annotate DEPENDENCIES/generic/include/boost/functional.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // ------------------------------------------------------------------------------
Chris@16 2 // Copyright (c) 2000 Cadenza New Zealand Ltd
Chris@16 3 // Distributed under the Boost Software License, Version 1.0. (See accompany-
Chris@16 4 // ing file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5 // ------------------------------------------------------------------------------
Chris@16 6 // Boost functional.hpp header file
Chris@16 7 // See http://www.boost.org/libs/functional for documentation.
Chris@16 8 // ------------------------------------------------------------------------------
Chris@101 9 // $Id$
Chris@16 10 // ------------------------------------------------------------------------------
Chris@16 11
Chris@16 12 #ifndef BOOST_FUNCTIONAL_HPP
Chris@16 13 #define BOOST_FUNCTIONAL_HPP
Chris@16 14
Chris@16 15 #include <boost/config.hpp>
Chris@16 16 #include <boost/call_traits.hpp>
Chris@16 17 #include <functional>
Chris@16 18
Chris@16 19 namespace boost
Chris@16 20 {
Chris@16 21 #ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
Chris@16 22 // --------------------------------------------------------------------------
Chris@16 23 // The following traits classes allow us to avoid the need for ptr_fun
Chris@16 24 // because the types of arguments and the result of a function can be
Chris@16 25 // deduced.
Chris@16 26 //
Chris@16 27 // In addition to the standard types defined in unary_function and
Chris@16 28 // binary_function, we add
Chris@16 29 //
Chris@16 30 // - function_type, the type of the function or function object itself.
Chris@16 31 //
Chris@16 32 // - param_type, the type that should be used for passing the function or
Chris@16 33 // function object as an argument.
Chris@16 34 // --------------------------------------------------------------------------
Chris@16 35 namespace detail
Chris@16 36 {
Chris@16 37 template <class Operation>
Chris@16 38 struct unary_traits_imp;
Chris@16 39
Chris@16 40 template <class Operation>
Chris@16 41 struct unary_traits_imp<Operation*>
Chris@16 42 {
Chris@16 43 typedef Operation function_type;
Chris@16 44 typedef const function_type & param_type;
Chris@16 45 typedef typename Operation::result_type result_type;
Chris@16 46 typedef typename Operation::argument_type argument_type;
Chris@16 47 };
Chris@16 48
Chris@16 49 template <class R, class A>
Chris@16 50 struct unary_traits_imp<R(*)(A)>
Chris@16 51 {
Chris@16 52 typedef R (*function_type)(A);
Chris@16 53 typedef R (*param_type)(A);
Chris@16 54 typedef R result_type;
Chris@16 55 typedef A argument_type;
Chris@16 56 };
Chris@16 57
Chris@16 58 template <class Operation>
Chris@16 59 struct binary_traits_imp;
Chris@16 60
Chris@16 61 template <class Operation>
Chris@16 62 struct binary_traits_imp<Operation*>
Chris@16 63 {
Chris@16 64 typedef Operation function_type;
Chris@16 65 typedef const function_type & param_type;
Chris@16 66 typedef typename Operation::result_type result_type;
Chris@16 67 typedef typename Operation::first_argument_type first_argument_type;
Chris@16 68 typedef typename Operation::second_argument_type second_argument_type;
Chris@16 69 };
Chris@16 70
Chris@16 71 template <class R, class A1, class A2>
Chris@16 72 struct binary_traits_imp<R(*)(A1,A2)>
Chris@16 73 {
Chris@16 74 typedef R (*function_type)(A1,A2);
Chris@16 75 typedef R (*param_type)(A1,A2);
Chris@16 76 typedef R result_type;
Chris@16 77 typedef A1 first_argument_type;
Chris@16 78 typedef A2 second_argument_type;
Chris@16 79 };
Chris@16 80 } // namespace detail
Chris@16 81
Chris@16 82 template <class Operation>
Chris@16 83 struct unary_traits
Chris@16 84 {
Chris@16 85 typedef typename detail::unary_traits_imp<Operation*>::function_type function_type;
Chris@16 86 typedef typename detail::unary_traits_imp<Operation*>::param_type param_type;
Chris@16 87 typedef typename detail::unary_traits_imp<Operation*>::result_type result_type;
Chris@16 88 typedef typename detail::unary_traits_imp<Operation*>::argument_type argument_type;
Chris@16 89 };
Chris@16 90
Chris@16 91 template <class R, class A>
Chris@16 92 struct unary_traits<R(*)(A)>
Chris@16 93 {
Chris@16 94 typedef R (*function_type)(A);
Chris@16 95 typedef R (*param_type)(A);
Chris@16 96 typedef R result_type;
Chris@16 97 typedef A argument_type;
Chris@16 98 };
Chris@16 99
Chris@16 100 template <class Operation>
Chris@16 101 struct binary_traits
Chris@16 102 {
Chris@16 103 typedef typename detail::binary_traits_imp<Operation*>::function_type function_type;
Chris@16 104 typedef typename detail::binary_traits_imp<Operation*>::param_type param_type;
Chris@16 105 typedef typename detail::binary_traits_imp<Operation*>::result_type result_type;
Chris@16 106 typedef typename detail::binary_traits_imp<Operation*>::first_argument_type first_argument_type;
Chris@16 107 typedef typename detail::binary_traits_imp<Operation*>::second_argument_type second_argument_type;
Chris@16 108 };
Chris@16 109
Chris@16 110 template <class R, class A1, class A2>
Chris@16 111 struct binary_traits<R(*)(A1,A2)>
Chris@16 112 {
Chris@16 113 typedef R (*function_type)(A1,A2);
Chris@16 114 typedef R (*param_type)(A1,A2);
Chris@16 115 typedef R result_type;
Chris@16 116 typedef A1 first_argument_type;
Chris@16 117 typedef A2 second_argument_type;
Chris@16 118 };
Chris@16 119 #else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
Chris@16 120 // --------------------------------------------------------------------------
Chris@16 121 // If we have no partial specialisation available, decay to a situation
Chris@16 122 // that is no worse than in the Standard, i.e., ptr_fun will be required.
Chris@16 123 // --------------------------------------------------------------------------
Chris@16 124
Chris@16 125 template <class Operation>
Chris@16 126 struct unary_traits
Chris@16 127 {
Chris@16 128 typedef Operation function_type;
Chris@16 129 typedef const Operation& param_type;
Chris@16 130 typedef typename Operation::result_type result_type;
Chris@16 131 typedef typename Operation::argument_type argument_type;
Chris@16 132 };
Chris@16 133
Chris@16 134 template <class Operation>
Chris@16 135 struct binary_traits
Chris@16 136 {
Chris@16 137 typedef Operation function_type;
Chris@16 138 typedef const Operation & param_type;
Chris@16 139 typedef typename Operation::result_type result_type;
Chris@16 140 typedef typename Operation::first_argument_type first_argument_type;
Chris@16 141 typedef typename Operation::second_argument_type second_argument_type;
Chris@16 142 };
Chris@16 143 #endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
Chris@16 144
Chris@16 145 // --------------------------------------------------------------------------
Chris@16 146 // unary_negate, not1
Chris@16 147 // --------------------------------------------------------------------------
Chris@16 148 template <class Predicate>
Chris@16 149 class unary_negate
Chris@16 150 : public std::unary_function<typename unary_traits<Predicate>::argument_type,bool>
Chris@16 151 {
Chris@16 152 public:
Chris@16 153 explicit unary_negate(typename unary_traits<Predicate>::param_type x)
Chris@16 154 :
Chris@16 155 pred(x)
Chris@16 156 {}
Chris@16 157 bool operator()(typename call_traits<typename unary_traits<Predicate>::argument_type>::param_type x) const
Chris@16 158 {
Chris@16 159 return !pred(x);
Chris@16 160 }
Chris@16 161 private:
Chris@16 162 typename unary_traits<Predicate>::function_type pred;
Chris@16 163 };
Chris@16 164
Chris@16 165 template <class Predicate>
Chris@16 166 unary_negate<Predicate> not1(const Predicate &pred)
Chris@16 167 {
Chris@16 168 // The cast is to placate Borland C++Builder in certain circumstances.
Chris@16 169 // I don't think it should be necessary.
Chris@16 170 return unary_negate<Predicate>((typename unary_traits<Predicate>::param_type)pred);
Chris@16 171 }
Chris@16 172
Chris@16 173 template <class Predicate>
Chris@16 174 unary_negate<Predicate> not1(Predicate &pred)
Chris@16 175 {
Chris@16 176 return unary_negate<Predicate>(pred);
Chris@16 177 }
Chris@16 178
Chris@16 179 // --------------------------------------------------------------------------
Chris@16 180 // binary_negate, not2
Chris@16 181 // --------------------------------------------------------------------------
Chris@16 182 template <class Predicate>
Chris@16 183 class binary_negate
Chris@16 184 : public std::binary_function<typename binary_traits<Predicate>::first_argument_type,
Chris@16 185 typename binary_traits<Predicate>::second_argument_type,
Chris@16 186 bool>
Chris@16 187 {
Chris@16 188 public:
Chris@16 189 explicit binary_negate(typename binary_traits<Predicate>::param_type x)
Chris@16 190 :
Chris@16 191 pred(x)
Chris@16 192 {}
Chris@16 193 bool operator()(typename call_traits<typename binary_traits<Predicate>::first_argument_type>::param_type x,
Chris@16 194 typename call_traits<typename binary_traits<Predicate>::second_argument_type>::param_type y) const
Chris@16 195 {
Chris@16 196 return !pred(x,y);
Chris@16 197 }
Chris@16 198 private:
Chris@16 199 typename binary_traits<Predicate>::function_type pred;
Chris@16 200 };
Chris@16 201
Chris@16 202 template <class Predicate>
Chris@16 203 binary_negate<Predicate> not2(const Predicate &pred)
Chris@16 204 {
Chris@16 205 // The cast is to placate Borland C++Builder in certain circumstances.
Chris@16 206 // I don't think it should be necessary.
Chris@16 207 return binary_negate<Predicate>((typename binary_traits<Predicate>::param_type)pred);
Chris@16 208 }
Chris@16 209
Chris@16 210 template <class Predicate>
Chris@16 211 binary_negate<Predicate> not2(Predicate &pred)
Chris@16 212 {
Chris@16 213 return binary_negate<Predicate>(pred);
Chris@16 214 }
Chris@16 215
Chris@16 216 // --------------------------------------------------------------------------
Chris@16 217 // binder1st, bind1st
Chris@16 218 // --------------------------------------------------------------------------
Chris@16 219 template <class Operation>
Chris@16 220 class binder1st
Chris@16 221 : public std::unary_function<typename binary_traits<Operation>::second_argument_type,
Chris@16 222 typename binary_traits<Operation>::result_type>
Chris@16 223 {
Chris@16 224 public:
Chris@16 225 binder1st(typename binary_traits<Operation>::param_type x,
Chris@16 226 typename call_traits<typename binary_traits<Operation>::first_argument_type>::param_type y)
Chris@16 227 :
Chris@16 228 op(x), value(y)
Chris@16 229 {}
Chris@16 230
Chris@16 231 typename binary_traits<Operation>::result_type
Chris@16 232 operator()(typename call_traits<typename binary_traits<Operation>::second_argument_type>::param_type x) const
Chris@16 233 {
Chris@16 234 return op(value, x);
Chris@16 235 }
Chris@16 236
Chris@16 237 protected:
Chris@16 238 typename binary_traits<Operation>::function_type op;
Chris@16 239 typename binary_traits<Operation>::first_argument_type value;
Chris@16 240 };
Chris@16 241
Chris@16 242 template <class Operation>
Chris@16 243 inline binder1st<Operation> bind1st(const Operation &op,
Chris@16 244 typename call_traits<
Chris@16 245 typename binary_traits<Operation>::first_argument_type
Chris@16 246 >::param_type x)
Chris@16 247 {
Chris@16 248 // The cast is to placate Borland C++Builder in certain circumstances.
Chris@16 249 // I don't think it should be necessary.
Chris@16 250 return binder1st<Operation>((typename binary_traits<Operation>::param_type)op, x);
Chris@16 251 }
Chris@16 252
Chris@16 253 template <class Operation>
Chris@16 254 inline binder1st<Operation> bind1st(Operation &op,
Chris@16 255 typename call_traits<
Chris@16 256 typename binary_traits<Operation>::first_argument_type
Chris@16 257 >::param_type x)
Chris@16 258 {
Chris@16 259 return binder1st<Operation>(op, x);
Chris@16 260 }
Chris@16 261
Chris@16 262 // --------------------------------------------------------------------------
Chris@16 263 // binder2nd, bind2nd
Chris@16 264 // --------------------------------------------------------------------------
Chris@16 265 template <class Operation>
Chris@16 266 class binder2nd
Chris@16 267 : public std::unary_function<typename binary_traits<Operation>::first_argument_type,
Chris@16 268 typename binary_traits<Operation>::result_type>
Chris@16 269 {
Chris@16 270 public:
Chris@16 271 binder2nd(typename binary_traits<Operation>::param_type x,
Chris@16 272 typename call_traits<typename binary_traits<Operation>::second_argument_type>::param_type y)
Chris@16 273 :
Chris@16 274 op(x), value(y)
Chris@16 275 {}
Chris@16 276
Chris@16 277 typename binary_traits<Operation>::result_type
Chris@16 278 operator()(typename call_traits<typename binary_traits<Operation>::first_argument_type>::param_type x) const
Chris@16 279 {
Chris@16 280 return op(x, value);
Chris@16 281 }
Chris@16 282
Chris@16 283 protected:
Chris@16 284 typename binary_traits<Operation>::function_type op;
Chris@16 285 typename binary_traits<Operation>::second_argument_type value;
Chris@16 286 };
Chris@16 287
Chris@16 288 template <class Operation>
Chris@16 289 inline binder2nd<Operation> bind2nd(const Operation &op,
Chris@16 290 typename call_traits<
Chris@16 291 typename binary_traits<Operation>::second_argument_type
Chris@16 292 >::param_type x)
Chris@16 293 {
Chris@16 294 // The cast is to placate Borland C++Builder in certain circumstances.
Chris@16 295 // I don't think it should be necessary.
Chris@16 296 return binder2nd<Operation>((typename binary_traits<Operation>::param_type)op, x);
Chris@16 297 }
Chris@16 298
Chris@16 299 template <class Operation>
Chris@16 300 inline binder2nd<Operation> bind2nd(Operation &op,
Chris@16 301 typename call_traits<
Chris@16 302 typename binary_traits<Operation>::second_argument_type
Chris@16 303 >::param_type x)
Chris@16 304 {
Chris@16 305 return binder2nd<Operation>(op, x);
Chris@16 306 }
Chris@16 307
Chris@16 308 // --------------------------------------------------------------------------
Chris@16 309 // mem_fun, etc
Chris@16 310 // --------------------------------------------------------------------------
Chris@16 311 template <class S, class T>
Chris@16 312 class mem_fun_t : public std::unary_function<T*, S>
Chris@16 313 {
Chris@16 314 public:
Chris@16 315 explicit mem_fun_t(S (T::*p)())
Chris@16 316 :
Chris@16 317 ptr(p)
Chris@16 318 {}
Chris@16 319 S operator()(T* p) const
Chris@16 320 {
Chris@16 321 return (p->*ptr)();
Chris@16 322 }
Chris@16 323 private:
Chris@16 324 S (T::*ptr)();
Chris@16 325 };
Chris@16 326
Chris@16 327 template <class S, class T, class A>
Chris@16 328 class mem_fun1_t : public std::binary_function<T*, A, S>
Chris@16 329 {
Chris@16 330 public:
Chris@16 331 explicit mem_fun1_t(S (T::*p)(A))
Chris@16 332 :
Chris@16 333 ptr(p)
Chris@16 334 {}
Chris@16 335 S operator()(T* p, typename call_traits<A>::param_type x) const
Chris@16 336 {
Chris@16 337 return (p->*ptr)(x);
Chris@16 338 }
Chris@16 339 private:
Chris@16 340 S (T::*ptr)(A);
Chris@16 341 };
Chris@16 342
Chris@16 343 template <class S, class T>
Chris@16 344 class const_mem_fun_t : public std::unary_function<const T*, S>
Chris@16 345 {
Chris@16 346 public:
Chris@16 347 explicit const_mem_fun_t(S (T::*p)() const)
Chris@16 348 :
Chris@16 349 ptr(p)
Chris@16 350 {}
Chris@16 351 S operator()(const T* p) const
Chris@16 352 {
Chris@16 353 return (p->*ptr)();
Chris@16 354 }
Chris@16 355 private:
Chris@16 356 S (T::*ptr)() const;
Chris@16 357 };
Chris@16 358
Chris@16 359 template <class S, class T, class A>
Chris@16 360 class const_mem_fun1_t : public std::binary_function<const T*, A, S>
Chris@16 361 {
Chris@16 362 public:
Chris@16 363 explicit const_mem_fun1_t(S (T::*p)(A) const)
Chris@16 364 :
Chris@16 365 ptr(p)
Chris@16 366 {}
Chris@16 367 S operator()(const T* p, typename call_traits<A>::param_type x) const
Chris@16 368 {
Chris@16 369 return (p->*ptr)(x);
Chris@16 370 }
Chris@16 371 private:
Chris@16 372 S (T::*ptr)(A) const;
Chris@16 373 };
Chris@16 374
Chris@16 375 template<class S, class T>
Chris@16 376 inline mem_fun_t<S,T> mem_fun(S (T::*f)())
Chris@16 377 {
Chris@16 378 return mem_fun_t<S,T>(f);
Chris@16 379 }
Chris@16 380
Chris@16 381 template<class S, class T, class A>
Chris@16 382 inline mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A))
Chris@16 383 {
Chris@16 384 return mem_fun1_t<S,T,A>(f);
Chris@16 385 }
Chris@16 386
Chris@16 387 #ifndef BOOST_NO_POINTER_TO_MEMBER_CONST
Chris@16 388 template<class S, class T>
Chris@16 389 inline const_mem_fun_t<S,T> mem_fun(S (T::*f)() const)
Chris@16 390 {
Chris@16 391 return const_mem_fun_t<S,T>(f);
Chris@16 392 }
Chris@16 393
Chris@16 394 template<class S, class T, class A>
Chris@16 395 inline const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const)
Chris@16 396 {
Chris@16 397 return const_mem_fun1_t<S,T,A>(f);
Chris@16 398 }
Chris@16 399 #endif // BOOST_NO_POINTER_TO_MEMBER_CONST
Chris@16 400
Chris@16 401 // --------------------------------------------------------------------------
Chris@16 402 // mem_fun_ref, etc
Chris@16 403 // --------------------------------------------------------------------------
Chris@16 404 template <class S, class T>
Chris@16 405 class mem_fun_ref_t : public std::unary_function<T&, S>
Chris@16 406 {
Chris@16 407 public:
Chris@16 408 explicit mem_fun_ref_t(S (T::*p)())
Chris@16 409 :
Chris@16 410 ptr(p)
Chris@16 411 {}
Chris@16 412 S operator()(T& p) const
Chris@16 413 {
Chris@16 414 return (p.*ptr)();
Chris@16 415 }
Chris@16 416 private:
Chris@16 417 S (T::*ptr)();
Chris@16 418 };
Chris@16 419
Chris@16 420 template <class S, class T, class A>
Chris@16 421 class mem_fun1_ref_t : public std::binary_function<T&, A, S>
Chris@16 422 {
Chris@16 423 public:
Chris@16 424 explicit mem_fun1_ref_t(S (T::*p)(A))
Chris@16 425 :
Chris@16 426 ptr(p)
Chris@16 427 {}
Chris@16 428 S operator()(T& p, typename call_traits<A>::param_type x) const
Chris@16 429 {
Chris@16 430 return (p.*ptr)(x);
Chris@16 431 }
Chris@16 432 private:
Chris@16 433 S (T::*ptr)(A);
Chris@16 434 };
Chris@16 435
Chris@16 436 template <class S, class T>
Chris@16 437 class const_mem_fun_ref_t : public std::unary_function<const T&, S>
Chris@16 438 {
Chris@16 439 public:
Chris@16 440 explicit const_mem_fun_ref_t(S (T::*p)() const)
Chris@16 441 :
Chris@16 442 ptr(p)
Chris@16 443 {}
Chris@16 444
Chris@16 445 S operator()(const T &p) const
Chris@16 446 {
Chris@16 447 return (p.*ptr)();
Chris@16 448 }
Chris@16 449 private:
Chris@16 450 S (T::*ptr)() const;
Chris@16 451 };
Chris@16 452
Chris@16 453 template <class S, class T, class A>
Chris@16 454 class const_mem_fun1_ref_t : public std::binary_function<const T&, A, S>
Chris@16 455 {
Chris@16 456 public:
Chris@16 457 explicit const_mem_fun1_ref_t(S (T::*p)(A) const)
Chris@16 458 :
Chris@16 459 ptr(p)
Chris@16 460 {}
Chris@16 461
Chris@16 462 S operator()(const T& p, typename call_traits<A>::param_type x) const
Chris@16 463 {
Chris@16 464 return (p.*ptr)(x);
Chris@16 465 }
Chris@16 466 private:
Chris@16 467 S (T::*ptr)(A) const;
Chris@16 468 };
Chris@16 469
Chris@16 470 template<class S, class T>
Chris@16 471 inline mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)())
Chris@16 472 {
Chris@16 473 return mem_fun_ref_t<S,T>(f);
Chris@16 474 }
Chris@16 475
Chris@16 476 template<class S, class T, class A>
Chris@16 477 inline mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A))
Chris@16 478 {
Chris@16 479 return mem_fun1_ref_t<S,T,A>(f);
Chris@16 480 }
Chris@16 481
Chris@16 482 #ifndef BOOST_NO_POINTER_TO_MEMBER_CONST
Chris@16 483 template<class S, class T>
Chris@16 484 inline const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const)
Chris@16 485 {
Chris@16 486 return const_mem_fun_ref_t<S,T>(f);
Chris@16 487 }
Chris@16 488
Chris@16 489 template<class S, class T, class A>
Chris@16 490 inline const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const)
Chris@16 491 {
Chris@16 492 return const_mem_fun1_ref_t<S,T,A>(f);
Chris@16 493 }
Chris@16 494 #endif // BOOST_NO_POINTER_TO_MEMBER_CONST
Chris@16 495
Chris@16 496 // --------------------------------------------------------------------------
Chris@16 497 // ptr_fun
Chris@16 498 // --------------------------------------------------------------------------
Chris@16 499 template <class Arg, class Result>
Chris@16 500 class pointer_to_unary_function : public std::unary_function<Arg,Result>
Chris@16 501 {
Chris@16 502 public:
Chris@16 503 explicit pointer_to_unary_function(Result (*f)(Arg))
Chris@16 504 :
Chris@16 505 func(f)
Chris@16 506 {}
Chris@16 507
Chris@16 508 Result operator()(typename call_traits<Arg>::param_type x) const
Chris@16 509 {
Chris@16 510 return func(x);
Chris@16 511 }
Chris@16 512
Chris@16 513 private:
Chris@16 514 Result (*func)(Arg);
Chris@16 515 };
Chris@16 516
Chris@16 517 template <class Arg, class Result>
Chris@16 518 inline pointer_to_unary_function<Arg,Result> ptr_fun(Result (*f)(Arg))
Chris@16 519 {
Chris@16 520 return pointer_to_unary_function<Arg,Result>(f);
Chris@16 521 }
Chris@16 522
Chris@16 523 template <class Arg1, class Arg2, class Result>
Chris@16 524 class pointer_to_binary_function : public std::binary_function<Arg1,Arg2,Result>
Chris@16 525 {
Chris@16 526 public:
Chris@16 527 explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2))
Chris@16 528 :
Chris@16 529 func(f)
Chris@16 530 {}
Chris@16 531
Chris@16 532 Result operator()(typename call_traits<Arg1>::param_type x, typename call_traits<Arg2>::param_type y) const
Chris@16 533 {
Chris@16 534 return func(x,y);
Chris@16 535 }
Chris@16 536
Chris@16 537 private:
Chris@16 538 Result (*func)(Arg1, Arg2);
Chris@16 539 };
Chris@16 540
Chris@16 541 template <class Arg1, class Arg2, class Result>
Chris@16 542 inline pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*f)(Arg1, Arg2))
Chris@16 543 {
Chris@16 544 return pointer_to_binary_function<Arg1,Arg2,Result>(f);
Chris@16 545 }
Chris@16 546 } // namespace boost
Chris@16 547
Chris@16 548 #endif