Chris@87
|
1 from __future__ import division, absolute_import, print_function
|
Chris@87
|
2
|
Chris@87
|
3 from numpy.testing import (TestCase, run_module_suite, assert_,
|
Chris@87
|
4 assert_array_equal)
|
Chris@87
|
5 from numpy import random
|
Chris@87
|
6 from numpy.compat import long
|
Chris@87
|
7 import numpy as np
|
Chris@87
|
8
|
Chris@87
|
9
|
Chris@87
|
10 class TestRegression(TestCase):
|
Chris@87
|
11
|
Chris@87
|
12 def test_VonMises_range(self):
|
Chris@87
|
13 # Make sure generated random variables are in [-pi, pi].
|
Chris@87
|
14 # Regression test for ticket #986.
|
Chris@87
|
15 for mu in np.linspace(-7., 7., 5):
|
Chris@87
|
16 r = random.mtrand.vonmises(mu, 1, 50)
|
Chris@87
|
17 assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
|
Chris@87
|
18
|
Chris@87
|
19 def test_hypergeometric_range(self):
|
Chris@87
|
20 # Test for ticket #921
|
Chris@87
|
21 assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4))
|
Chris@87
|
22 assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0))
|
Chris@87
|
23
|
Chris@87
|
24 def test_logseries_convergence(self):
|
Chris@87
|
25 # Test for ticket #923
|
Chris@87
|
26 N = 1000
|
Chris@87
|
27 np.random.seed(0)
|
Chris@87
|
28 rvsn = np.random.logseries(0.8, size=N)
|
Chris@87
|
29 # these two frequency counts should be close to theoretical
|
Chris@87
|
30 # numbers with this large sample
|
Chris@87
|
31 # theoretical large N result is 0.49706795
|
Chris@87
|
32 freq = np.sum(rvsn == 1) / float(N)
|
Chris@87
|
33 msg = "Frequency was %f, should be > 0.45" % freq
|
Chris@87
|
34 assert_(freq > 0.45, msg)
|
Chris@87
|
35 # theoretical large N result is 0.19882718
|
Chris@87
|
36 freq = np.sum(rvsn == 2) / float(N)
|
Chris@87
|
37 msg = "Frequency was %f, should be < 0.23" % freq
|
Chris@87
|
38 assert_(freq < 0.23, msg)
|
Chris@87
|
39
|
Chris@87
|
40 def test_permutation_longs(self):
|
Chris@87
|
41 np.random.seed(1234)
|
Chris@87
|
42 a = np.random.permutation(12)
|
Chris@87
|
43 np.random.seed(1234)
|
Chris@87
|
44 b = np.random.permutation(long(12))
|
Chris@87
|
45 assert_array_equal(a, b)
|
Chris@87
|
46
|
Chris@87
|
47 def test_randint_range(self):
|
Chris@87
|
48 # Test for ticket #1690
|
Chris@87
|
49 lmax = np.iinfo('l').max
|
Chris@87
|
50 lmin = np.iinfo('l').min
|
Chris@87
|
51 try:
|
Chris@87
|
52 random.randint(lmin, lmax)
|
Chris@87
|
53 except:
|
Chris@87
|
54 raise AssertionError
|
Chris@87
|
55
|
Chris@87
|
56 def test_shuffle_mixed_dimension(self):
|
Chris@87
|
57 # Test for trac ticket #2074
|
Chris@87
|
58 for t in [[1, 2, 3, None],
|
Chris@87
|
59 [(1, 1), (2, 2), (3, 3), None],
|
Chris@87
|
60 [1, (2, 2), (3, 3), None],
|
Chris@87
|
61 [(1, 1), 2, 3, None]]:
|
Chris@87
|
62 np.random.seed(12345)
|
Chris@87
|
63 shuffled = list(t)
|
Chris@87
|
64 random.shuffle(shuffled)
|
Chris@87
|
65 assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
|
Chris@87
|
66
|
Chris@87
|
67 def test_call_within_randomstate(self):
|
Chris@87
|
68 # Check that custom RandomState does not call into global state
|
Chris@87
|
69 m = np.random.RandomState()
|
Chris@87
|
70 res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
|
Chris@87
|
71 for i in range(3):
|
Chris@87
|
72 np.random.seed(i)
|
Chris@87
|
73 m.seed(4321)
|
Chris@87
|
74 # If m.state is not honored, the result will change
|
Chris@87
|
75 assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
|
Chris@87
|
76
|
Chris@87
|
77 def test_multivariate_normal_size_types(self):
|
Chris@87
|
78 # Test for multivariate_normal issue with 'size' argument.
|
Chris@87
|
79 # Check that the multivariate_normal size argument can be a
|
Chris@87
|
80 # numpy integer.
|
Chris@87
|
81 np.random.multivariate_normal([0], [[0]], size=1)
|
Chris@87
|
82 np.random.multivariate_normal([0], [[0]], size=np.int_(1))
|
Chris@87
|
83 np.random.multivariate_normal([0], [[0]], size=np.int64(1))
|
Chris@87
|
84
|
Chris@87
|
85 if __name__ == "__main__":
|
Chris@87
|
86 run_module_suite()
|