annotate DEPENDENCIES/generic/include/boost/iterator/zip_iterator.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // Copyright David Abrahams and Thomas Becker 2000-2006. Distributed
Chris@16 2 // under the Boost Software License, Version 1.0. (See accompanying
Chris@16 3 // file LICENSE_1_0.txt or copy at
Chris@16 4 // http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5
Chris@16 6 #ifndef BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_
Chris@16 7 # define BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_
Chris@16 8
Chris@16 9 #include <stddef.h>
Chris@16 10 #include <boost/iterator.hpp>
Chris@16 11 #include <boost/iterator/iterator_traits.hpp>
Chris@16 12 #include <boost/iterator/iterator_facade.hpp>
Chris@16 13 #include <boost/iterator/iterator_adaptor.hpp> // for enable_if_convertible
Chris@16 14 #include <boost/iterator/iterator_categories.hpp>
Chris@16 15 #include <boost/detail/iterator.hpp>
Chris@16 16
Chris@101 17 #include <boost/iterator/minimum_category.hpp>
Chris@16 18
Chris@16 19 #include <boost/tuple/tuple.hpp>
Chris@16 20
Chris@16 21 #include <boost/type_traits/is_same.hpp>
Chris@16 22 #include <boost/mpl/and.hpp>
Chris@16 23 #include <boost/mpl/apply.hpp>
Chris@16 24 #include <boost/mpl/eval_if.hpp>
Chris@16 25 #include <boost/mpl/lambda.hpp>
Chris@16 26 #include <boost/mpl/placeholders.hpp>
Chris@16 27 #include <boost/mpl/aux_/lambda_support.hpp>
Chris@16 28
Chris@16 29 namespace boost {
Chris@101 30 namespace iterators {
Chris@16 31
Chris@16 32 // Zip iterator forward declaration for zip_iterator_base
Chris@16 33 template<typename IteratorTuple>
Chris@16 34 class zip_iterator;
Chris@16 35
Chris@16 36 // One important design goal of the zip_iterator is to isolate all
Chris@16 37 // functionality whose implementation relies on the current tuple
Chris@16 38 // implementation. This goal has been achieved as follows: Inside
Chris@16 39 // the namespace detail there is a namespace tuple_impl_specific.
Chris@16 40 // This namespace encapsulates all functionality that is specific
Chris@16 41 // to the current Boost tuple implementation. More precisely, the
Chris@16 42 // namespace tuple_impl_specific provides the following tuple
Chris@16 43 // algorithms and meta-algorithms for the current Boost tuple
Chris@16 44 // implementation:
Chris@16 45 //
Chris@16 46 // tuple_meta_transform
Chris@16 47 // tuple_meta_accumulate
Chris@16 48 // tuple_transform
Chris@16 49 // tuple_for_each
Chris@16 50 //
Chris@16 51 // If the tuple implementation changes, all that needs to be
Chris@16 52 // replaced is the implementation of these four (meta-)algorithms.
Chris@16 53
Chris@16 54 namespace detail
Chris@16 55 {
Chris@16 56
Chris@16 57 // Functors to be used with tuple algorithms
Chris@16 58 //
Chris@16 59 template<typename DiffType>
Chris@16 60 class advance_iterator
Chris@16 61 {
Chris@16 62 public:
Chris@16 63 advance_iterator(DiffType step) : m_step(step) {}
Chris@101 64
Chris@16 65 template<typename Iterator>
Chris@16 66 void operator()(Iterator& it) const
Chris@16 67 { it += m_step; }
Chris@16 68
Chris@16 69 private:
Chris@16 70 DiffType m_step;
Chris@16 71 };
Chris@16 72 //
Chris@16 73 struct increment_iterator
Chris@16 74 {
Chris@16 75 template<typename Iterator>
Chris@16 76 void operator()(Iterator& it)
Chris@16 77 { ++it; }
Chris@16 78 };
Chris@16 79 //
Chris@16 80 struct decrement_iterator
Chris@16 81 {
Chris@16 82 template<typename Iterator>
Chris@16 83 void operator()(Iterator& it)
Chris@16 84 { --it; }
Chris@16 85 };
Chris@16 86 //
Chris@16 87 struct dereference_iterator
Chris@16 88 {
Chris@16 89 template<typename Iterator>
Chris@16 90 struct apply
Chris@101 91 {
Chris@16 92 typedef typename
Chris@101 93 boost::detail::iterator_traits<Iterator>::reference
Chris@16 94 type;
Chris@16 95 };
Chris@16 96
Chris@16 97 template<typename Iterator>
Chris@16 98 typename apply<Iterator>::type operator()(Iterator const& it)
Chris@16 99 { return *it; }
Chris@16 100 };
Chris@101 101
Chris@16 102
Chris@16 103 // The namespace tuple_impl_specific provides two meta-
Chris@16 104 // algorithms and two algorithms for tuples.
Chris@16 105 //
Chris@16 106 namespace tuple_impl_specific
Chris@16 107 {
Chris@16 108 // Meta-transform algorithm for tuples
Chris@16 109 //
Chris@16 110 template<typename Tuple, class UnaryMetaFun>
Chris@16 111 struct tuple_meta_transform;
Chris@101 112
Chris@16 113 template<typename Tuple, class UnaryMetaFun>
Chris@16 114 struct tuple_meta_transform_impl
Chris@16 115 {
Chris@16 116 typedef tuples::cons<
Chris@16 117 typename mpl::apply1<
Chris@16 118 typename mpl::lambda<UnaryMetaFun>::type
Chris@16 119 , typename Tuple::head_type
Chris@16 120 >::type
Chris@16 121 , typename tuple_meta_transform<
Chris@16 122 typename Tuple::tail_type
Chris@101 123 , UnaryMetaFun
Chris@16 124 >::type
Chris@16 125 > type;
Chris@16 126 };
Chris@16 127
Chris@16 128 template<typename Tuple, class UnaryMetaFun>
Chris@16 129 struct tuple_meta_transform
Chris@16 130 : mpl::eval_if<
Chris@16 131 boost::is_same<Tuple, tuples::null_type>
Chris@16 132 , mpl::identity<tuples::null_type>
Chris@16 133 , tuple_meta_transform_impl<Tuple, UnaryMetaFun>
Chris@16 134 >
Chris@16 135 {
Chris@16 136 };
Chris@101 137
Chris@101 138 // Meta-accumulate algorithm for tuples. Note: The template
Chris@101 139 // parameter StartType corresponds to the initial value in
Chris@16 140 // ordinary accumulation.
Chris@16 141 //
Chris@16 142 template<class Tuple, class BinaryMetaFun, class StartType>
Chris@16 143 struct tuple_meta_accumulate;
Chris@101 144
Chris@16 145 template<
Chris@16 146 typename Tuple
Chris@16 147 , class BinaryMetaFun
Chris@16 148 , typename StartType
Chris@16 149 >
Chris@16 150 struct tuple_meta_accumulate_impl
Chris@16 151 {
Chris@16 152 typedef typename mpl::apply2<
Chris@16 153 typename mpl::lambda<BinaryMetaFun>::type
Chris@16 154 , typename Tuple::head_type
Chris@16 155 , typename tuple_meta_accumulate<
Chris@16 156 typename Tuple::tail_type
Chris@16 157 , BinaryMetaFun
Chris@101 158 , StartType
Chris@16 159 >::type
Chris@16 160 >::type type;
Chris@16 161 };
Chris@16 162
Chris@16 163 template<
Chris@16 164 typename Tuple
Chris@16 165 , class BinaryMetaFun
Chris@16 166 , typename StartType
Chris@16 167 >
Chris@16 168 struct tuple_meta_accumulate
Chris@16 169 : mpl::eval_if<
Chris@16 170 boost::is_same<Tuple, tuples::null_type>
Chris@16 171 , mpl::identity<StartType>
Chris@16 172 , tuple_meta_accumulate_impl<
Chris@16 173 Tuple
Chris@16 174 , BinaryMetaFun
Chris@16 175 , StartType
Chris@16 176 >
Chris@16 177 >
Chris@16 178 {
Chris@101 179 };
Chris@16 180
Chris@16 181 #if defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) \
Chris@16 182 || ( \
Chris@16 183 BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION, != 0) && defined(_MSC_VER) \
Chris@16 184 )
Chris@16 185 // Not sure why intel's partial ordering fails in this case, but I'm
Chris@16 186 // assuming int's an MSVC bug-compatibility feature.
Chris@101 187
Chris@16 188 # define BOOST_TUPLE_ALGO_DISPATCH
Chris@16 189 # define BOOST_TUPLE_ALGO(algo) algo##_impl
Chris@16 190 # define BOOST_TUPLE_ALGO_TERMINATOR , int
Chris@16 191 # define BOOST_TUPLE_ALGO_RECURSE , ...
Chris@101 192 #else
Chris@16 193 # define BOOST_TUPLE_ALGO(algo) algo
Chris@16 194 # define BOOST_TUPLE_ALGO_TERMINATOR
Chris@16 195 # define BOOST_TUPLE_ALGO_RECURSE
Chris@16 196 #endif
Chris@101 197
Chris@16 198 // transform algorithm for tuples. The template parameter Fun
Chris@16 199 // must be a unary functor which is also a unary metafunction
Chris@16 200 // class that computes its return type based on its argument
Chris@16 201 // type. For example:
Chris@16 202 //
Chris@16 203 // struct to_ptr
Chris@16 204 // {
Chris@16 205 // template <class Arg>
Chris@16 206 // struct apply
Chris@16 207 // {
Chris@16 208 // typedef Arg* type;
Chris@16 209 // }
Chris@16 210 //
Chris@16 211 // template <class Arg>
Chris@16 212 // Arg* operator()(Arg x);
Chris@16 213 // };
Chris@16 214 template<typename Fun>
Chris@101 215 inline tuples::null_type BOOST_TUPLE_ALGO(tuple_transform)
Chris@16 216 (tuples::null_type const&, Fun BOOST_TUPLE_ALGO_TERMINATOR)
Chris@16 217 { return tuples::null_type(); }
Chris@16 218
Chris@16 219 template<typename Tuple, typename Fun>
Chris@101 220 inline typename tuple_meta_transform<
Chris@16 221 Tuple
Chris@16 222 , Fun
Chris@16 223 >::type
Chris@101 224
Chris@16 225 BOOST_TUPLE_ALGO(tuple_transform)(
Chris@101 226 const Tuple& t,
Chris@16 227 Fun f
Chris@16 228 BOOST_TUPLE_ALGO_RECURSE
Chris@16 229 )
Chris@101 230 {
Chris@16 231 typedef typename tuple_meta_transform<
Chris@16 232 BOOST_DEDUCED_TYPENAME Tuple::tail_type
Chris@16 233 , Fun
Chris@16 234 >::type transformed_tail_type;
Chris@16 235
Chris@16 236 return tuples::cons<
Chris@16 237 BOOST_DEDUCED_TYPENAME mpl::apply1<
Chris@16 238 Fun, BOOST_DEDUCED_TYPENAME Tuple::head_type
Chris@16 239 >::type
Chris@16 240 , transformed_tail_type
Chris@101 241 >(
Chris@16 242 f(boost::tuples::get<0>(t)), tuple_transform(t.get_tail(), f)
Chris@16 243 );
Chris@16 244 }
Chris@16 245
Chris@16 246 #ifdef BOOST_TUPLE_ALGO_DISPATCH
Chris@16 247 template<typename Tuple, typename Fun>
Chris@101 248 inline typename tuple_meta_transform<
Chris@16 249 Tuple
Chris@16 250 , Fun
Chris@16 251 >::type
Chris@101 252
Chris@16 253 tuple_transform(
Chris@101 254 const Tuple& t,
Chris@16 255 Fun f
Chris@16 256 )
Chris@16 257 {
Chris@16 258 return tuple_transform_impl(t, f, 1);
Chris@16 259 }
Chris@16 260 #endif
Chris@101 261
Chris@16 262 // for_each algorithm for tuples.
Chris@16 263 //
Chris@16 264 template<typename Fun>
Chris@101 265 inline Fun BOOST_TUPLE_ALGO(tuple_for_each)(
Chris@16 266 tuples::null_type
Chris@16 267 , Fun f BOOST_TUPLE_ALGO_TERMINATOR
Chris@16 268 )
Chris@16 269 { return f; }
Chris@16 270
Chris@101 271
Chris@16 272 template<typename Tuple, typename Fun>
Chris@101 273 inline Fun BOOST_TUPLE_ALGO(tuple_for_each)(
Chris@16 274 Tuple& t
Chris@16 275 , Fun f BOOST_TUPLE_ALGO_RECURSE)
Chris@101 276 {
Chris@16 277 f( t.get_head() );
Chris@16 278 return tuple_for_each(t.get_tail(), f);
Chris@16 279 }
Chris@101 280
Chris@16 281 #ifdef BOOST_TUPLE_ALGO_DISPATCH
Chris@16 282 template<typename Tuple, typename Fun>
Chris@101 283 inline Fun
Chris@16 284 tuple_for_each(
Chris@101 285 Tuple& t,
Chris@16 286 Fun f
Chris@16 287 )
Chris@16 288 {
Chris@16 289 return tuple_for_each_impl(t, f, 1);
Chris@16 290 }
Chris@16 291 #endif
Chris@101 292
Chris@16 293 // Equality of tuples. NOTE: "==" for tuples currently (7/2003)
Chris@16 294 // has problems under some compilers, so I just do my own.
Chris@16 295 // No point in bringing in a bunch of #ifdefs here. This is
Chris@16 296 // going to go away with the next tuple implementation anyway.
Chris@16 297 //
Chris@16 298 inline bool tuple_equal(tuples::null_type, tuples::null_type)
Chris@16 299 { return true; }
Chris@16 300
Chris@16 301 template<typename Tuple1, typename Tuple2>
Chris@101 302 inline bool tuple_equal(Tuple1 const& t1, Tuple2 const& t2)
Chris@101 303 {
Chris@101 304 return t1.get_head() == t2.get_head() &&
Chris@16 305 tuple_equal(t1.get_tail(), t2.get_tail());
Chris@16 306 }
Chris@16 307 }
Chris@16 308 //
Chris@16 309 // end namespace tuple_impl_specific
Chris@16 310
Chris@16 311 template<typename Iterator>
Chris@16 312 struct iterator_reference
Chris@16 313 {
Chris@101 314 typedef typename boost::detail::iterator_traits<Iterator>::reference type;
Chris@16 315 };
Chris@16 316
Chris@16 317 #ifdef BOOST_MPL_CFG_NO_FULL_LAMBDA_SUPPORT
Chris@16 318 // Hack because BOOST_MPL_AUX_LAMBDA_SUPPORT doesn't seem to work
Chris@16 319 // out well. Instantiating the nested apply template also
Chris@16 320 // requires instantiating iterator_traits on the
Chris@16 321 // placeholder. Instead we just specialize it as a metafunction
Chris@16 322 // class.
Chris@16 323 template<>
Chris@16 324 struct iterator_reference<mpl::_1>
Chris@16 325 {
Chris@16 326 template <class T>
Chris@16 327 struct apply : iterator_reference<T> {};
Chris@16 328 };
Chris@16 329 #endif
Chris@101 330
Chris@16 331 // Metafunction to obtain the type of the tuple whose element types
Chris@16 332 // are the reference types of an iterator tuple.
Chris@16 333 //
Chris@16 334 template<typename IteratorTuple>
Chris@16 335 struct tuple_of_references
Chris@16 336 : tuple_impl_specific::tuple_meta_transform<
Chris@101 337 IteratorTuple,
Chris@16 338 iterator_reference<mpl::_1>
Chris@16 339 >
Chris@16 340 {
Chris@16 341 };
Chris@16 342
Chris@16 343 // Metafunction to obtain the minimal traversal tag in a tuple
Chris@16 344 // of iterators.
Chris@16 345 //
Chris@16 346 template<typename IteratorTuple>
Chris@16 347 struct minimum_traversal_category_in_iterator_tuple
Chris@16 348 {
Chris@16 349 typedef typename tuple_impl_specific::tuple_meta_transform<
Chris@16 350 IteratorTuple
Chris@16 351 , pure_traversal_tag<iterator_traversal<> >
Chris@16 352 >::type tuple_of_traversal_tags;
Chris@101 353
Chris@16 354 typedef typename tuple_impl_specific::tuple_meta_accumulate<
Chris@16 355 tuple_of_traversal_tags
Chris@16 356 , minimum_category<>
Chris@16 357 , random_access_traversal_tag
Chris@16 358 >::type type;
Chris@16 359 };
Chris@16 360
Chris@16 361 // We need to call tuple_meta_accumulate with mpl::and_ as the
Chris@16 362 // accumulating functor. To this end, we need to wrap it into
Chris@16 363 // a struct that has exactly two arguments (that is, template
Chris@16 364 // parameters) and not five, like mpl::and_ does.
Chris@16 365 //
Chris@16 366 template<typename Arg1, typename Arg2>
Chris@16 367 struct and_with_two_args
Chris@16 368 : mpl::and_<Arg1, Arg2>
Chris@16 369 {
Chris@16 370 };
Chris@101 371
Chris@16 372 # ifdef BOOST_MPL_CFG_NO_FULL_LAMBDA_SUPPORT
Chris@16 373 // Hack because BOOST_MPL_AUX_LAMBDA_SUPPORT doesn't seem to work
Chris@16 374 // out well. In this case I think it's an MPL bug
Chris@16 375 template<>
Chris@16 376 struct and_with_two_args<mpl::_1,mpl::_2>
Chris@16 377 {
Chris@16 378 template <class A1, class A2>
Chris@16 379 struct apply : mpl::and_<A1,A2>
Chris@16 380 {};
Chris@16 381 };
Chris@101 382 # endif
Chris@16 383
Chris@16 384 ///////////////////////////////////////////////////////////////////
Chris@16 385 //
Chris@16 386 // Class zip_iterator_base
Chris@16 387 //
Chris@101 388 // Builds and exposes the iterator facade type from which the zip
Chris@16 389 // iterator will be derived.
Chris@16 390 //
Chris@16 391 template<typename IteratorTuple>
Chris@16 392 struct zip_iterator_base
Chris@16 393 {
Chris@16 394 private:
Chris@16 395 // Reference type is the type of the tuple obtained from the
Chris@16 396 // iterators' reference types.
Chris@101 397 typedef typename
Chris@16 398 detail::tuple_of_references<IteratorTuple>::type reference;
Chris@101 399
Chris@16 400 // Value type is the same as reference type.
Chris@16 401 typedef reference value_type;
Chris@101 402
Chris@16 403 // Difference type is the first iterator's difference type
Chris@101 404 typedef typename boost::detail::iterator_traits<
Chris@16 405 typename tuples::element<0, IteratorTuple>::type
Chris@16 406 >::difference_type difference_type;
Chris@101 407
Chris@101 408 // Traversal catetgory is the minimum traversal category in the
Chris@16 409 // iterator tuple.
Chris@101 410 typedef typename
Chris@16 411 detail::minimum_traversal_category_in_iterator_tuple<
Chris@16 412 IteratorTuple
Chris@16 413 >::type traversal_category;
Chris@16 414 public:
Chris@101 415
Chris@16 416 // The iterator facade type from which the zip iterator will
Chris@16 417 // be derived.
Chris@16 418 typedef iterator_facade<
Chris@16 419 zip_iterator<IteratorTuple>,
Chris@101 420 value_type,
Chris@16 421 traversal_category,
Chris@16 422 reference,
Chris@16 423 difference_type
Chris@16 424 > type;
Chris@16 425 };
Chris@16 426
Chris@16 427 template <>
Chris@16 428 struct zip_iterator_base<int>
Chris@16 429 {
Chris@16 430 typedef int type;
Chris@16 431 };
Chris@16 432 }
Chris@101 433
Chris@16 434 /////////////////////////////////////////////////////////////////////
Chris@16 435 //
Chris@16 436 // zip_iterator class definition
Chris@16 437 //
Chris@16 438 template<typename IteratorTuple>
Chris@101 439 class zip_iterator :
Chris@16 440 public detail::zip_iterator_base<IteratorTuple>::type
Chris@101 441 {
Chris@16 442
Chris@101 443 // Typedef super_t as our base class.
Chris@101 444 typedef typename
Chris@16 445 detail::zip_iterator_base<IteratorTuple>::type super_t;
Chris@16 446
Chris@16 447 // iterator_core_access is the iterator's best friend.
Chris@16 448 friend class iterator_core_access;
Chris@16 449
Chris@16 450 public:
Chris@101 451
Chris@16 452 // Construction
Chris@16 453 // ============
Chris@101 454
Chris@16 455 // Default constructor
Chris@16 456 zip_iterator() { }
Chris@16 457
Chris@16 458 // Constructor from iterator tuple
Chris@101 459 zip_iterator(IteratorTuple iterator_tuple)
Chris@101 460 : m_iterator_tuple(iterator_tuple)
Chris@16 461 { }
Chris@16 462
Chris@16 463 // Copy constructor
Chris@16 464 template<typename OtherIteratorTuple>
Chris@16 465 zip_iterator(
Chris@16 466 const zip_iterator<OtherIteratorTuple>& other,
Chris@16 467 typename enable_if_convertible<
Chris@16 468 OtherIteratorTuple,
Chris@16 469 IteratorTuple
Chris@16 470 >::type* = 0
Chris@16 471 ) : m_iterator_tuple(other.get_iterator_tuple())
Chris@16 472 {}
Chris@16 473
Chris@16 474 // Get method for the iterator tuple.
Chris@16 475 const IteratorTuple& get_iterator_tuple() const
Chris@16 476 { return m_iterator_tuple; }
Chris@16 477
Chris@16 478 private:
Chris@101 479
Chris@16 480 // Implementation of Iterator Operations
Chris@16 481 // =====================================
Chris@101 482
Chris@16 483 // Dereferencing returns a tuple built from the dereferenced
Chris@16 484 // iterators in the iterator tuple.
Chris@16 485 typename super_t::reference dereference() const
Chris@101 486 {
Chris@101 487 return detail::tuple_impl_specific::tuple_transform(
Chris@16 488 get_iterator_tuple(),
Chris@16 489 detail::dereference_iterator()
Chris@16 490 );
Chris@16 491 }
Chris@16 492
Chris@16 493 // Two zip iterators are equal if all iterators in the iterator
Chris@16 494 // tuple are equal. NOTE: It should be possible to implement this
Chris@16 495 // as
Chris@16 496 //
Chris@16 497 // return get_iterator_tuple() == other.get_iterator_tuple();
Chris@16 498 //
Chris@16 499 // but equality of tuples currently (7/2003) does not compile
Chris@16 500 // under several compilers. No point in bringing in a bunch
Chris@16 501 // of #ifdefs here.
Chris@16 502 //
Chris@101 503 template<typename OtherIteratorTuple>
Chris@16 504 bool equal(const zip_iterator<OtherIteratorTuple>& other) const
Chris@16 505 {
Chris@16 506 return detail::tuple_impl_specific::tuple_equal(
Chris@16 507 get_iterator_tuple(),
Chris@16 508 other.get_iterator_tuple()
Chris@16 509 );
Chris@16 510 }
Chris@16 511
Chris@16 512 // Advancing a zip iterator means to advance all iterators in the
Chris@16 513 // iterator tuple.
Chris@16 514 void advance(typename super_t::difference_type n)
Chris@101 515 {
Chris@16 516 detail::tuple_impl_specific::tuple_for_each(
Chris@16 517 m_iterator_tuple,
Chris@16 518 detail::advance_iterator<BOOST_DEDUCED_TYPENAME super_t::difference_type>(n)
Chris@16 519 );
Chris@16 520 }
Chris@16 521 // Incrementing a zip iterator means to increment all iterators in
Chris@16 522 // the iterator tuple.
Chris@16 523 void increment()
Chris@101 524 {
Chris@16 525 detail::tuple_impl_specific::tuple_for_each(
Chris@16 526 m_iterator_tuple,
Chris@16 527 detail::increment_iterator()
Chris@16 528 );
Chris@16 529 }
Chris@101 530
Chris@16 531 // Decrementing a zip iterator means to decrement all iterators in
Chris@16 532 // the iterator tuple.
Chris@16 533 void decrement()
Chris@101 534 {
Chris@16 535 detail::tuple_impl_specific::tuple_for_each(
Chris@16 536 m_iterator_tuple,
Chris@16 537 detail::decrement_iterator()
Chris@16 538 );
Chris@16 539 }
Chris@101 540
Chris@16 541 // Distance is calculated using the first iterator in the tuple.
Chris@16 542 template<typename OtherIteratorTuple>
Chris@16 543 typename super_t::difference_type distance_to(
Chris@16 544 const zip_iterator<OtherIteratorTuple>& other
Chris@16 545 ) const
Chris@101 546 {
Chris@101 547 return boost::tuples::get<0>(other.get_iterator_tuple()) -
Chris@16 548 boost::tuples::get<0>(this->get_iterator_tuple());
Chris@16 549 }
Chris@101 550
Chris@16 551 // Data Members
Chris@16 552 // ============
Chris@101 553
Chris@16 554 // The iterator tuple.
Chris@16 555 IteratorTuple m_iterator_tuple;
Chris@101 556
Chris@16 557 };
Chris@16 558
Chris@16 559 // Make function for zip iterator
Chris@16 560 //
Chris@101 561 template<typename IteratorTuple>
Chris@101 562 inline zip_iterator<IteratorTuple>
Chris@16 563 make_zip_iterator(IteratorTuple t)
Chris@16 564 { return zip_iterator<IteratorTuple>(t); }
Chris@16 565
Chris@101 566 } // namespace iterators
Chris@101 567
Chris@101 568 using iterators::zip_iterator;
Chris@101 569 using iterators::make_zip_iterator;
Chris@101 570
Chris@101 571 } // namespace boost
Chris@16 572
Chris@16 573 #endif