annotate DEPENDENCIES/generic/include/boost/lambda/detail/lambda_traits.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 // - lambda_traits.hpp --- Boost Lambda Library ----------------------------
Chris@16 2 //
Chris@16 3 // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
Chris@16 4 //
Chris@16 5 // Distributed under the Boost Software License, Version 1.0. (See
Chris@16 6 // accompanying file LICENSE_1_0.txt or copy at
Chris@16 7 // http://www.boost.org/LICENSE_1_0.txt)
Chris@16 8 //
Chris@16 9 // For more information, see www.boost.org
Chris@16 10 // -------------------------------------------------------------------------
Chris@16 11
Chris@16 12 #ifndef BOOST_LAMBDA_LAMBDA_TRAITS_HPP
Chris@16 13 #define BOOST_LAMBDA_LAMBDA_TRAITS_HPP
Chris@16 14
Chris@16 15 #include "boost/type_traits/transform_traits.hpp"
Chris@16 16 #include "boost/type_traits/cv_traits.hpp"
Chris@16 17 #include "boost/type_traits/function_traits.hpp"
Chris@16 18 #include "boost/type_traits/object_traits.hpp"
Chris@16 19 #include "boost/tuple/tuple.hpp"
Chris@16 20
Chris@16 21 namespace boost {
Chris@16 22 namespace lambda {
Chris@16 23
Chris@16 24 // -- if construct ------------------------------------------------
Chris@16 25 // Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
Chris@16 26
Chris@16 27 namespace detail {
Chris@16 28
Chris@16 29 template <bool If, class Then, class Else> struct IF { typedef Then RET; };
Chris@16 30
Chris@16 31 template <class Then, class Else> struct IF<false, Then, Else> {
Chris@16 32 typedef Else RET;
Chris@16 33 };
Chris@16 34
Chris@16 35
Chris@16 36 // An if construct that doesn't instantiate the non-matching template:
Chris@16 37
Chris@16 38 // Called as:
Chris@16 39 // IF_type<condition, A, B>::type
Chris@16 40 // The matching template must define the typeded 'type'
Chris@16 41 // I.e. A::type if condition is true, B::type if condition is false
Chris@16 42 // Idea from Vesa Karvonen (from C&E as well I guess)
Chris@16 43 template<class T>
Chris@16 44 struct IF_type_
Chris@16 45 {
Chris@16 46 typedef typename T::type type;
Chris@16 47 };
Chris@16 48
Chris@16 49
Chris@16 50 template<bool C, class T, class E>
Chris@16 51 struct IF_type
Chris@16 52 {
Chris@16 53 typedef typename
Chris@16 54 IF_type_<typename IF<C, T, E>::RET >::type type;
Chris@16 55 };
Chris@16 56
Chris@16 57 // helper that can be used to give typedef T to some type
Chris@16 58 template <class T> struct identity_mapping { typedef T type; };
Chris@16 59
Chris@16 60 // An if construct for finding an integral constant 'value'
Chris@16 61 // Does not instantiate the non-matching branch
Chris@16 62 // Called as IF_value<condition, A, B>::value
Chris@16 63 // If condition is true A::value must be defined, otherwise B::value
Chris@16 64
Chris@16 65 template<class T>
Chris@16 66 struct IF_value_
Chris@16 67 {
Chris@16 68 BOOST_STATIC_CONSTANT(int, value = T::value);
Chris@16 69 };
Chris@16 70
Chris@16 71
Chris@16 72 template<bool C, class T, class E>
Chris@16 73 struct IF_value
Chris@16 74 {
Chris@16 75 BOOST_STATIC_CONSTANT(int, value = (IF_value_<typename IF<C, T, E>::RET>::value));
Chris@16 76 };
Chris@16 77
Chris@16 78
Chris@16 79 // --------------------------------------------------------------
Chris@16 80
Chris@16 81 // removes reference from other than function types:
Chris@16 82 template<class T> class remove_reference_if_valid
Chris@16 83 {
Chris@16 84
Chris@16 85 typedef typename boost::remove_reference<T>::type plainT;
Chris@16 86 public:
Chris@16 87 typedef typename IF<
Chris@16 88 boost::is_function<plainT>::value,
Chris@16 89 T,
Chris@16 90 plainT
Chris@16 91 >::RET type;
Chris@16 92
Chris@16 93 };
Chris@16 94
Chris@16 95
Chris@16 96 template<class T> struct remove_reference_and_cv {
Chris@16 97 typedef typename boost::remove_cv<
Chris@16 98 typename boost::remove_reference<T>::type
Chris@16 99 >::type type;
Chris@16 100 };
Chris@16 101
Chris@16 102
Chris@16 103
Chris@16 104 // returns a reference to the element of tuple T
Chris@16 105 template<int N, class T> struct tuple_element_as_reference {
Chris@16 106 typedef typename
Chris@16 107 boost::tuples::access_traits<
Chris@16 108 typename boost::tuples::element<N, T>::type
Chris@16 109 >::non_const_type type;
Chris@16 110 };
Chris@16 111
Chris@16 112 // returns the cv and reverence stripped type of a tuple element
Chris@16 113 template<int N, class T> struct tuple_element_stripped {
Chris@16 114 typedef typename
Chris@16 115 remove_reference_and_cv<
Chris@16 116 typename boost::tuples::element<N, T>::type
Chris@16 117 >::type type;
Chris@16 118 };
Chris@16 119
Chris@16 120 // is_lambda_functor -------------------------------------------------
Chris@16 121
Chris@16 122 template <class T> struct is_lambda_functor_ {
Chris@16 123 BOOST_STATIC_CONSTANT(bool, value = false);
Chris@16 124 };
Chris@16 125
Chris@16 126 template <class Arg> struct is_lambda_functor_<lambda_functor<Arg> > {
Chris@16 127 BOOST_STATIC_CONSTANT(bool, value = true);
Chris@16 128 };
Chris@16 129
Chris@16 130 } // end detail
Chris@16 131
Chris@16 132
Chris@16 133 template <class T> struct is_lambda_functor {
Chris@16 134 BOOST_STATIC_CONSTANT(bool,
Chris@16 135 value =
Chris@16 136 detail::is_lambda_functor_<
Chris@16 137 typename detail::remove_reference_and_cv<T>::type
Chris@16 138 >::value);
Chris@16 139 };
Chris@16 140
Chris@16 141
Chris@16 142 namespace detail {
Chris@16 143
Chris@16 144 // -- parameter_traits_ ---------------------------------------------
Chris@16 145
Chris@16 146 // An internal parameter type traits class that respects
Chris@16 147 // the reference_wrapper class.
Chris@16 148
Chris@16 149 // The conversions performed are:
Chris@16 150 // references -> compile_time_error
Chris@16 151 // T1 -> T2,
Chris@16 152 // reference_wrapper<T> -> T&
Chris@16 153 // const array -> ref to const array
Chris@16 154 // array -> ref to array
Chris@16 155 // function -> ref to function
Chris@16 156
Chris@16 157 // ------------------------------------------------------------------------
Chris@16 158
Chris@16 159 template<class T1, class T2>
Chris@16 160 struct parameter_traits_ {
Chris@16 161 typedef T2 type;
Chris@16 162 };
Chris@16 163
Chris@16 164 // Do not instantiate with reference types
Chris@16 165 template<class T, class Any> struct parameter_traits_<T&, Any> {
Chris@16 166 typedef typename
Chris@16 167 generate_error<T&>::
Chris@16 168 parameter_traits_class_instantiated_with_reference_type type;
Chris@16 169 };
Chris@16 170
Chris@16 171 // Arrays can't be stored as plain types; convert them to references
Chris@16 172 template<class T, int n, class Any> struct parameter_traits_<T[n], Any> {
Chris@16 173 typedef T (&type)[n];
Chris@16 174 };
Chris@16 175
Chris@16 176 template<class T, int n, class Any>
Chris@16 177 struct parameter_traits_<const T[n], Any> {
Chris@16 178 typedef const T (&type)[n];
Chris@16 179 };
Chris@16 180
Chris@16 181 template<class T, int n, class Any>
Chris@16 182 struct parameter_traits_<volatile T[n], Any> {
Chris@16 183 typedef volatile T (&type)[n];
Chris@16 184 };
Chris@16 185 template<class T, int n, class Any>
Chris@16 186 struct parameter_traits_<const volatile T[n], Any> {
Chris@16 187 typedef const volatile T (&type)[n];
Chris@16 188 };
Chris@16 189
Chris@16 190
Chris@16 191 template<class T, class Any>
Chris@16 192 struct parameter_traits_<boost::reference_wrapper<T>, Any >{
Chris@16 193 typedef T& type;
Chris@16 194 };
Chris@16 195
Chris@16 196 template<class T, class Any>
Chris@16 197 struct parameter_traits_<const boost::reference_wrapper<T>, Any >{
Chris@16 198 typedef T& type;
Chris@16 199 };
Chris@16 200
Chris@16 201 template<class T, class Any>
Chris@16 202 struct parameter_traits_<volatile boost::reference_wrapper<T>, Any >{
Chris@16 203 typedef T& type;
Chris@16 204 };
Chris@16 205
Chris@16 206 template<class T, class Any>
Chris@16 207 struct parameter_traits_<const volatile boost::reference_wrapper<T>, Any >{
Chris@16 208 typedef T& type;
Chris@16 209 };
Chris@16 210
Chris@16 211 template<class Any>
Chris@16 212 struct parameter_traits_<void, Any> {
Chris@16 213 typedef void type;
Chris@16 214 };
Chris@16 215
Chris@16 216 template<class Arg, class Any>
Chris@16 217 struct parameter_traits_<lambda_functor<Arg>, Any > {
Chris@16 218 typedef lambda_functor<Arg> type;
Chris@16 219 };
Chris@16 220
Chris@16 221 template<class Arg, class Any>
Chris@16 222 struct parameter_traits_<const lambda_functor<Arg>, Any > {
Chris@16 223 typedef lambda_functor<Arg> type;
Chris@16 224 };
Chris@16 225
Chris@16 226 // Are the volatile versions needed?
Chris@16 227 template<class Arg, class Any>
Chris@16 228 struct parameter_traits_<volatile lambda_functor<Arg>, Any > {
Chris@16 229 typedef lambda_functor<Arg> type;
Chris@16 230 };
Chris@16 231
Chris@16 232 template<class Arg, class Any>
Chris@16 233 struct parameter_traits_<const volatile lambda_functor<Arg>, Any > {
Chris@16 234 typedef lambda_functor<Arg> type;
Chris@16 235 };
Chris@16 236
Chris@16 237 } // end namespace detail
Chris@16 238
Chris@16 239
Chris@16 240 // ------------------------------------------------------------------------
Chris@16 241 // traits classes for lambda expressions (bind functions, operators ...)
Chris@16 242
Chris@16 243 // must be instantiated with non-reference types
Chris@16 244
Chris@16 245 // The default is const plain type -------------------------
Chris@16 246 // const T -> const T,
Chris@16 247 // T -> const T,
Chris@16 248 // references -> compile_time_error
Chris@16 249 // reference_wrapper<T> -> T&
Chris@16 250 // array -> const ref array
Chris@16 251 template<class T>
Chris@16 252 struct const_copy_argument {
Chris@16 253 typedef typename
Chris@16 254 detail::parameter_traits_<
Chris@16 255 T,
Chris@16 256 typename detail::IF<boost::is_function<T>::value, T&, const T>::RET
Chris@16 257 >::type type;
Chris@16 258 };
Chris@16 259
Chris@16 260 // T may be a function type. Without the IF test, const would be added
Chris@16 261 // to a function type, which is illegal.
Chris@16 262
Chris@16 263 // all arrays are converted to const.
Chris@16 264 // This traits template is used for 'const T&' parameter passing
Chris@16 265 // and thus the knowledge of the potential
Chris@16 266 // non-constness of an actual argument is lost.
Chris@16 267 template<class T, int n> struct const_copy_argument <T[n]> {
Chris@16 268 typedef const T (&type)[n];
Chris@16 269 };
Chris@16 270 template<class T, int n> struct const_copy_argument <volatile T[n]> {
Chris@16 271 typedef const volatile T (&type)[n];
Chris@16 272 };
Chris@16 273
Chris@16 274 template<class T>
Chris@16 275 struct const_copy_argument<T&> {};
Chris@16 276 // do not instantiate with references
Chris@16 277 // typedef typename detail::generate_error<T&>::references_not_allowed type;
Chris@16 278
Chris@16 279
Chris@16 280 template<>
Chris@16 281 struct const_copy_argument<void> {
Chris@16 282 typedef void type;
Chris@16 283 };
Chris@16 284
Chris@16 285
Chris@16 286 // Does the same as const_copy_argument, but passes references through as such
Chris@16 287 template<class T>
Chris@16 288 struct bound_argument_conversion {
Chris@16 289 typedef typename const_copy_argument<T>::type type;
Chris@16 290 };
Chris@16 291
Chris@16 292 template<class T>
Chris@16 293 struct bound_argument_conversion<T&> {
Chris@16 294 typedef T& type;
Chris@16 295 };
Chris@16 296
Chris@16 297 // The default is non-const reference -------------------------
Chris@16 298 // const T -> const T&,
Chris@16 299 // T -> T&,
Chris@16 300 // references -> compile_time_error
Chris@16 301 // reference_wrapper<T> -> T&
Chris@16 302 template<class T>
Chris@16 303 struct reference_argument {
Chris@16 304 typedef typename detail::parameter_traits_<T, T&>::type type;
Chris@16 305 };
Chris@16 306
Chris@16 307 template<class T>
Chris@16 308 struct reference_argument<T&> {
Chris@16 309 typedef typename detail::generate_error<T&>::references_not_allowed type;
Chris@16 310 };
Chris@16 311
Chris@16 312 template<class Arg>
Chris@16 313 struct reference_argument<lambda_functor<Arg> > {
Chris@16 314 typedef lambda_functor<Arg> type;
Chris@16 315 };
Chris@16 316
Chris@16 317 template<class Arg>
Chris@16 318 struct reference_argument<const lambda_functor<Arg> > {
Chris@16 319 typedef lambda_functor<Arg> type;
Chris@16 320 };
Chris@16 321
Chris@16 322 // Are the volatile versions needed?
Chris@16 323 template<class Arg>
Chris@16 324 struct reference_argument<volatile lambda_functor<Arg> > {
Chris@16 325 typedef lambda_functor<Arg> type;
Chris@16 326 };
Chris@16 327
Chris@16 328 template<class Arg>
Chris@16 329 struct reference_argument<const volatile lambda_functor<Arg> > {
Chris@16 330 typedef lambda_functor<Arg> type;
Chris@16 331 };
Chris@16 332
Chris@16 333 template<>
Chris@16 334 struct reference_argument<void> {
Chris@16 335 typedef void type;
Chris@16 336 };
Chris@16 337
Chris@16 338 namespace detail {
Chris@16 339
Chris@16 340 // Array to pointer conversion
Chris@16 341 template <class T>
Chris@16 342 struct array_to_pointer {
Chris@16 343 typedef T type;
Chris@16 344 };
Chris@16 345
Chris@16 346 template <class T, int N>
Chris@16 347 struct array_to_pointer <const T[N]> {
Chris@16 348 typedef const T* type;
Chris@16 349 };
Chris@16 350 template <class T, int N>
Chris@16 351 struct array_to_pointer <T[N]> {
Chris@16 352 typedef T* type;
Chris@16 353 };
Chris@16 354
Chris@16 355 template <class T, int N>
Chris@16 356 struct array_to_pointer <const T (&) [N]> {
Chris@16 357 typedef const T* type;
Chris@16 358 };
Chris@16 359 template <class T, int N>
Chris@16 360 struct array_to_pointer <T (&) [N]> {
Chris@16 361 typedef T* type;
Chris@16 362 };
Chris@16 363
Chris@16 364
Chris@16 365 // ---------------------------------------------------------------------------
Chris@16 366 // The call_traits for bind
Chris@16 367 // Respects the reference_wrapper class.
Chris@16 368
Chris@16 369 // These templates are used outside of bind functions as well.
Chris@16 370 // the bind_tuple_mapper provides a shorter notation for default
Chris@16 371 // bound argument storing semantics, if all arguments are treated
Chris@16 372 // uniformly.
Chris@16 373
Chris@16 374 // from template<class T> foo(const T& t) : bind_traits<const T>::type
Chris@16 375 // from template<class T> foo(T& t) : bind_traits<T>::type
Chris@16 376
Chris@16 377 // Conversions:
Chris@16 378 // T -> const T,
Chris@16 379 // cv T -> cv T,
Chris@16 380 // T& -> T&
Chris@16 381 // reference_wrapper<T> -> T&
Chris@16 382 // const reference_wrapper<T> -> T&
Chris@16 383 // array -> const ref array
Chris@16 384
Chris@16 385 // make bound arguments const, this is a deliberate design choice, the
Chris@16 386 // purpose is to prevent side effects to bound arguments that are stored
Chris@16 387 // as copies
Chris@16 388 template<class T>
Chris@16 389 struct bind_traits {
Chris@16 390 typedef const T type;
Chris@16 391 };
Chris@16 392
Chris@16 393 template<class T>
Chris@16 394 struct bind_traits<T&> {
Chris@16 395 typedef T& type;
Chris@16 396 };
Chris@16 397
Chris@16 398 // null_types are an exception, we always want to store them as non const
Chris@16 399 // so that other templates can assume that null_type is always without const
Chris@16 400 template<>
Chris@16 401 struct bind_traits<null_type> {
Chris@16 402 typedef null_type type;
Chris@16 403 };
Chris@16 404
Chris@16 405 // the bind_tuple_mapper, bind_type_generators may
Chris@16 406 // introduce const to null_type
Chris@16 407 template<>
Chris@16 408 struct bind_traits<const null_type> {
Chris@16 409 typedef null_type type;
Chris@16 410 };
Chris@16 411
Chris@16 412 // Arrays can't be stored as plain types; convert them to references.
Chris@16 413 // All arrays are converted to const. This is because bind takes its
Chris@16 414 // parameters as const T& and thus the knowledge of the potential
Chris@16 415 // non-constness of actual argument is lost.
Chris@16 416 template<class T, int n> struct bind_traits <T[n]> {
Chris@16 417 typedef const T (&type)[n];
Chris@16 418 };
Chris@16 419
Chris@16 420 template<class T, int n>
Chris@16 421 struct bind_traits<const T[n]> {
Chris@16 422 typedef const T (&type)[n];
Chris@16 423 };
Chris@16 424
Chris@16 425 template<class T, int n> struct bind_traits<volatile T[n]> {
Chris@16 426 typedef const volatile T (&type)[n];
Chris@16 427 };
Chris@16 428
Chris@16 429 template<class T, int n>
Chris@16 430 struct bind_traits<const volatile T[n]> {
Chris@16 431 typedef const volatile T (&type)[n];
Chris@16 432 };
Chris@16 433
Chris@16 434 template<class R>
Chris@16 435 struct bind_traits<R()> {
Chris@16 436 typedef R(&type)();
Chris@16 437 };
Chris@16 438
Chris@16 439 template<class R, class Arg1>
Chris@16 440 struct bind_traits<R(Arg1)> {
Chris@16 441 typedef R(&type)(Arg1);
Chris@16 442 };
Chris@16 443
Chris@16 444 template<class R, class Arg1, class Arg2>
Chris@16 445 struct bind_traits<R(Arg1, Arg2)> {
Chris@16 446 typedef R(&type)(Arg1, Arg2);
Chris@16 447 };
Chris@16 448
Chris@16 449 template<class R, class Arg1, class Arg2, class Arg3>
Chris@16 450 struct bind_traits<R(Arg1, Arg2, Arg3)> {
Chris@16 451 typedef R(&type)(Arg1, Arg2, Arg3);
Chris@16 452 };
Chris@16 453
Chris@16 454 template<class R, class Arg1, class Arg2, class Arg3, class Arg4>
Chris@16 455 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4)> {
Chris@16 456 typedef R(&type)(Arg1, Arg2, Arg3, Arg4);
Chris@16 457 };
Chris@16 458
Chris@16 459 template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
Chris@16 460 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5)> {
Chris@16 461 typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5);
Chris@16 462 };
Chris@16 463
Chris@16 464 template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6>
Chris@16 465 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
Chris@16 466 typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6);
Chris@16 467 };
Chris@16 468
Chris@16 469 template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7>
Chris@16 470 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
Chris@16 471 typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7);
Chris@16 472 };
Chris@16 473
Chris@16 474 template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8>
Chris@16 475 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
Chris@16 476 typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8);
Chris@16 477 };
Chris@16 478
Chris@16 479 template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9>
Chris@16 480 struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
Chris@16 481 typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9);
Chris@16 482 };
Chris@16 483
Chris@16 484 template<class T>
Chris@16 485 struct bind_traits<reference_wrapper<T> >{
Chris@16 486 typedef T& type;
Chris@16 487 };
Chris@16 488
Chris@16 489 template<class T>
Chris@16 490 struct bind_traits<const reference_wrapper<T> >{
Chris@16 491 typedef T& type;
Chris@16 492 };
Chris@16 493
Chris@16 494 template<>
Chris@16 495 struct bind_traits<void> {
Chris@16 496 typedef void type;
Chris@16 497 };
Chris@16 498
Chris@16 499
Chris@16 500
Chris@16 501 template <
Chris@16 502 class T0 = null_type, class T1 = null_type, class T2 = null_type,
Chris@16 503 class T3 = null_type, class T4 = null_type, class T5 = null_type,
Chris@16 504 class T6 = null_type, class T7 = null_type, class T8 = null_type,
Chris@16 505 class T9 = null_type
Chris@16 506 >
Chris@16 507 struct bind_tuple_mapper {
Chris@16 508 typedef
Chris@16 509 tuple<typename bind_traits<T0>::type,
Chris@16 510 typename bind_traits<T1>::type,
Chris@16 511 typename bind_traits<T2>::type,
Chris@16 512 typename bind_traits<T3>::type,
Chris@16 513 typename bind_traits<T4>::type,
Chris@16 514 typename bind_traits<T5>::type,
Chris@16 515 typename bind_traits<T6>::type,
Chris@16 516 typename bind_traits<T7>::type,
Chris@16 517 typename bind_traits<T8>::type,
Chris@16 518 typename bind_traits<T9>::type> type;
Chris@16 519 };
Chris@16 520
Chris@16 521 // bind_traits, except map const T& -> const T
Chris@16 522 // this is needed e.g. in currying. Const reference arguments can
Chris@16 523 // refer to temporaries, so it is not safe to store them as references.
Chris@16 524 template <class T> struct remove_const_reference {
Chris@16 525 typedef typename bind_traits<T>::type type;
Chris@16 526 };
Chris@16 527
Chris@16 528 template <class T> struct remove_const_reference<const T&> {
Chris@16 529 typedef const T type;
Chris@16 530 };
Chris@16 531
Chris@16 532
Chris@16 533 // maps the bind argument types to the resulting lambda functor type
Chris@16 534 template <
Chris@16 535 class T0 = null_type, class T1 = null_type, class T2 = null_type,
Chris@16 536 class T3 = null_type, class T4 = null_type, class T5 = null_type,
Chris@16 537 class T6 = null_type, class T7 = null_type, class T8 = null_type,
Chris@16 538 class T9 = null_type
Chris@16 539 >
Chris@16 540 class bind_type_generator {
Chris@16 541
Chris@16 542 typedef typename
Chris@16 543 detail::bind_tuple_mapper<
Chris@16 544 T0, T1, T2, T3, T4, T5, T6, T7, T8, T9
Chris@16 545 >::type args_t;
Chris@16 546
Chris@16 547 BOOST_STATIC_CONSTANT(int, nof_elems = boost::tuples::length<args_t>::value);
Chris@16 548
Chris@16 549 typedef
Chris@16 550 action<
Chris@16 551 nof_elems,
Chris@16 552 function_action<nof_elems>
Chris@16 553 > action_type;
Chris@16 554
Chris@16 555 public:
Chris@16 556 typedef
Chris@16 557 lambda_functor<
Chris@16 558 lambda_functor_base<
Chris@16 559 action_type,
Chris@16 560 args_t
Chris@16 561 >
Chris@16 562 > type;
Chris@16 563
Chris@16 564 };
Chris@16 565
Chris@16 566
Chris@16 567
Chris@16 568 } // detail
Chris@16 569
Chris@16 570 template <class T> inline const T& make_const(const T& t) { return t; }
Chris@16 571
Chris@16 572
Chris@16 573 } // end of namespace lambda
Chris@16 574 } // end of namespace boost
Chris@16 575
Chris@16 576
Chris@16 577
Chris@16 578 #endif // BOOST_LAMBDA_TRAITS_HPP