annotate DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/ma/tests/test_extras.py @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents 2a2c65a20a8b
children
rev   line source
Chris@87 1 # pylint: disable-msg=W0611, W0612, W0511
Chris@87 2 """Tests suite for MaskedArray.
Chris@87 3 Adapted from the original test_ma by Pierre Gerard-Marchant
Chris@87 4
Chris@87 5 :author: Pierre Gerard-Marchant
Chris@87 6 :contact: pierregm_at_uga_dot_edu
Chris@87 7 :version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
Chris@87 8
Chris@87 9 """
Chris@87 10 from __future__ import division, absolute_import, print_function
Chris@87 11
Chris@87 12 __author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
Chris@87 13 __version__ = '1.0'
Chris@87 14 __revision__ = "$Revision: 3473 $"
Chris@87 15 __date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
Chris@87 16
Chris@87 17 import numpy as np
Chris@87 18 from numpy.testing import TestCase, run_module_suite
Chris@87 19 from numpy.ma.testutils import (rand, assert_, assert_array_equal,
Chris@87 20 assert_equal, assert_almost_equal)
Chris@87 21 from numpy.ma.core import (array, arange, masked, MaskedArray, masked_array,
Chris@87 22 getmaskarray, shape, nomask, ones, zeros, count)
Chris@87 23 from numpy.ma.extras import (
Chris@87 24 atleast_2d, mr_, dot, polyfit,
Chris@87 25 cov, corrcoef, median, average,
Chris@87 26 unique, setxor1d, setdiff1d, union1d, intersect1d, in1d, ediff1d,
Chris@87 27 apply_over_axes, apply_along_axis,
Chris@87 28 compress_rowcols, mask_rowcols,
Chris@87 29 clump_masked, clump_unmasked,
Chris@87 30 flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges,
Chris@87 31 masked_all, masked_all_like)
Chris@87 32
Chris@87 33
Chris@87 34 class TestGeneric(TestCase):
Chris@87 35 #
Chris@87 36 def test_masked_all(self):
Chris@87 37 # Tests masked_all
Chris@87 38 # Standard dtype
Chris@87 39 test = masked_all((2,), dtype=float)
Chris@87 40 control = array([1, 1], mask=[1, 1], dtype=float)
Chris@87 41 assert_equal(test, control)
Chris@87 42 # Flexible dtype
Chris@87 43 dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
Chris@87 44 test = masked_all((2,), dtype=dt)
Chris@87 45 control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
Chris@87 46 assert_equal(test, control)
Chris@87 47 test = masked_all((2, 2), dtype=dt)
Chris@87 48 control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]],
Chris@87 49 mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]],
Chris@87 50 dtype=dt)
Chris@87 51 assert_equal(test, control)
Chris@87 52 # Nested dtype
Chris@87 53 dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
Chris@87 54 test = masked_all((2,), dtype=dt)
Chris@87 55 control = array([(1, (1, 1)), (1, (1, 1))],
Chris@87 56 mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
Chris@87 57 assert_equal(test, control)
Chris@87 58 test = masked_all((2,), dtype=dt)
Chris@87 59 control = array([(1, (1, 1)), (1, (1, 1))],
Chris@87 60 mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
Chris@87 61 assert_equal(test, control)
Chris@87 62 test = masked_all((1, 1), dtype=dt)
Chris@87 63 control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt)
Chris@87 64 assert_equal(test, control)
Chris@87 65
Chris@87 66 def test_masked_all_like(self):
Chris@87 67 # Tests masked_all
Chris@87 68 # Standard dtype
Chris@87 69 base = array([1, 2], dtype=float)
Chris@87 70 test = masked_all_like(base)
Chris@87 71 control = array([1, 1], mask=[1, 1], dtype=float)
Chris@87 72 assert_equal(test, control)
Chris@87 73 # Flexible dtype
Chris@87 74 dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
Chris@87 75 base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
Chris@87 76 test = masked_all_like(base)
Chris@87 77 control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt)
Chris@87 78 assert_equal(test, control)
Chris@87 79 # Nested dtype
Chris@87 80 dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
Chris@87 81 control = array([(1, (1, 1)), (1, (1, 1))],
Chris@87 82 mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
Chris@87 83 test = masked_all_like(control)
Chris@87 84 assert_equal(test, control)
Chris@87 85
Chris@87 86 def test_clump_masked(self):
Chris@87 87 # Test clump_masked
Chris@87 88 a = masked_array(np.arange(10))
Chris@87 89 a[[0, 1, 2, 6, 8, 9]] = masked
Chris@87 90 #
Chris@87 91 test = clump_masked(a)
Chris@87 92 control = [slice(0, 3), slice(6, 7), slice(8, 10)]
Chris@87 93 assert_equal(test, control)
Chris@87 94
Chris@87 95 def test_clump_unmasked(self):
Chris@87 96 # Test clump_unmasked
Chris@87 97 a = masked_array(np.arange(10))
Chris@87 98 a[[0, 1, 2, 6, 8, 9]] = masked
Chris@87 99 test = clump_unmasked(a)
Chris@87 100 control = [slice(3, 6), slice(7, 8), ]
Chris@87 101 assert_equal(test, control)
Chris@87 102
Chris@87 103 def test_flatnotmasked_contiguous(self):
Chris@87 104 # Test flatnotmasked_contiguous
Chris@87 105 a = arange(10)
Chris@87 106 # No mask
Chris@87 107 test = flatnotmasked_contiguous(a)
Chris@87 108 assert_equal(test, slice(0, a.size))
Chris@87 109 # Some mask
Chris@87 110 a[(a < 3) | (a > 8) | (a == 5)] = masked
Chris@87 111 test = flatnotmasked_contiguous(a)
Chris@87 112 assert_equal(test, [slice(3, 5), slice(6, 9)])
Chris@87 113 #
Chris@87 114 a[:] = masked
Chris@87 115 test = flatnotmasked_contiguous(a)
Chris@87 116 assert_equal(test, None)
Chris@87 117
Chris@87 118
Chris@87 119 class TestAverage(TestCase):
Chris@87 120 # Several tests of average. Why so many ? Good point...
Chris@87 121 def test_testAverage1(self):
Chris@87 122 # Test of average.
Chris@87 123 ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
Chris@87 124 assert_equal(2.0, average(ott, axis=0))
Chris@87 125 assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
Chris@87 126 result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1)
Chris@87 127 assert_equal(2.0, result)
Chris@87 128 self.assertTrue(wts == 4.0)
Chris@87 129 ott[:] = masked
Chris@87 130 assert_equal(average(ott, axis=0).mask, [True])
Chris@87 131 ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
Chris@87 132 ott = ott.reshape(2, 2)
Chris@87 133 ott[:, 1] = masked
Chris@87 134 assert_equal(average(ott, axis=0), [2.0, 0.0])
Chris@87 135 assert_equal(average(ott, axis=1).mask[0], [True])
Chris@87 136 assert_equal([2., 0.], average(ott, axis=0))
Chris@87 137 result, wts = average(ott, axis=0, returned=1)
Chris@87 138 assert_equal(wts, [1., 0.])
Chris@87 139
Chris@87 140 def test_testAverage2(self):
Chris@87 141 # More tests of average.
Chris@87 142 w1 = [0, 1, 1, 1, 1, 0]
Chris@87 143 w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
Chris@87 144 x = arange(6, dtype=np.float_)
Chris@87 145 assert_equal(average(x, axis=0), 2.5)
Chris@87 146 assert_equal(average(x, axis=0, weights=w1), 2.5)
Chris@87 147 y = array([arange(6, dtype=np.float_), 2.0 * arange(6)])
Chris@87 148 assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)
Chris@87 149 assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.)
Chris@87 150 assert_equal(average(y, axis=1),
Chris@87 151 [average(x, axis=0), average(x, axis=0) * 2.0])
Chris@87 152 assert_equal(average(y, None, weights=w2), 20. / 6.)
Chris@87 153 assert_equal(average(y, axis=0, weights=w2),
Chris@87 154 [0., 1., 2., 3., 4., 10.])
Chris@87 155 assert_equal(average(y, axis=1),
Chris@87 156 [average(x, axis=0), average(x, axis=0) * 2.0])
Chris@87 157 m1 = zeros(6)
Chris@87 158 m2 = [0, 0, 1, 1, 0, 0]
Chris@87 159 m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
Chris@87 160 m4 = ones(6)
Chris@87 161 m5 = [0, 1, 1, 1, 1, 1]
Chris@87 162 assert_equal(average(masked_array(x, m1), axis=0), 2.5)
Chris@87 163 assert_equal(average(masked_array(x, m2), axis=0), 2.5)
Chris@87 164 assert_equal(average(masked_array(x, m4), axis=0).mask, [True])
Chris@87 165 assert_equal(average(masked_array(x, m5), axis=0), 0.0)
Chris@87 166 assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
Chris@87 167 z = masked_array(y, m3)
Chris@87 168 assert_equal(average(z, None), 20. / 6.)
Chris@87 169 assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
Chris@87 170 assert_equal(average(z, axis=1), [2.5, 5.0])
Chris@87 171 assert_equal(average(z, axis=0, weights=w2),
Chris@87 172 [0., 1., 99., 99., 4.0, 10.0])
Chris@87 173
Chris@87 174 def test_testAverage3(self):
Chris@87 175 # Yet more tests of average!
Chris@87 176 a = arange(6)
Chris@87 177 b = arange(6) * 3
Chris@87 178 r1, w1 = average([[a, b], [b, a]], axis=1, returned=1)
Chris@87 179 assert_equal(shape(r1), shape(w1))
Chris@87 180 assert_equal(r1.shape, w1.shape)
Chris@87 181 r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=1)
Chris@87 182 assert_equal(shape(w2), shape(r2))
Chris@87 183 r2, w2 = average(ones((2, 2, 3)), returned=1)
Chris@87 184 assert_equal(shape(w2), shape(r2))
Chris@87 185 r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=1)
Chris@87 186 assert_equal(shape(w2), shape(r2))
Chris@87 187 a2d = array([[1, 2], [0, 4]], float)
Chris@87 188 a2dm = masked_array(a2d, [[False, False], [True, False]])
Chris@87 189 a2da = average(a2d, axis=0)
Chris@87 190 assert_equal(a2da, [0.5, 3.0])
Chris@87 191 a2dma = average(a2dm, axis=0)
Chris@87 192 assert_equal(a2dma, [1.0, 3.0])
Chris@87 193 a2dma = average(a2dm, axis=None)
Chris@87 194 assert_equal(a2dma, 7. / 3.)
Chris@87 195 a2dma = average(a2dm, axis=1)
Chris@87 196 assert_equal(a2dma, [1.5, 4.0])
Chris@87 197
Chris@87 198 def test_onintegers_with_mask(self):
Chris@87 199 # Test average on integers with mask
Chris@87 200 a = average(array([1, 2]))
Chris@87 201 assert_equal(a, 1.5)
Chris@87 202 a = average(array([1, 2, 3, 4], mask=[False, False, True, True]))
Chris@87 203 assert_equal(a, 1.5)
Chris@87 204
Chris@87 205 def test_complex(self):
Chris@87 206 # Test with complex data.
Chris@87 207 # (Regression test for https://github.com/numpy/numpy/issues/2684)
Chris@87 208 mask = np.array([[0, 0, 0, 1, 0],
Chris@87 209 [0, 1, 0, 0, 0]], dtype=bool)
Chris@87 210 a = masked_array([[0, 1+2j, 3+4j, 5+6j, 7+8j],
Chris@87 211 [9j, 0+1j, 2+3j, 4+5j, 7+7j]],
Chris@87 212 mask=mask)
Chris@87 213
Chris@87 214 av = average(a)
Chris@87 215 expected = np.average(a.compressed())
Chris@87 216 assert_almost_equal(av.real, expected.real)
Chris@87 217 assert_almost_equal(av.imag, expected.imag)
Chris@87 218
Chris@87 219 av0 = average(a, axis=0)
Chris@87 220 expected0 = average(a.real, axis=0) + average(a.imag, axis=0)*1j
Chris@87 221 assert_almost_equal(av0.real, expected0.real)
Chris@87 222 assert_almost_equal(av0.imag, expected0.imag)
Chris@87 223
Chris@87 224 av1 = average(a, axis=1)
Chris@87 225 expected1 = average(a.real, axis=1) + average(a.imag, axis=1)*1j
Chris@87 226 assert_almost_equal(av1.real, expected1.real)
Chris@87 227 assert_almost_equal(av1.imag, expected1.imag)
Chris@87 228
Chris@87 229 # Test with the 'weights' argument.
Chris@87 230 wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5],
Chris@87 231 [1.0, 1.0, 1.0, 1.0, 1.0]])
Chris@87 232 wav = average(a, weights=wts)
Chris@87 233 expected = np.average(a.compressed(), weights=wts[~mask])
Chris@87 234 assert_almost_equal(wav.real, expected.real)
Chris@87 235 assert_almost_equal(wav.imag, expected.imag)
Chris@87 236
Chris@87 237 wav0 = average(a, weights=wts, axis=0)
Chris@87 238 expected0 = (average(a.real, weights=wts, axis=0) +
Chris@87 239 average(a.imag, weights=wts, axis=0)*1j)
Chris@87 240 assert_almost_equal(wav0.real, expected0.real)
Chris@87 241 assert_almost_equal(wav0.imag, expected0.imag)
Chris@87 242
Chris@87 243 wav1 = average(a, weights=wts, axis=1)
Chris@87 244 expected1 = (average(a.real, weights=wts, axis=1) +
Chris@87 245 average(a.imag, weights=wts, axis=1)*1j)
Chris@87 246 assert_almost_equal(wav1.real, expected1.real)
Chris@87 247 assert_almost_equal(wav1.imag, expected1.imag)
Chris@87 248
Chris@87 249
Chris@87 250 class TestConcatenator(TestCase):
Chris@87 251 # Tests for mr_, the equivalent of r_ for masked arrays.
Chris@87 252
Chris@87 253 def test_1d(self):
Chris@87 254 # Tests mr_ on 1D arrays.
Chris@87 255 assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6]))
Chris@87 256 b = ones(5)
Chris@87 257 m = [1, 0, 0, 0, 0]
Chris@87 258 d = masked_array(b, mask=m)
Chris@87 259 c = mr_[d, 0, 0, d]
Chris@87 260 self.assertTrue(isinstance(c, MaskedArray))
Chris@87 261 assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
Chris@87 262 assert_array_equal(c.mask, mr_[m, 0, 0, m])
Chris@87 263
Chris@87 264 def test_2d(self):
Chris@87 265 # Tests mr_ on 2D arrays.
Chris@87 266 a_1 = rand(5, 5)
Chris@87 267 a_2 = rand(5, 5)
Chris@87 268 m_1 = np.round_(rand(5, 5), 0)
Chris@87 269 m_2 = np.round_(rand(5, 5), 0)
Chris@87 270 b_1 = masked_array(a_1, mask=m_1)
Chris@87 271 b_2 = masked_array(a_2, mask=m_2)
Chris@87 272 # append columns
Chris@87 273 d = mr_['1', b_1, b_2]
Chris@87 274 self.assertTrue(d.shape == (5, 10))
Chris@87 275 assert_array_equal(d[:, :5], b_1)
Chris@87 276 assert_array_equal(d[:, 5:], b_2)
Chris@87 277 assert_array_equal(d.mask, np.r_['1', m_1, m_2])
Chris@87 278 d = mr_[b_1, b_2]
Chris@87 279 self.assertTrue(d.shape == (10, 5))
Chris@87 280 assert_array_equal(d[:5,:], b_1)
Chris@87 281 assert_array_equal(d[5:,:], b_2)
Chris@87 282 assert_array_equal(d.mask, np.r_[m_1, m_2])
Chris@87 283
Chris@87 284
Chris@87 285 class TestNotMasked(TestCase):
Chris@87 286 # Tests notmasked_edges and notmasked_contiguous.
Chris@87 287
Chris@87 288 def test_edges(self):
Chris@87 289 # Tests unmasked_edges
Chris@87 290 data = masked_array(np.arange(25).reshape(5, 5),
Chris@87 291 mask=[[0, 0, 1, 0, 0],
Chris@87 292 [0, 0, 0, 1, 1],
Chris@87 293 [1, 1, 0, 0, 0],
Chris@87 294 [0, 0, 0, 0, 0],
Chris@87 295 [1, 1, 1, 0, 0]],)
Chris@87 296 test = notmasked_edges(data, None)
Chris@87 297 assert_equal(test, [0, 24])
Chris@87 298 test = notmasked_edges(data, 0)
Chris@87 299 assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
Chris@87 300 assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)])
Chris@87 301 test = notmasked_edges(data, 1)
Chris@87 302 assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)])
Chris@87 303 assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)])
Chris@87 304 #
Chris@87 305 test = notmasked_edges(data.data, None)
Chris@87 306 assert_equal(test, [0, 24])
Chris@87 307 test = notmasked_edges(data.data, 0)
Chris@87 308 assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)])
Chris@87 309 assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)])
Chris@87 310 test = notmasked_edges(data.data, -1)
Chris@87 311 assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)])
Chris@87 312 assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)])
Chris@87 313 #
Chris@87 314 data[-2] = masked
Chris@87 315 test = notmasked_edges(data, 0)
Chris@87 316 assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
Chris@87 317 assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)])
Chris@87 318 test = notmasked_edges(data, -1)
Chris@87 319 assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)])
Chris@87 320 assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)])
Chris@87 321
Chris@87 322 def test_contiguous(self):
Chris@87 323 # Tests notmasked_contiguous
Chris@87 324 a = masked_array(np.arange(24).reshape(3, 8),
Chris@87 325 mask=[[0, 0, 0, 0, 1, 1, 1, 1],
Chris@87 326 [1, 1, 1, 1, 1, 1, 1, 1],
Chris@87 327 [0, 0, 0, 0, 0, 0, 1, 0], ])
Chris@87 328 tmp = notmasked_contiguous(a, None)
Chris@87 329 assert_equal(tmp[-1], slice(23, 24, None))
Chris@87 330 assert_equal(tmp[-2], slice(16, 22, None))
Chris@87 331 assert_equal(tmp[-3], slice(0, 4, None))
Chris@87 332 #
Chris@87 333 tmp = notmasked_contiguous(a, 0)
Chris@87 334 self.assertTrue(len(tmp[-1]) == 1)
Chris@87 335 self.assertTrue(tmp[-2] is None)
Chris@87 336 assert_equal(tmp[-3], tmp[-1])
Chris@87 337 self.assertTrue(len(tmp[0]) == 2)
Chris@87 338 #
Chris@87 339 tmp = notmasked_contiguous(a, 1)
Chris@87 340 assert_equal(tmp[0][-1], slice(0, 4, None))
Chris@87 341 self.assertTrue(tmp[1] is None)
Chris@87 342 assert_equal(tmp[2][-1], slice(7, 8, None))
Chris@87 343 assert_equal(tmp[2][-2], slice(0, 6, None))
Chris@87 344
Chris@87 345
Chris@87 346 class Test2DFunctions(TestCase):
Chris@87 347 # Tests 2D functions
Chris@87 348 def test_compress2d(self):
Chris@87 349 # Tests compress2d
Chris@87 350 x = array(np.arange(9).reshape(3, 3),
Chris@87 351 mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
Chris@87 352 assert_equal(compress_rowcols(x), [[4, 5], [7, 8]])
Chris@87 353 assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]])
Chris@87 354 assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]])
Chris@87 355 x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
Chris@87 356 assert_equal(compress_rowcols(x), [[0, 2], [6, 8]])
Chris@87 357 assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]])
Chris@87 358 assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]])
Chris@87 359 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
Chris@87 360 assert_equal(compress_rowcols(x), [[8]])
Chris@87 361 assert_equal(compress_rowcols(x, 0), [[6, 7, 8]])
Chris@87 362 assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]])
Chris@87 363 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
Chris@87 364 assert_equal(compress_rowcols(x).size, 0)
Chris@87 365 assert_equal(compress_rowcols(x, 0).size, 0)
Chris@87 366 assert_equal(compress_rowcols(x, 1).size, 0)
Chris@87 367
Chris@87 368 def test_mask_rowcols(self):
Chris@87 369 # Tests mask_rowcols.
Chris@87 370 x = array(np.arange(9).reshape(3, 3),
Chris@87 371 mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
Chris@87 372 assert_equal(mask_rowcols(x).mask,
Chris@87 373 [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
Chris@87 374 assert_equal(mask_rowcols(x, 0).mask,
Chris@87 375 [[1, 1, 1], [0, 0, 0], [0, 0, 0]])
Chris@87 376 assert_equal(mask_rowcols(x, 1).mask,
Chris@87 377 [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
Chris@87 378 x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
Chris@87 379 assert_equal(mask_rowcols(x).mask,
Chris@87 380 [[0, 1, 0], [1, 1, 1], [0, 1, 0]])
Chris@87 381 assert_equal(mask_rowcols(x, 0).mask,
Chris@87 382 [[0, 0, 0], [1, 1, 1], [0, 0, 0]])
Chris@87 383 assert_equal(mask_rowcols(x, 1).mask,
Chris@87 384 [[0, 1, 0], [0, 1, 0], [0, 1, 0]])
Chris@87 385 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
Chris@87 386 assert_equal(mask_rowcols(x).mask,
Chris@87 387 [[1, 1, 1], [1, 1, 1], [1, 1, 0]])
Chris@87 388 assert_equal(mask_rowcols(x, 0).mask,
Chris@87 389 [[1, 1, 1], [1, 1, 1], [0, 0, 0]])
Chris@87 390 assert_equal(mask_rowcols(x, 1,).mask,
Chris@87 391 [[1, 1, 0], [1, 1, 0], [1, 1, 0]])
Chris@87 392 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
Chris@87 393 self.assertTrue(mask_rowcols(x).all() is masked)
Chris@87 394 self.assertTrue(mask_rowcols(x, 0).all() is masked)
Chris@87 395 self.assertTrue(mask_rowcols(x, 1).all() is masked)
Chris@87 396 self.assertTrue(mask_rowcols(x).mask.all())
Chris@87 397 self.assertTrue(mask_rowcols(x, 0).mask.all())
Chris@87 398 self.assertTrue(mask_rowcols(x, 1).mask.all())
Chris@87 399
Chris@87 400 def test_dot(self):
Chris@87 401 # Tests dot product
Chris@87 402 n = np.arange(1, 7)
Chris@87 403 #
Chris@87 404 m = [1, 0, 0, 0, 0, 0]
Chris@87 405 a = masked_array(n, mask=m).reshape(2, 3)
Chris@87 406 b = masked_array(n, mask=m).reshape(3, 2)
Chris@87 407 c = dot(a, b, True)
Chris@87 408 assert_equal(c.mask, [[1, 1], [1, 0]])
Chris@87 409 c = dot(b, a, True)
Chris@87 410 assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
Chris@87 411 c = dot(a, b, False)
Chris@87 412 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
Chris@87 413 c = dot(b, a, False)
Chris@87 414 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
Chris@87 415 #
Chris@87 416 m = [0, 0, 0, 0, 0, 1]
Chris@87 417 a = masked_array(n, mask=m).reshape(2, 3)
Chris@87 418 b = masked_array(n, mask=m).reshape(3, 2)
Chris@87 419 c = dot(a, b, True)
Chris@87 420 assert_equal(c.mask, [[0, 1], [1, 1]])
Chris@87 421 c = dot(b, a, True)
Chris@87 422 assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]])
Chris@87 423 c = dot(a, b, False)
Chris@87 424 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
Chris@87 425 assert_equal(c, dot(a, b))
Chris@87 426 c = dot(b, a, False)
Chris@87 427 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
Chris@87 428 #
Chris@87 429 m = [0, 0, 0, 0, 0, 0]
Chris@87 430 a = masked_array(n, mask=m).reshape(2, 3)
Chris@87 431 b = masked_array(n, mask=m).reshape(3, 2)
Chris@87 432 c = dot(a, b)
Chris@87 433 assert_equal(c.mask, nomask)
Chris@87 434 c = dot(b, a)
Chris@87 435 assert_equal(c.mask, nomask)
Chris@87 436 #
Chris@87 437 a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3)
Chris@87 438 b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
Chris@87 439 c = dot(a, b, True)
Chris@87 440 assert_equal(c.mask, [[1, 1], [0, 0]])
Chris@87 441 c = dot(a, b, False)
Chris@87 442 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
Chris@87 443 c = dot(b, a, True)
Chris@87 444 assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
Chris@87 445 c = dot(b, a, False)
Chris@87 446 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
Chris@87 447 #
Chris@87 448 a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
Chris@87 449 b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
Chris@87 450 c = dot(a, b, True)
Chris@87 451 assert_equal(c.mask, [[0, 0], [1, 1]])
Chris@87 452 c = dot(a, b)
Chris@87 453 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
Chris@87 454 c = dot(b, a, True)
Chris@87 455 assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]])
Chris@87 456 c = dot(b, a, False)
Chris@87 457 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
Chris@87 458 #
Chris@87 459 a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
Chris@87 460 b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2)
Chris@87 461 c = dot(a, b, True)
Chris@87 462 assert_equal(c.mask, [[1, 0], [1, 1]])
Chris@87 463 c = dot(a, b, False)
Chris@87 464 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
Chris@87 465 c = dot(b, a, True)
Chris@87 466 assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]])
Chris@87 467 c = dot(b, a, False)
Chris@87 468 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
Chris@87 469
Chris@87 470
Chris@87 471 class TestApplyAlongAxis(TestCase):
Chris@87 472 # Tests 2D functions
Chris@87 473 def test_3d(self):
Chris@87 474 a = arange(12.).reshape(2, 2, 3)
Chris@87 475
Chris@87 476 def myfunc(b):
Chris@87 477 return b[1]
Chris@87 478
Chris@87 479 xa = apply_along_axis(myfunc, 2, a)
Chris@87 480 assert_equal(xa, [[1, 4], [7, 10]])
Chris@87 481
Chris@87 482 # Tests kwargs functions
Chris@87 483 def test_3d_kwargs(self):
Chris@87 484 a = arange(12).reshape(2, 2, 3)
Chris@87 485
Chris@87 486 def myfunc(b, offset=0):
Chris@87 487 return b[1+offset]
Chris@87 488
Chris@87 489 xa = apply_along_axis(myfunc, 2, a, offset=1)
Chris@87 490 assert_equal(xa, [[2, 5], [8, 11]])
Chris@87 491
Chris@87 492
Chris@87 493 class TestApplyOverAxes(TestCase):
Chris@87 494 # Tests apply_over_axes
Chris@87 495 def test_basic(self):
Chris@87 496 a = arange(24).reshape(2, 3, 4)
Chris@87 497 test = apply_over_axes(np.sum, a, [0, 2])
Chris@87 498 ctrl = np.array([[[60], [92], [124]]])
Chris@87 499 assert_equal(test, ctrl)
Chris@87 500 a[(a % 2).astype(np.bool)] = masked
Chris@87 501 test = apply_over_axes(np.sum, a, [0, 2])
Chris@87 502 ctrl = np.array([[[28], [44], [60]]])
Chris@87 503 assert_equal(test, ctrl)
Chris@87 504
Chris@87 505
Chris@87 506 class TestMedian(TestCase):
Chris@87 507 def test_pytype(self):
Chris@87 508 r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1)
Chris@87 509 assert_equal(r, np.inf)
Chris@87 510
Chris@87 511 def test_2d(self):
Chris@87 512 # Tests median w/ 2D
Chris@87 513 (n, p) = (101, 30)
Chris@87 514 x = masked_array(np.linspace(-1., 1., n),)
Chris@87 515 x[:10] = x[-10:] = masked
Chris@87 516 z = masked_array(np.empty((n, p), dtype=float))
Chris@87 517 z[:, 0] = x[:]
Chris@87 518 idx = np.arange(len(x))
Chris@87 519 for i in range(1, p):
Chris@87 520 np.random.shuffle(idx)
Chris@87 521 z[:, i] = x[idx]
Chris@87 522 assert_equal(median(z[:, 0]), 0)
Chris@87 523 assert_equal(median(z), 0)
Chris@87 524 assert_equal(median(z, axis=0), np.zeros(p))
Chris@87 525 assert_equal(median(z.T, axis=1), np.zeros(p))
Chris@87 526
Chris@87 527 def test_2d_waxis(self):
Chris@87 528 # Tests median w/ 2D arrays and different axis.
Chris@87 529 x = masked_array(np.arange(30).reshape(10, 3))
Chris@87 530 x[:3] = x[-3:] = masked
Chris@87 531 assert_equal(median(x), 14.5)
Chris@87 532 assert_equal(median(x, axis=0), [13.5, 14.5, 15.5])
Chris@87 533 assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0])
Chris@87 534 assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
Chris@87 535
Chris@87 536 def test_3d(self):
Chris@87 537 # Tests median w/ 3D
Chris@87 538 x = np.ma.arange(24).reshape(3, 4, 2)
Chris@87 539 x[x % 3 == 0] = masked
Chris@87 540 assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]])
Chris@87 541 x.shape = (4, 3, 2)
Chris@87 542 assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]])
Chris@87 543 x = np.ma.arange(24).reshape(4, 3, 2)
Chris@87 544 x[x % 5 == 0] = masked
Chris@87 545 assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]])
Chris@87 546
Chris@87 547 def test_neg_axis(self):
Chris@87 548 x = masked_array(np.arange(30).reshape(10, 3))
Chris@87 549 x[:3] = x[-3:] = masked
Chris@87 550 assert_equal(median(x, axis=-1), median(x, axis=1))
Chris@87 551
Chris@87 552 def test_out(self):
Chris@87 553 x = masked_array(np.arange(30).reshape(10, 3))
Chris@87 554 x[:3] = x[-3:] = masked
Chris@87 555 out = masked_array(np.ones(10))
Chris@87 556 r = median(x, axis=1, out=out)
Chris@87 557 assert_equal(r, out)
Chris@87 558 assert_(type(r) == MaskedArray)
Chris@87 559
Chris@87 560
Chris@87 561 class TestCov(TestCase):
Chris@87 562
Chris@87 563 def setUp(self):
Chris@87 564 self.data = array(np.random.rand(12))
Chris@87 565
Chris@87 566 def test_1d_wo_missing(self):
Chris@87 567 # Test cov on 1D variable w/o missing values
Chris@87 568 x = self.data
Chris@87 569 assert_almost_equal(np.cov(x), cov(x))
Chris@87 570 assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
Chris@87 571 assert_almost_equal(np.cov(x, rowvar=False, bias=True),
Chris@87 572 cov(x, rowvar=False, bias=True))
Chris@87 573
Chris@87 574 def test_2d_wo_missing(self):
Chris@87 575 # Test cov on 1 2D variable w/o missing values
Chris@87 576 x = self.data.reshape(3, 4)
Chris@87 577 assert_almost_equal(np.cov(x), cov(x))
Chris@87 578 assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
Chris@87 579 assert_almost_equal(np.cov(x, rowvar=False, bias=True),
Chris@87 580 cov(x, rowvar=False, bias=True))
Chris@87 581
Chris@87 582 def test_1d_w_missing(self):
Chris@87 583 # Test cov 1 1D variable w/missing values
Chris@87 584 x = self.data
Chris@87 585 x[-1] = masked
Chris@87 586 x -= x.mean()
Chris@87 587 nx = x.compressed()
Chris@87 588 assert_almost_equal(np.cov(nx), cov(x))
Chris@87 589 assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False))
Chris@87 590 assert_almost_equal(np.cov(nx, rowvar=False, bias=True),
Chris@87 591 cov(x, rowvar=False, bias=True))
Chris@87 592 #
Chris@87 593 try:
Chris@87 594 cov(x, allow_masked=False)
Chris@87 595 except ValueError:
Chris@87 596 pass
Chris@87 597 #
Chris@87 598 # 2 1D variables w/ missing values
Chris@87 599 nx = x[1:-1]
Chris@87 600 assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1]))
Chris@87 601 assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False),
Chris@87 602 cov(x, x[::-1], rowvar=False))
Chris@87 603 assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
Chris@87 604 cov(x, x[::-1], rowvar=False, bias=True))
Chris@87 605
Chris@87 606 def test_2d_w_missing(self):
Chris@87 607 # Test cov on 2D variable w/ missing value
Chris@87 608 x = self.data
Chris@87 609 x[-1] = masked
Chris@87 610 x = x.reshape(3, 4)
Chris@87 611 valid = np.logical_not(getmaskarray(x)).astype(int)
Chris@87 612 frac = np.dot(valid, valid.T)
Chris@87 613 xf = (x - x.mean(1)[:, None]).filled(0)
Chris@87 614 assert_almost_equal(cov(x),
Chris@87 615 np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
Chris@87 616 assert_almost_equal(cov(x, bias=True),
Chris@87 617 np.cov(xf, bias=True) * x.shape[1] / frac)
Chris@87 618 frac = np.dot(valid.T, valid)
Chris@87 619 xf = (x - x.mean(0)).filled(0)
Chris@87 620 assert_almost_equal(cov(x, rowvar=False),
Chris@87 621 (np.cov(xf, rowvar=False) *
Chris@87 622 (x.shape[0] - 1) / (frac - 1.)))
Chris@87 623 assert_almost_equal(cov(x, rowvar=False, bias=True),
Chris@87 624 (np.cov(xf, rowvar=False, bias=True) *
Chris@87 625 x.shape[0] / frac))
Chris@87 626
Chris@87 627
Chris@87 628 class TestCorrcoef(TestCase):
Chris@87 629
Chris@87 630 def setUp(self):
Chris@87 631 self.data = array(np.random.rand(12))
Chris@87 632
Chris@87 633 def test_ddof(self):
Chris@87 634 # Test ddof keyword
Chris@87 635 x = self.data
Chris@87 636 assert_almost_equal(np.corrcoef(x, ddof=0), corrcoef(x, ddof=0))
Chris@87 637
Chris@87 638 def test_1d_wo_missing(self):
Chris@87 639 # Test cov on 1D variable w/o missing values
Chris@87 640 x = self.data
Chris@87 641 assert_almost_equal(np.corrcoef(x), corrcoef(x))
Chris@87 642 assert_almost_equal(np.corrcoef(x, rowvar=False),
Chris@87 643 corrcoef(x, rowvar=False))
Chris@87 644 assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
Chris@87 645 corrcoef(x, rowvar=False, bias=True))
Chris@87 646
Chris@87 647 def test_2d_wo_missing(self):
Chris@87 648 # Test corrcoef on 1 2D variable w/o missing values
Chris@87 649 x = self.data.reshape(3, 4)
Chris@87 650 assert_almost_equal(np.corrcoef(x), corrcoef(x))
Chris@87 651 assert_almost_equal(np.corrcoef(x, rowvar=False),
Chris@87 652 corrcoef(x, rowvar=False))
Chris@87 653 assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
Chris@87 654 corrcoef(x, rowvar=False, bias=True))
Chris@87 655
Chris@87 656 def test_1d_w_missing(self):
Chris@87 657 # Test corrcoef 1 1D variable w/missing values
Chris@87 658 x = self.data
Chris@87 659 x[-1] = masked
Chris@87 660 x -= x.mean()
Chris@87 661 nx = x.compressed()
Chris@87 662 assert_almost_equal(np.corrcoef(nx), corrcoef(x))
Chris@87 663 assert_almost_equal(np.corrcoef(nx, rowvar=False),
Chris@87 664 corrcoef(x, rowvar=False))
Chris@87 665 assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True),
Chris@87 666 corrcoef(x, rowvar=False, bias=True))
Chris@87 667 #
Chris@87 668 try:
Chris@87 669 corrcoef(x, allow_masked=False)
Chris@87 670 except ValueError:
Chris@87 671 pass
Chris@87 672 #
Chris@87 673 # 2 1D variables w/ missing values
Chris@87 674 nx = x[1:-1]
Chris@87 675 assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1]))
Chris@87 676 assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
Chris@87 677 corrcoef(x, x[::-1], rowvar=False))
Chris@87 678 assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False, bias=True),
Chris@87 679 corrcoef(x, x[::-1], rowvar=False, bias=True))
Chris@87 680
Chris@87 681 def test_2d_w_missing(self):
Chris@87 682 # Test corrcoef on 2D variable w/ missing value
Chris@87 683 x = self.data
Chris@87 684 x[-1] = masked
Chris@87 685 x = x.reshape(3, 4)
Chris@87 686
Chris@87 687 test = corrcoef(x)
Chris@87 688 control = np.corrcoef(x)
Chris@87 689 assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
Chris@87 690
Chris@87 691
Chris@87 692 class TestPolynomial(TestCase):
Chris@87 693 #
Chris@87 694 def test_polyfit(self):
Chris@87 695 # Tests polyfit
Chris@87 696 # On ndarrays
Chris@87 697 x = np.random.rand(10)
Chris@87 698 y = np.random.rand(20).reshape(-1, 2)
Chris@87 699 assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3))
Chris@87 700 # ON 1D maskedarrays
Chris@87 701 x = x.view(MaskedArray)
Chris@87 702 x[0] = masked
Chris@87 703 y = y.view(MaskedArray)
Chris@87 704 y[0, 0] = y[-1, -1] = masked
Chris@87 705 #
Chris@87 706 (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True)
Chris@87 707 (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3,
Chris@87 708 full=True)
Chris@87 709 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
Chris@87 710 assert_almost_equal(a, a_)
Chris@87 711 #
Chris@87 712 (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True)
Chris@87 713 (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True)
Chris@87 714 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
Chris@87 715 assert_almost_equal(a, a_)
Chris@87 716 #
Chris@87 717 (C, R, K, S, D) = polyfit(x, y, 3, full=True)
Chris@87 718 (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True)
Chris@87 719 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
Chris@87 720 assert_almost_equal(a, a_)
Chris@87 721 #
Chris@87 722 w = np.random.rand(10) + 1
Chris@87 723 wo = w.copy()
Chris@87 724 xs = x[1:-1]
Chris@87 725 ys = y[1:-1]
Chris@87 726 ws = w[1:-1]
Chris@87 727 (C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w)
Chris@87 728 (c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws)
Chris@87 729 assert_equal(w, wo)
Chris@87 730 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
Chris@87 731 assert_almost_equal(a, a_)
Chris@87 732
Chris@87 733
Chris@87 734 class TestArraySetOps(TestCase):
Chris@87 735
Chris@87 736 def test_unique_onlist(self):
Chris@87 737 # Test unique on list
Chris@87 738 data = [1, 1, 1, 2, 2, 3]
Chris@87 739 test = unique(data, return_index=True, return_inverse=True)
Chris@87 740 self.assertTrue(isinstance(test[0], MaskedArray))
Chris@87 741 assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0]))
Chris@87 742 assert_equal(test[1], [0, 3, 5])
Chris@87 743 assert_equal(test[2], [0, 0, 0, 1, 1, 2])
Chris@87 744
Chris@87 745 def test_unique_onmaskedarray(self):
Chris@87 746 # Test unique on masked data w/use_mask=True
Chris@87 747 data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0])
Chris@87 748 test = unique(data, return_index=True, return_inverse=True)
Chris@87 749 assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
Chris@87 750 assert_equal(test[1], [0, 3, 5, 2])
Chris@87 751 assert_equal(test[2], [0, 0, 3, 1, 3, 2])
Chris@87 752 #
Chris@87 753 data.fill_value = 3
Chris@87 754 data = masked_array(data=[1, 1, 1, 2, 2, 3],
Chris@87 755 mask=[0, 0, 1, 0, 1, 0], fill_value=3)
Chris@87 756 test = unique(data, return_index=True, return_inverse=True)
Chris@87 757 assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
Chris@87 758 assert_equal(test[1], [0, 3, 5, 2])
Chris@87 759 assert_equal(test[2], [0, 0, 3, 1, 3, 2])
Chris@87 760
Chris@87 761 def test_unique_allmasked(self):
Chris@87 762 # Test all masked
Chris@87 763 data = masked_array([1, 1, 1], mask=True)
Chris@87 764 test = unique(data, return_index=True, return_inverse=True)
Chris@87 765 assert_equal(test[0], masked_array([1, ], mask=[True]))
Chris@87 766 assert_equal(test[1], [0])
Chris@87 767 assert_equal(test[2], [0, 0, 0])
Chris@87 768 #
Chris@87 769 # Test masked
Chris@87 770 data = masked
Chris@87 771 test = unique(data, return_index=True, return_inverse=True)
Chris@87 772 assert_equal(test[0], masked_array(masked))
Chris@87 773 assert_equal(test[1], [0])
Chris@87 774 assert_equal(test[2], [0])
Chris@87 775
Chris@87 776 def test_ediff1d(self):
Chris@87 777 # Tests mediff1d
Chris@87 778 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
Chris@87 779 control = array([1, 1, 1, 4], mask=[1, 0, 0, 1])
Chris@87 780 test = ediff1d(x)
Chris@87 781 assert_equal(test, control)
Chris@87 782 assert_equal(test.data, control.data)
Chris@87 783 assert_equal(test.mask, control.mask)
Chris@87 784
Chris@87 785 def test_ediff1d_tobegin(self):
Chris@87 786 # Test ediff1d w/ to_begin
Chris@87 787 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
Chris@87 788 test = ediff1d(x, to_begin=masked)
Chris@87 789 control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1])
Chris@87 790 assert_equal(test, control)
Chris@87 791 assert_equal(test.data, control.data)
Chris@87 792 assert_equal(test.mask, control.mask)
Chris@87 793 #
Chris@87 794 test = ediff1d(x, to_begin=[1, 2, 3])
Chris@87 795 control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1])
Chris@87 796 assert_equal(test, control)
Chris@87 797 assert_equal(test.data, control.data)
Chris@87 798 assert_equal(test.mask, control.mask)
Chris@87 799
Chris@87 800 def test_ediff1d_toend(self):
Chris@87 801 # Test ediff1d w/ to_end
Chris@87 802 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
Chris@87 803 test = ediff1d(x, to_end=masked)
Chris@87 804 control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1])
Chris@87 805 assert_equal(test, control)
Chris@87 806 assert_equal(test.data, control.data)
Chris@87 807 assert_equal(test.mask, control.mask)
Chris@87 808 #
Chris@87 809 test = ediff1d(x, to_end=[1, 2, 3])
Chris@87 810 control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0])
Chris@87 811 assert_equal(test, control)
Chris@87 812 assert_equal(test.data, control.data)
Chris@87 813 assert_equal(test.mask, control.mask)
Chris@87 814
Chris@87 815 def test_ediff1d_tobegin_toend(self):
Chris@87 816 # Test ediff1d w/ to_begin and to_end
Chris@87 817 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
Chris@87 818 test = ediff1d(x, to_end=masked, to_begin=masked)
Chris@87 819 control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1])
Chris@87 820 assert_equal(test, control)
Chris@87 821 assert_equal(test.data, control.data)
Chris@87 822 assert_equal(test.mask, control.mask)
Chris@87 823 #
Chris@87 824 test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked)
Chris@87 825 control = array([0, 1, 1, 1, 4, 1, 2, 3],
Chris@87 826 mask=[1, 1, 0, 0, 1, 0, 0, 0])
Chris@87 827 assert_equal(test, control)
Chris@87 828 assert_equal(test.data, control.data)
Chris@87 829 assert_equal(test.mask, control.mask)
Chris@87 830
Chris@87 831 def test_ediff1d_ndarray(self):
Chris@87 832 # Test ediff1d w/ a ndarray
Chris@87 833 x = np.arange(5)
Chris@87 834 test = ediff1d(x)
Chris@87 835 control = array([1, 1, 1, 1], mask=[0, 0, 0, 0])
Chris@87 836 assert_equal(test, control)
Chris@87 837 self.assertTrue(isinstance(test, MaskedArray))
Chris@87 838 assert_equal(test.data, control.data)
Chris@87 839 assert_equal(test.mask, control.mask)
Chris@87 840 #
Chris@87 841 test = ediff1d(x, to_end=masked, to_begin=masked)
Chris@87 842 control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1])
Chris@87 843 self.assertTrue(isinstance(test, MaskedArray))
Chris@87 844 assert_equal(test.data, control.data)
Chris@87 845 assert_equal(test.mask, control.mask)
Chris@87 846
Chris@87 847 def test_intersect1d(self):
Chris@87 848 # Test intersect1d
Chris@87 849 x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
Chris@87 850 y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
Chris@87 851 test = intersect1d(x, y)
Chris@87 852 control = array([1, 3, -1], mask=[0, 0, 1])
Chris@87 853 assert_equal(test, control)
Chris@87 854
Chris@87 855 def test_setxor1d(self):
Chris@87 856 # Test setxor1d
Chris@87 857 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
Chris@87 858 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
Chris@87 859 test = setxor1d(a, b)
Chris@87 860 assert_equal(test, array([3, 4, 7]))
Chris@87 861 #
Chris@87 862 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
Chris@87 863 b = [1, 2, 3, 4, 5]
Chris@87 864 test = setxor1d(a, b)
Chris@87 865 assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
Chris@87 866 #
Chris@87 867 a = array([1, 2, 3])
Chris@87 868 b = array([6, 5, 4])
Chris@87 869 test = setxor1d(a, b)
Chris@87 870 assert_(isinstance(test, MaskedArray))
Chris@87 871 assert_equal(test, [1, 2, 3, 4, 5, 6])
Chris@87 872 #
Chris@87 873 a = array([1, 8, 2, 3], mask=[0, 1, 0, 0])
Chris@87 874 b = array([6, 5, 4, 8], mask=[0, 0, 0, 1])
Chris@87 875 test = setxor1d(a, b)
Chris@87 876 assert_(isinstance(test, MaskedArray))
Chris@87 877 assert_equal(test, [1, 2, 3, 4, 5, 6])
Chris@87 878 #
Chris@87 879 assert_array_equal([], setxor1d([], []))
Chris@87 880
Chris@87 881 def test_in1d(self):
Chris@87 882 # Test in1d
Chris@87 883 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
Chris@87 884 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
Chris@87 885 test = in1d(a, b)
Chris@87 886 assert_equal(test, [True, True, True, False, True])
Chris@87 887 #
Chris@87 888 a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
Chris@87 889 b = array([1, 5, -1], mask=[0, 0, 1])
Chris@87 890 test = in1d(a, b)
Chris@87 891 assert_equal(test, [True, True, False, True, True])
Chris@87 892 #
Chris@87 893 assert_array_equal([], in1d([], []))
Chris@87 894
Chris@87 895 def test_in1d_invert(self):
Chris@87 896 # Test in1d's invert parameter
Chris@87 897 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
Chris@87 898 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
Chris@87 899 assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
Chris@87 900
Chris@87 901 a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
Chris@87 902 b = array([1, 5, -1], mask=[0, 0, 1])
Chris@87 903 assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
Chris@87 904
Chris@87 905 assert_array_equal([], in1d([], [], invert=True))
Chris@87 906
Chris@87 907 def test_union1d(self):
Chris@87 908 # Test union1d
Chris@87 909 a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1])
Chris@87 910 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
Chris@87 911 test = union1d(a, b)
Chris@87 912 control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1])
Chris@87 913 assert_equal(test, control)
Chris@87 914 #
Chris@87 915 assert_array_equal([], union1d([], []))
Chris@87 916
Chris@87 917 def test_setdiff1d(self):
Chris@87 918 # Test setdiff1d
Chris@87 919 a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1])
Chris@87 920 b = array([2, 4, 3, 3, 2, 1, 5])
Chris@87 921 test = setdiff1d(a, b)
Chris@87 922 assert_equal(test, array([6, 7, -1], mask=[0, 0, 1]))
Chris@87 923 #
Chris@87 924 a = arange(10)
Chris@87 925 b = arange(8)
Chris@87 926 assert_equal(setdiff1d(a, b), array([8, 9]))
Chris@87 927
Chris@87 928 def test_setdiff1d_char_array(self):
Chris@87 929 # Test setdiff1d_charray
Chris@87 930 a = np.array(['a', 'b', 'c'])
Chris@87 931 b = np.array(['a', 'b', 's'])
Chris@87 932 assert_array_equal(setdiff1d(a, b), np.array(['c']))
Chris@87 933
Chris@87 934
Chris@87 935 class TestShapeBase(TestCase):
Chris@87 936 #
Chris@87 937 def test_atleast2d(self):
Chris@87 938 # Test atleast_2d
Chris@87 939 a = masked_array([0, 1, 2], mask=[0, 1, 0])
Chris@87 940 b = atleast_2d(a)
Chris@87 941 assert_equal(b.shape, (1, 3))
Chris@87 942 assert_equal(b.mask.shape, b.data.shape)
Chris@87 943 assert_equal(a.shape, (3,))
Chris@87 944 assert_equal(a.mask.shape, a.data.shape)
Chris@87 945
Chris@87 946
Chris@87 947 ###############################################################################
Chris@87 948 #------------------------------------------------------------------------------
Chris@87 949 if __name__ == "__main__":
Chris@87 950 run_module_suite()