T>(10);
Chris@16 41 static const T b_crossover = static_cast<T>(0.6417L);
Chris@16 42 static const T s_pi = boost::math::constants::pi<T>();
Chris@16 43 static const T half_pi = s_pi / 2;
Chris@16 44 static const T log_two = boost::math::constants::ln_two<T>();
Chris@16 45 static const T quarter_pi = s_pi / 4;
Chris@16 46 #ifdef BOOST_MSVC
Chris@16 47 #pragma warning(push)
Chris@16 48 #pragma warning(disable:4127)
Chris@16 49 #endif
Chris@16 50 //
Chris@16 51 // Get real and imaginary parts, discard the signs as we can
Chris@16 52 // figure out the sign of the result later:
Chris@16 53 //
Chris@16 54 T x = std::fabs(z.real());
Chris@16 55 T y = std::fabs(z.imag());
Chris@16 56 T real, imag; // our results
Chris@16 57
Chris@16 58 //
Chris@16 59 // Begin by handling the special cases for infinities and nan's
Chris@16 60 // specified in C99, most of this is handled by the regular logic
Chris@16 61 // below, but handling it as a special case prevents overflow/underflow
Chris@16 62 // arithmetic which may trip up some machines:
Chris@16 63 //
Chris@16 64 if((boost::math::isnan)(x))
Chris@16 65 {
Chris@16 66 if((boost::math::isnan)(y))
Chris@16 67 return std::complex<T>(x, x);
Chris@16 68 if((boost::math::isinf)(y))
Chris@16 69 {
Chris@16 70 real = x;
Chris@16 71 imag = std::numeric_limits<T>::infinity();
Chris@16 72 }
Chris@16 73 else
Chris@16 74 return std::complex<T>(x, x);
Chris@16 75 }
Chris@16 76 else if((boost::math::isnan)(y))
Chris@16 77 {
Chris@16 78 if(x == 0)
Chris@16 79 {
Chris@16 80 real = 0;
Chris@16 81 imag = y;
Chris@16 82 }
Chris@16 83 else if((boost::math::isinf)(x))
Chris@16 84 {
Chris@16 85 real = y;
Chris@16 86 imag = std::numeric_limits<T>::infinity();
Chris@16 87 }
Chris@16 88 else
Chris@16 89 return std::complex<T>(y, y);
Chris@16 90 }
Chris@16 91 else if((boost::math::isinf)(x))
Chris@16 92 {
Chris@16 93 if((boost::math::isinf)(y))
Chris@16 94 {
Chris@16 95 real = quarter_pi;
Chris@16 96 imag = std::numeric_limits<T>::infinity();
Chris@16 97 }
Chris@16 98 else
Chris@16 99 {
Chris@16 100 real = half_pi;
Chris@16 101 imag = std::numeric_limits<T>::infinity();
Chris@16 102 }
Chris@16 103 }
Chris@16 104 else if((boost::math::isinf)(y))
Chris@16 105 {
Chris@16 106 real = 0;
Chris@16 107 imag = std::numeric_limits<T>::infinity();
Chris@16 108 }
Chris@16 109 else
Chris@16 110 {
Chris@16 111 //
Chris@16 112 // special case for real numbers:
Chris@16 113 //
Chris@16 114 if((y == 0) && (x <= one))
Chris@16 115 return std::complex<T>(std::asin(z.real()), z.imag());
Chris@16 116 //
Chris@16 117 // Figure out if our input is within the "safe area" identified by Hull et al.
Chris@16 118 // This would be more efficient with portable floating point exception handling;
Chris@16 119 // fortunately the quantities M and u identified by Hull et al (figure 3),
Chris@16 120 // match with the max and min methods of numeric_limits<T>.
Chris@16 121 //
Chris@16 122 T safe_max = detail::safe_max(static_cast<T>(8));
Chris@16 123 T safe_min = detail::safe_min(static_cast<T>(4));
Chris@16 124
Chris@16 125 T xp1 = one + x;
Chris@16 126 T xm1 = x - one;
Chris@16 127
Chris@16 128 if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min))
Chris@16 129 {
Chris@16 130 T yy = y * y;
Chris@16 131 T r = std::sqrt(xp1*xp1 + yy);
Chris@16 132 T s = std::sqrt(xm1*xm1 + yy);
Chris@16 133 T a = half * (r + s);
Chris@16 134 T b = x / a;
Chris@16 135
Chris@16 136 if(b <= b_crossover)
Chris@16 137 {
Chris@16 138 real = std::asin(b);
Chris@16 139 }
Chris@16 140 else
Chris@16 141 {
Chris@16 142 T apx = a + x;
Chris@16 143 if(x <= one)
Chris@16 144 {
Chris@16 145 real = std::atan(x/std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1))));
Chris@16 146 }
Chris@16 147 else
Chris@16 148 {
Chris@16 149 real = std::atan(x/(y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1)))));
Chris@16 150 }
Chris@16 151 }
Chris@16 152
Chris@16 153 if(a <= a_crossover)
Chris@16 154 {
Chris@16 155 T am1;
Chris@16 156 if(x < one)
Chris@16 157 {
Chris@16 158 am1 = half * (yy/(r + xp1) + yy/(s - xm1));
Chris@16 159 }
Chris@16 160 else
Chris@16 161 {
Chris@16 162 am1 = half * (yy/(r + xp1) + (s + xm1));
Chris@16 163 }
Chris@16 164 imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one)));
Chris@16 165 }
Chris@16 166 else
Chris@16 167 {
Chris@16 168 imag = std::log(a + std::sqrt(a*a - one));
Chris@16 169 }
Chris@16 170 }
Chris@16 171 else
Chris@16 172 {
Chris@16 173 //
Chris@16 174 // This is the Hull et al exception handling code from Fig 3 of their paper:
Chris@16 175 //
Chris@16 176 if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1)))
Chris@16 177 {
Chris@16 178 if(x < one)
Chris@16 179 {
Chris@16 180 real = std::asin(x);
Chris@16 181 imag = y / std::sqrt(-xp1*xm1);
Chris@16 182 }
Chris@16 183 else
Chris@16 184 {
Chris@16 185 real = half_pi;
Chris@16 186 if(((std::numeric_limits<T>::max)() / xp1) > xm1)
Chris@16 187 {
Chris@16 188 // xp1 * xm1 won't overflow:
Chris@16 189 imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1));
Chris@16 190 }
Chris@16 191 else
Chris@16 192 {
Chris@16 193 imag = log_two + std::log(x);
Chris@16 194 }
Chris@16 195 }
Chris@16 196 }
Chris@16 197 else if(y <= safe_min)
Chris@16 198 {
Chris@16 199 // There is an assumption in Hull et al's analysis that
Chris@16 200 // if we get here then x == 1. This is true for all "good"
Chris@16 201 // machines where :
Chris@16 202 //
Chris@16 203 // E^2 > 8*sqrt(u); with:
Chris@16 204 //
Chris@16 205 // E = std::numeric_limits<T>::epsilon()
Chris@16 206 // u = (std::numeric_limits<T>::min)()
Chris@16 207 //
Chris@16 208 // Hull et al provide alternative code for "bad" machines
Chris@16 209 // but we have no way to test that here, so for now just assert
Chris@16 210 // on the assumption:
Chris@16 211 //
Chris@16 212 BOOST_ASSERT(x == 1);
Chris@16 213 real = half_pi - std::sqrt(y);
Chris@16 214 imag = std::sqrt(y);
Chris@16 215 }
Chris@16 216 else if(std::numeric_limits<T>::epsilon() * y - one >= x)
Chris@16 217 {
Chris@16 218 real = x/y; // This can underflow!
Chris@16 219 imag = log_two + std::log(y);
Chris@16 220 }
Chris@16 221 else if(x > one)
Chris@16 222 {
Chris@16 223 real = std::atan(x/y);
Chris@16 224 T xoy = x/y;
Chris@16 225 imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy);
Chris@16 226 }
Chris@16 227 else
Chris@16 228 {
Chris@16 229 T a = std::sqrt(one + y*y);
Chris@16 230 real = x/a; // This can underflow!
Chris@16 231 imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a));
Chris@16 232 }
Chris@16 233 }
Chris@16 234 }
Chris@16 235
Chris@16 236 //
Chris@16 237 // Finish off by working out the sign of the result:
Chris@16 238 //
Chris@16 239 if((boost::math::signbit)(z.real()))
Chris@16 240 real = (boost::math::changesign)(real);
Chris@16 241 if((boost::math::signbit)(z.imag()))
Chris@16 242 imag = (boost::math::changesign)(imag);
Chris@16 243
Chris@16 244 return std::complex<T>(real, imag);
Chris@16 245 #ifdef BOOST_MSVC
Chris@16 246 #pragma warning(pop)
Chris@16 247 #endif
Chris@16 248 }
Chris@16 249
Chris@16 250 } } // namespaces
Chris@16 251
Chris@16 252 #endif // BOOST_MATH_COMPLEX_ASIN_INCLUDED