Chris@87
|
1 # pylint: disable-msg=W0611, W0612, W0511
|
Chris@87
|
2 """Tests suite for MaskedArray.
|
Chris@87
|
3 Adapted from the original test_ma by Pierre Gerard-Marchant
|
Chris@87
|
4
|
Chris@87
|
5 :author: Pierre Gerard-Marchant
|
Chris@87
|
6 :contact: pierregm_at_uga_dot_edu
|
Chris@87
|
7 :version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
|
Chris@87
|
8
|
Chris@87
|
9 """
|
Chris@87
|
10 from __future__ import division, absolute_import, print_function
|
Chris@87
|
11
|
Chris@87
|
12 __author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
|
Chris@87
|
13 __version__ = '1.0'
|
Chris@87
|
14 __revision__ = "$Revision: 3473 $"
|
Chris@87
|
15 __date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
|
Chris@87
|
16
|
Chris@87
|
17 import numpy as np
|
Chris@87
|
18 from numpy.testing import TestCase, run_module_suite
|
Chris@87
|
19 from numpy.ma.testutils import (rand, assert_, assert_array_equal,
|
Chris@87
|
20 assert_equal, assert_almost_equal)
|
Chris@87
|
21 from numpy.ma.core import (array, arange, masked, MaskedArray, masked_array,
|
Chris@87
|
22 getmaskarray, shape, nomask, ones, zeros, count)
|
Chris@87
|
23 from numpy.ma.extras import (
|
Chris@87
|
24 atleast_2d, mr_, dot, polyfit,
|
Chris@87
|
25 cov, corrcoef, median, average,
|
Chris@87
|
26 unique, setxor1d, setdiff1d, union1d, intersect1d, in1d, ediff1d,
|
Chris@87
|
27 apply_over_axes, apply_along_axis,
|
Chris@87
|
28 compress_rowcols, mask_rowcols,
|
Chris@87
|
29 clump_masked, clump_unmasked,
|
Chris@87
|
30 flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges,
|
Chris@87
|
31 masked_all, masked_all_like)
|
Chris@87
|
32
|
Chris@87
|
33
|
Chris@87
|
34 class TestGeneric(TestCase):
|
Chris@87
|
35 #
|
Chris@87
|
36 def test_masked_all(self):
|
Chris@87
|
37 # Tests masked_all
|
Chris@87
|
38 # Standard dtype
|
Chris@87
|
39 test = masked_all((2,), dtype=float)
|
Chris@87
|
40 control = array([1, 1], mask=[1, 1], dtype=float)
|
Chris@87
|
41 assert_equal(test, control)
|
Chris@87
|
42 # Flexible dtype
|
Chris@87
|
43 dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
|
Chris@87
|
44 test = masked_all((2,), dtype=dt)
|
Chris@87
|
45 control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
|
Chris@87
|
46 assert_equal(test, control)
|
Chris@87
|
47 test = masked_all((2, 2), dtype=dt)
|
Chris@87
|
48 control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]],
|
Chris@87
|
49 mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]],
|
Chris@87
|
50 dtype=dt)
|
Chris@87
|
51 assert_equal(test, control)
|
Chris@87
|
52 # Nested dtype
|
Chris@87
|
53 dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
|
Chris@87
|
54 test = masked_all((2,), dtype=dt)
|
Chris@87
|
55 control = array([(1, (1, 1)), (1, (1, 1))],
|
Chris@87
|
56 mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
|
Chris@87
|
57 assert_equal(test, control)
|
Chris@87
|
58 test = masked_all((2,), dtype=dt)
|
Chris@87
|
59 control = array([(1, (1, 1)), (1, (1, 1))],
|
Chris@87
|
60 mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
|
Chris@87
|
61 assert_equal(test, control)
|
Chris@87
|
62 test = masked_all((1, 1), dtype=dt)
|
Chris@87
|
63 control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt)
|
Chris@87
|
64 assert_equal(test, control)
|
Chris@87
|
65
|
Chris@87
|
66 def test_masked_all_like(self):
|
Chris@87
|
67 # Tests masked_all
|
Chris@87
|
68 # Standard dtype
|
Chris@87
|
69 base = array([1, 2], dtype=float)
|
Chris@87
|
70 test = masked_all_like(base)
|
Chris@87
|
71 control = array([1, 1], mask=[1, 1], dtype=float)
|
Chris@87
|
72 assert_equal(test, control)
|
Chris@87
|
73 # Flexible dtype
|
Chris@87
|
74 dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
|
Chris@87
|
75 base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
|
Chris@87
|
76 test = masked_all_like(base)
|
Chris@87
|
77 control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt)
|
Chris@87
|
78 assert_equal(test, control)
|
Chris@87
|
79 # Nested dtype
|
Chris@87
|
80 dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
|
Chris@87
|
81 control = array([(1, (1, 1)), (1, (1, 1))],
|
Chris@87
|
82 mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
|
Chris@87
|
83 test = masked_all_like(control)
|
Chris@87
|
84 assert_equal(test, control)
|
Chris@87
|
85
|
Chris@87
|
86 def test_clump_masked(self):
|
Chris@87
|
87 # Test clump_masked
|
Chris@87
|
88 a = masked_array(np.arange(10))
|
Chris@87
|
89 a[[0, 1, 2, 6, 8, 9]] = masked
|
Chris@87
|
90 #
|
Chris@87
|
91 test = clump_masked(a)
|
Chris@87
|
92 control = [slice(0, 3), slice(6, 7), slice(8, 10)]
|
Chris@87
|
93 assert_equal(test, control)
|
Chris@87
|
94
|
Chris@87
|
95 def test_clump_unmasked(self):
|
Chris@87
|
96 # Test clump_unmasked
|
Chris@87
|
97 a = masked_array(np.arange(10))
|
Chris@87
|
98 a[[0, 1, 2, 6, 8, 9]] = masked
|
Chris@87
|
99 test = clump_unmasked(a)
|
Chris@87
|
100 control = [slice(3, 6), slice(7, 8), ]
|
Chris@87
|
101 assert_equal(test, control)
|
Chris@87
|
102
|
Chris@87
|
103 def test_flatnotmasked_contiguous(self):
|
Chris@87
|
104 # Test flatnotmasked_contiguous
|
Chris@87
|
105 a = arange(10)
|
Chris@87
|
106 # No mask
|
Chris@87
|
107 test = flatnotmasked_contiguous(a)
|
Chris@87
|
108 assert_equal(test, slice(0, a.size))
|
Chris@87
|
109 # Some mask
|
Chris@87
|
110 a[(a < 3) | (a > 8) | (a == 5)] = masked
|
Chris@87
|
111 test = flatnotmasked_contiguous(a)
|
Chris@87
|
112 assert_equal(test, [slice(3, 5), slice(6, 9)])
|
Chris@87
|
113 #
|
Chris@87
|
114 a[:] = masked
|
Chris@87
|
115 test = flatnotmasked_contiguous(a)
|
Chris@87
|
116 assert_equal(test, None)
|
Chris@87
|
117
|
Chris@87
|
118
|
Chris@87
|
119 class TestAverage(TestCase):
|
Chris@87
|
120 # Several tests of average. Why so many ? Good point...
|
Chris@87
|
121 def test_testAverage1(self):
|
Chris@87
|
122 # Test of average.
|
Chris@87
|
123 ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
|
Chris@87
|
124 assert_equal(2.0, average(ott, axis=0))
|
Chris@87
|
125 assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
|
Chris@87
|
126 result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1)
|
Chris@87
|
127 assert_equal(2.0, result)
|
Chris@87
|
128 self.assertTrue(wts == 4.0)
|
Chris@87
|
129 ott[:] = masked
|
Chris@87
|
130 assert_equal(average(ott, axis=0).mask, [True])
|
Chris@87
|
131 ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
|
Chris@87
|
132 ott = ott.reshape(2, 2)
|
Chris@87
|
133 ott[:, 1] = masked
|
Chris@87
|
134 assert_equal(average(ott, axis=0), [2.0, 0.0])
|
Chris@87
|
135 assert_equal(average(ott, axis=1).mask[0], [True])
|
Chris@87
|
136 assert_equal([2., 0.], average(ott, axis=0))
|
Chris@87
|
137 result, wts = average(ott, axis=0, returned=1)
|
Chris@87
|
138 assert_equal(wts, [1., 0.])
|
Chris@87
|
139
|
Chris@87
|
140 def test_testAverage2(self):
|
Chris@87
|
141 # More tests of average.
|
Chris@87
|
142 w1 = [0, 1, 1, 1, 1, 0]
|
Chris@87
|
143 w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
|
Chris@87
|
144 x = arange(6, dtype=np.float_)
|
Chris@87
|
145 assert_equal(average(x, axis=0), 2.5)
|
Chris@87
|
146 assert_equal(average(x, axis=0, weights=w1), 2.5)
|
Chris@87
|
147 y = array([arange(6, dtype=np.float_), 2.0 * arange(6)])
|
Chris@87
|
148 assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)
|
Chris@87
|
149 assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.)
|
Chris@87
|
150 assert_equal(average(y, axis=1),
|
Chris@87
|
151 [average(x, axis=0), average(x, axis=0) * 2.0])
|
Chris@87
|
152 assert_equal(average(y, None, weights=w2), 20. / 6.)
|
Chris@87
|
153 assert_equal(average(y, axis=0, weights=w2),
|
Chris@87
|
154 [0., 1., 2., 3., 4., 10.])
|
Chris@87
|
155 assert_equal(average(y, axis=1),
|
Chris@87
|
156 [average(x, axis=0), average(x, axis=0) * 2.0])
|
Chris@87
|
157 m1 = zeros(6)
|
Chris@87
|
158 m2 = [0, 0, 1, 1, 0, 0]
|
Chris@87
|
159 m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
|
Chris@87
|
160 m4 = ones(6)
|
Chris@87
|
161 m5 = [0, 1, 1, 1, 1, 1]
|
Chris@87
|
162 assert_equal(average(masked_array(x, m1), axis=0), 2.5)
|
Chris@87
|
163 assert_equal(average(masked_array(x, m2), axis=0), 2.5)
|
Chris@87
|
164 assert_equal(average(masked_array(x, m4), axis=0).mask, [True])
|
Chris@87
|
165 assert_equal(average(masked_array(x, m5), axis=0), 0.0)
|
Chris@87
|
166 assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
|
Chris@87
|
167 z = masked_array(y, m3)
|
Chris@87
|
168 assert_equal(average(z, None), 20. / 6.)
|
Chris@87
|
169 assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
|
Chris@87
|
170 assert_equal(average(z, axis=1), [2.5, 5.0])
|
Chris@87
|
171 assert_equal(average(z, axis=0, weights=w2),
|
Chris@87
|
172 [0., 1., 99., 99., 4.0, 10.0])
|
Chris@87
|
173
|
Chris@87
|
174 def test_testAverage3(self):
|
Chris@87
|
175 # Yet more tests of average!
|
Chris@87
|
176 a = arange(6)
|
Chris@87
|
177 b = arange(6) * 3
|
Chris@87
|
178 r1, w1 = average([[a, b], [b, a]], axis=1, returned=1)
|
Chris@87
|
179 assert_equal(shape(r1), shape(w1))
|
Chris@87
|
180 assert_equal(r1.shape, w1.shape)
|
Chris@87
|
181 r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=1)
|
Chris@87
|
182 assert_equal(shape(w2), shape(r2))
|
Chris@87
|
183 r2, w2 = average(ones((2, 2, 3)), returned=1)
|
Chris@87
|
184 assert_equal(shape(w2), shape(r2))
|
Chris@87
|
185 r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=1)
|
Chris@87
|
186 assert_equal(shape(w2), shape(r2))
|
Chris@87
|
187 a2d = array([[1, 2], [0, 4]], float)
|
Chris@87
|
188 a2dm = masked_array(a2d, [[False, False], [True, False]])
|
Chris@87
|
189 a2da = average(a2d, axis=0)
|
Chris@87
|
190 assert_equal(a2da, [0.5, 3.0])
|
Chris@87
|
191 a2dma = average(a2dm, axis=0)
|
Chris@87
|
192 assert_equal(a2dma, [1.0, 3.0])
|
Chris@87
|
193 a2dma = average(a2dm, axis=None)
|
Chris@87
|
194 assert_equal(a2dma, 7. / 3.)
|
Chris@87
|
195 a2dma = average(a2dm, axis=1)
|
Chris@87
|
196 assert_equal(a2dma, [1.5, 4.0])
|
Chris@87
|
197
|
Chris@87
|
198 def test_onintegers_with_mask(self):
|
Chris@87
|
199 # Test average on integers with mask
|
Chris@87
|
200 a = average(array([1, 2]))
|
Chris@87
|
201 assert_equal(a, 1.5)
|
Chris@87
|
202 a = average(array([1, 2, 3, 4], mask=[False, False, True, True]))
|
Chris@87
|
203 assert_equal(a, 1.5)
|
Chris@87
|
204
|
Chris@87
|
205 def test_complex(self):
|
Chris@87
|
206 # Test with complex data.
|
Chris@87
|
207 # (Regression test for https://github.com/numpy/numpy/issues/2684)
|
Chris@87
|
208 mask = np.array([[0, 0, 0, 1, 0],
|
Chris@87
|
209 [0, 1, 0, 0, 0]], dtype=bool)
|
Chris@87
|
210 a = masked_array([[0, 1+2j, 3+4j, 5+6j, 7+8j],
|
Chris@87
|
211 [9j, 0+1j, 2+3j, 4+5j, 7+7j]],
|
Chris@87
|
212 mask=mask)
|
Chris@87
|
213
|
Chris@87
|
214 av = average(a)
|
Chris@87
|
215 expected = np.average(a.compressed())
|
Chris@87
|
216 assert_almost_equal(av.real, expected.real)
|
Chris@87
|
217 assert_almost_equal(av.imag, expected.imag)
|
Chris@87
|
218
|
Chris@87
|
219 av0 = average(a, axis=0)
|
Chris@87
|
220 expected0 = average(a.real, axis=0) + average(a.imag, axis=0)*1j
|
Chris@87
|
221 assert_almost_equal(av0.real, expected0.real)
|
Chris@87
|
222 assert_almost_equal(av0.imag, expected0.imag)
|
Chris@87
|
223
|
Chris@87
|
224 av1 = average(a, axis=1)
|
Chris@87
|
225 expected1 = average(a.real, axis=1) + average(a.imag, axis=1)*1j
|
Chris@87
|
226 assert_almost_equal(av1.real, expected1.real)
|
Chris@87
|
227 assert_almost_equal(av1.imag, expected1.imag)
|
Chris@87
|
228
|
Chris@87
|
229 # Test with the 'weights' argument.
|
Chris@87
|
230 wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5],
|
Chris@87
|
231 [1.0, 1.0, 1.0, 1.0, 1.0]])
|
Chris@87
|
232 wav = average(a, weights=wts)
|
Chris@87
|
233 expected = np.average(a.compressed(), weights=wts[~mask])
|
Chris@87
|
234 assert_almost_equal(wav.real, expected.real)
|
Chris@87
|
235 assert_almost_equal(wav.imag, expected.imag)
|
Chris@87
|
236
|
Chris@87
|
237 wav0 = average(a, weights=wts, axis=0)
|
Chris@87
|
238 expected0 = (average(a.real, weights=wts, axis=0) +
|
Chris@87
|
239 average(a.imag, weights=wts, axis=0)*1j)
|
Chris@87
|
240 assert_almost_equal(wav0.real, expected0.real)
|
Chris@87
|
241 assert_almost_equal(wav0.imag, expected0.imag)
|
Chris@87
|
242
|
Chris@87
|
243 wav1 = average(a, weights=wts, axis=1)
|
Chris@87
|
244 expected1 = (average(a.real, weights=wts, axis=1) +
|
Chris@87
|
245 average(a.imag, weights=wts, axis=1)*1j)
|
Chris@87
|
246 assert_almost_equal(wav1.real, expected1.real)
|
Chris@87
|
247 assert_almost_equal(wav1.imag, expected1.imag)
|
Chris@87
|
248
|
Chris@87
|
249
|
Chris@87
|
250 class TestConcatenator(TestCase):
|
Chris@87
|
251 # Tests for mr_, the equivalent of r_ for masked arrays.
|
Chris@87
|
252
|
Chris@87
|
253 def test_1d(self):
|
Chris@87
|
254 # Tests mr_ on 1D arrays.
|
Chris@87
|
255 assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6]))
|
Chris@87
|
256 b = ones(5)
|
Chris@87
|
257 m = [1, 0, 0, 0, 0]
|
Chris@87
|
258 d = masked_array(b, mask=m)
|
Chris@87
|
259 c = mr_[d, 0, 0, d]
|
Chris@87
|
260 self.assertTrue(isinstance(c, MaskedArray))
|
Chris@87
|
261 assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
|
Chris@87
|
262 assert_array_equal(c.mask, mr_[m, 0, 0, m])
|
Chris@87
|
263
|
Chris@87
|
264 def test_2d(self):
|
Chris@87
|
265 # Tests mr_ on 2D arrays.
|
Chris@87
|
266 a_1 = rand(5, 5)
|
Chris@87
|
267 a_2 = rand(5, 5)
|
Chris@87
|
268 m_1 = np.round_(rand(5, 5), 0)
|
Chris@87
|
269 m_2 = np.round_(rand(5, 5), 0)
|
Chris@87
|
270 b_1 = masked_array(a_1, mask=m_1)
|
Chris@87
|
271 b_2 = masked_array(a_2, mask=m_2)
|
Chris@87
|
272 # append columns
|
Chris@87
|
273 d = mr_['1', b_1, b_2]
|
Chris@87
|
274 self.assertTrue(d.shape == (5, 10))
|
Chris@87
|
275 assert_array_equal(d[:, :5], b_1)
|
Chris@87
|
276 assert_array_equal(d[:, 5:], b_2)
|
Chris@87
|
277 assert_array_equal(d.mask, np.r_['1', m_1, m_2])
|
Chris@87
|
278 d = mr_[b_1, b_2]
|
Chris@87
|
279 self.assertTrue(d.shape == (10, 5))
|
Chris@87
|
280 assert_array_equal(d[:5,:], b_1)
|
Chris@87
|
281 assert_array_equal(d[5:,:], b_2)
|
Chris@87
|
282 assert_array_equal(d.mask, np.r_[m_1, m_2])
|
Chris@87
|
283
|
Chris@87
|
284
|
Chris@87
|
285 class TestNotMasked(TestCase):
|
Chris@87
|
286 # Tests notmasked_edges and notmasked_contiguous.
|
Chris@87
|
287
|
Chris@87
|
288 def test_edges(self):
|
Chris@87
|
289 # Tests unmasked_edges
|
Chris@87
|
290 data = masked_array(np.arange(25).reshape(5, 5),
|
Chris@87
|
291 mask=[[0, 0, 1, 0, 0],
|
Chris@87
|
292 [0, 0, 0, 1, 1],
|
Chris@87
|
293 [1, 1, 0, 0, 0],
|
Chris@87
|
294 [0, 0, 0, 0, 0],
|
Chris@87
|
295 [1, 1, 1, 0, 0]],)
|
Chris@87
|
296 test = notmasked_edges(data, None)
|
Chris@87
|
297 assert_equal(test, [0, 24])
|
Chris@87
|
298 test = notmasked_edges(data, 0)
|
Chris@87
|
299 assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
|
Chris@87
|
300 assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)])
|
Chris@87
|
301 test = notmasked_edges(data, 1)
|
Chris@87
|
302 assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)])
|
Chris@87
|
303 assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)])
|
Chris@87
|
304 #
|
Chris@87
|
305 test = notmasked_edges(data.data, None)
|
Chris@87
|
306 assert_equal(test, [0, 24])
|
Chris@87
|
307 test = notmasked_edges(data.data, 0)
|
Chris@87
|
308 assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)])
|
Chris@87
|
309 assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)])
|
Chris@87
|
310 test = notmasked_edges(data.data, -1)
|
Chris@87
|
311 assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)])
|
Chris@87
|
312 assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)])
|
Chris@87
|
313 #
|
Chris@87
|
314 data[-2] = masked
|
Chris@87
|
315 test = notmasked_edges(data, 0)
|
Chris@87
|
316 assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
|
Chris@87
|
317 assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)])
|
Chris@87
|
318 test = notmasked_edges(data, -1)
|
Chris@87
|
319 assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)])
|
Chris@87
|
320 assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)])
|
Chris@87
|
321
|
Chris@87
|
322 def test_contiguous(self):
|
Chris@87
|
323 # Tests notmasked_contiguous
|
Chris@87
|
324 a = masked_array(np.arange(24).reshape(3, 8),
|
Chris@87
|
325 mask=[[0, 0, 0, 0, 1, 1, 1, 1],
|
Chris@87
|
326 [1, 1, 1, 1, 1, 1, 1, 1],
|
Chris@87
|
327 [0, 0, 0, 0, 0, 0, 1, 0], ])
|
Chris@87
|
328 tmp = notmasked_contiguous(a, None)
|
Chris@87
|
329 assert_equal(tmp[-1], slice(23, 24, None))
|
Chris@87
|
330 assert_equal(tmp[-2], slice(16, 22, None))
|
Chris@87
|
331 assert_equal(tmp[-3], slice(0, 4, None))
|
Chris@87
|
332 #
|
Chris@87
|
333 tmp = notmasked_contiguous(a, 0)
|
Chris@87
|
334 self.assertTrue(len(tmp[-1]) == 1)
|
Chris@87
|
335 self.assertTrue(tmp[-2] is None)
|
Chris@87
|
336 assert_equal(tmp[-3], tmp[-1])
|
Chris@87
|
337 self.assertTrue(len(tmp[0]) == 2)
|
Chris@87
|
338 #
|
Chris@87
|
339 tmp = notmasked_contiguous(a, 1)
|
Chris@87
|
340 assert_equal(tmp[0][-1], slice(0, 4, None))
|
Chris@87
|
341 self.assertTrue(tmp[1] is None)
|
Chris@87
|
342 assert_equal(tmp[2][-1], slice(7, 8, None))
|
Chris@87
|
343 assert_equal(tmp[2][-2], slice(0, 6, None))
|
Chris@87
|
344
|
Chris@87
|
345
|
Chris@87
|
346 class Test2DFunctions(TestCase):
|
Chris@87
|
347 # Tests 2D functions
|
Chris@87
|
348 def test_compress2d(self):
|
Chris@87
|
349 # Tests compress2d
|
Chris@87
|
350 x = array(np.arange(9).reshape(3, 3),
|
Chris@87
|
351 mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
|
Chris@87
|
352 assert_equal(compress_rowcols(x), [[4, 5], [7, 8]])
|
Chris@87
|
353 assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]])
|
Chris@87
|
354 assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]])
|
Chris@87
|
355 x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
|
Chris@87
|
356 assert_equal(compress_rowcols(x), [[0, 2], [6, 8]])
|
Chris@87
|
357 assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]])
|
Chris@87
|
358 assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]])
|
Chris@87
|
359 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
|
Chris@87
|
360 assert_equal(compress_rowcols(x), [[8]])
|
Chris@87
|
361 assert_equal(compress_rowcols(x, 0), [[6, 7, 8]])
|
Chris@87
|
362 assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]])
|
Chris@87
|
363 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
Chris@87
|
364 assert_equal(compress_rowcols(x).size, 0)
|
Chris@87
|
365 assert_equal(compress_rowcols(x, 0).size, 0)
|
Chris@87
|
366 assert_equal(compress_rowcols(x, 1).size, 0)
|
Chris@87
|
367
|
Chris@87
|
368 def test_mask_rowcols(self):
|
Chris@87
|
369 # Tests mask_rowcols.
|
Chris@87
|
370 x = array(np.arange(9).reshape(3, 3),
|
Chris@87
|
371 mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
|
Chris@87
|
372 assert_equal(mask_rowcols(x).mask,
|
Chris@87
|
373 [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
|
Chris@87
|
374 assert_equal(mask_rowcols(x, 0).mask,
|
Chris@87
|
375 [[1, 1, 1], [0, 0, 0], [0, 0, 0]])
|
Chris@87
|
376 assert_equal(mask_rowcols(x, 1).mask,
|
Chris@87
|
377 [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
|
Chris@87
|
378 x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
|
Chris@87
|
379 assert_equal(mask_rowcols(x).mask,
|
Chris@87
|
380 [[0, 1, 0], [1, 1, 1], [0, 1, 0]])
|
Chris@87
|
381 assert_equal(mask_rowcols(x, 0).mask,
|
Chris@87
|
382 [[0, 0, 0], [1, 1, 1], [0, 0, 0]])
|
Chris@87
|
383 assert_equal(mask_rowcols(x, 1).mask,
|
Chris@87
|
384 [[0, 1, 0], [0, 1, 0], [0, 1, 0]])
|
Chris@87
|
385 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
|
Chris@87
|
386 assert_equal(mask_rowcols(x).mask,
|
Chris@87
|
387 [[1, 1, 1], [1, 1, 1], [1, 1, 0]])
|
Chris@87
|
388 assert_equal(mask_rowcols(x, 0).mask,
|
Chris@87
|
389 [[1, 1, 1], [1, 1, 1], [0, 0, 0]])
|
Chris@87
|
390 assert_equal(mask_rowcols(x, 1,).mask,
|
Chris@87
|
391 [[1, 1, 0], [1, 1, 0], [1, 1, 0]])
|
Chris@87
|
392 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
Chris@87
|
393 self.assertTrue(mask_rowcols(x).all() is masked)
|
Chris@87
|
394 self.assertTrue(mask_rowcols(x, 0).all() is masked)
|
Chris@87
|
395 self.assertTrue(mask_rowcols(x, 1).all() is masked)
|
Chris@87
|
396 self.assertTrue(mask_rowcols(x).mask.all())
|
Chris@87
|
397 self.assertTrue(mask_rowcols(x, 0).mask.all())
|
Chris@87
|
398 self.assertTrue(mask_rowcols(x, 1).mask.all())
|
Chris@87
|
399
|
Chris@87
|
400 def test_dot(self):
|
Chris@87
|
401 # Tests dot product
|
Chris@87
|
402 n = np.arange(1, 7)
|
Chris@87
|
403 #
|
Chris@87
|
404 m = [1, 0, 0, 0, 0, 0]
|
Chris@87
|
405 a = masked_array(n, mask=m).reshape(2, 3)
|
Chris@87
|
406 b = masked_array(n, mask=m).reshape(3, 2)
|
Chris@87
|
407 c = dot(a, b, True)
|
Chris@87
|
408 assert_equal(c.mask, [[1, 1], [1, 0]])
|
Chris@87
|
409 c = dot(b, a, True)
|
Chris@87
|
410 assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
|
Chris@87
|
411 c = dot(a, b, False)
|
Chris@87
|
412 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
|
Chris@87
|
413 c = dot(b, a, False)
|
Chris@87
|
414 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
|
Chris@87
|
415 #
|
Chris@87
|
416 m = [0, 0, 0, 0, 0, 1]
|
Chris@87
|
417 a = masked_array(n, mask=m).reshape(2, 3)
|
Chris@87
|
418 b = masked_array(n, mask=m).reshape(3, 2)
|
Chris@87
|
419 c = dot(a, b, True)
|
Chris@87
|
420 assert_equal(c.mask, [[0, 1], [1, 1]])
|
Chris@87
|
421 c = dot(b, a, True)
|
Chris@87
|
422 assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]])
|
Chris@87
|
423 c = dot(a, b, False)
|
Chris@87
|
424 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
|
Chris@87
|
425 assert_equal(c, dot(a, b))
|
Chris@87
|
426 c = dot(b, a, False)
|
Chris@87
|
427 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
|
Chris@87
|
428 #
|
Chris@87
|
429 m = [0, 0, 0, 0, 0, 0]
|
Chris@87
|
430 a = masked_array(n, mask=m).reshape(2, 3)
|
Chris@87
|
431 b = masked_array(n, mask=m).reshape(3, 2)
|
Chris@87
|
432 c = dot(a, b)
|
Chris@87
|
433 assert_equal(c.mask, nomask)
|
Chris@87
|
434 c = dot(b, a)
|
Chris@87
|
435 assert_equal(c.mask, nomask)
|
Chris@87
|
436 #
|
Chris@87
|
437 a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3)
|
Chris@87
|
438 b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
|
Chris@87
|
439 c = dot(a, b, True)
|
Chris@87
|
440 assert_equal(c.mask, [[1, 1], [0, 0]])
|
Chris@87
|
441 c = dot(a, b, False)
|
Chris@87
|
442 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
|
Chris@87
|
443 c = dot(b, a, True)
|
Chris@87
|
444 assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
|
Chris@87
|
445 c = dot(b, a, False)
|
Chris@87
|
446 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
|
Chris@87
|
447 #
|
Chris@87
|
448 a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
|
Chris@87
|
449 b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
|
Chris@87
|
450 c = dot(a, b, True)
|
Chris@87
|
451 assert_equal(c.mask, [[0, 0], [1, 1]])
|
Chris@87
|
452 c = dot(a, b)
|
Chris@87
|
453 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
|
Chris@87
|
454 c = dot(b, a, True)
|
Chris@87
|
455 assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]])
|
Chris@87
|
456 c = dot(b, a, False)
|
Chris@87
|
457 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
|
Chris@87
|
458 #
|
Chris@87
|
459 a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
|
Chris@87
|
460 b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2)
|
Chris@87
|
461 c = dot(a, b, True)
|
Chris@87
|
462 assert_equal(c.mask, [[1, 0], [1, 1]])
|
Chris@87
|
463 c = dot(a, b, False)
|
Chris@87
|
464 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
|
Chris@87
|
465 c = dot(b, a, True)
|
Chris@87
|
466 assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]])
|
Chris@87
|
467 c = dot(b, a, False)
|
Chris@87
|
468 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
|
Chris@87
|
469
|
Chris@87
|
470
|
Chris@87
|
471 class TestApplyAlongAxis(TestCase):
|
Chris@87
|
472 # Tests 2D functions
|
Chris@87
|
473 def test_3d(self):
|
Chris@87
|
474 a = arange(12.).reshape(2, 2, 3)
|
Chris@87
|
475
|
Chris@87
|
476 def myfunc(b):
|
Chris@87
|
477 return b[1]
|
Chris@87
|
478
|
Chris@87
|
479 xa = apply_along_axis(myfunc, 2, a)
|
Chris@87
|
480 assert_equal(xa, [[1, 4], [7, 10]])
|
Chris@87
|
481
|
Chris@87
|
482 # Tests kwargs functions
|
Chris@87
|
483 def test_3d_kwargs(self):
|
Chris@87
|
484 a = arange(12).reshape(2, 2, 3)
|
Chris@87
|
485
|
Chris@87
|
486 def myfunc(b, offset=0):
|
Chris@87
|
487 return b[1+offset]
|
Chris@87
|
488
|
Chris@87
|
489 xa = apply_along_axis(myfunc, 2, a, offset=1)
|
Chris@87
|
490 assert_equal(xa, [[2, 5], [8, 11]])
|
Chris@87
|
491
|
Chris@87
|
492
|
Chris@87
|
493 class TestApplyOverAxes(TestCase):
|
Chris@87
|
494 # Tests apply_over_axes
|
Chris@87
|
495 def test_basic(self):
|
Chris@87
|
496 a = arange(24).reshape(2, 3, 4)
|
Chris@87
|
497 test = apply_over_axes(np.sum, a, [0, 2])
|
Chris@87
|
498 ctrl = np.array([[[60], [92], [124]]])
|
Chris@87
|
499 assert_equal(test, ctrl)
|
Chris@87
|
500 a[(a % 2).astype(np.bool)] = masked
|
Chris@87
|
501 test = apply_over_axes(np.sum, a, [0, 2])
|
Chris@87
|
502 ctrl = np.array([[[28], [44], [60]]])
|
Chris@87
|
503 assert_equal(test, ctrl)
|
Chris@87
|
504
|
Chris@87
|
505
|
Chris@87
|
506 class TestMedian(TestCase):
|
Chris@87
|
507 def test_pytype(self):
|
Chris@87
|
508 r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1)
|
Chris@87
|
509 assert_equal(r, np.inf)
|
Chris@87
|
510
|
Chris@87
|
511 def test_2d(self):
|
Chris@87
|
512 # Tests median w/ 2D
|
Chris@87
|
513 (n, p) = (101, 30)
|
Chris@87
|
514 x = masked_array(np.linspace(-1., 1., n),)
|
Chris@87
|
515 x[:10] = x[-10:] = masked
|
Chris@87
|
516 z = masked_array(np.empty((n, p), dtype=float))
|
Chris@87
|
517 z[:, 0] = x[:]
|
Chris@87
|
518 idx = np.arange(len(x))
|
Chris@87
|
519 for i in range(1, p):
|
Chris@87
|
520 np.random.shuffle(idx)
|
Chris@87
|
521 z[:, i] = x[idx]
|
Chris@87
|
522 assert_equal(median(z[:, 0]), 0)
|
Chris@87
|
523 assert_equal(median(z), 0)
|
Chris@87
|
524 assert_equal(median(z, axis=0), np.zeros(p))
|
Chris@87
|
525 assert_equal(median(z.T, axis=1), np.zeros(p))
|
Chris@87
|
526
|
Chris@87
|
527 def test_2d_waxis(self):
|
Chris@87
|
528 # Tests median w/ 2D arrays and different axis.
|
Chris@87
|
529 x = masked_array(np.arange(30).reshape(10, 3))
|
Chris@87
|
530 x[:3] = x[-3:] = masked
|
Chris@87
|
531 assert_equal(median(x), 14.5)
|
Chris@87
|
532 assert_equal(median(x, axis=0), [13.5, 14.5, 15.5])
|
Chris@87
|
533 assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0])
|
Chris@87
|
534 assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
|
Chris@87
|
535
|
Chris@87
|
536 def test_3d(self):
|
Chris@87
|
537 # Tests median w/ 3D
|
Chris@87
|
538 x = np.ma.arange(24).reshape(3, 4, 2)
|
Chris@87
|
539 x[x % 3 == 0] = masked
|
Chris@87
|
540 assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]])
|
Chris@87
|
541 x.shape = (4, 3, 2)
|
Chris@87
|
542 assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]])
|
Chris@87
|
543 x = np.ma.arange(24).reshape(4, 3, 2)
|
Chris@87
|
544 x[x % 5 == 0] = masked
|
Chris@87
|
545 assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]])
|
Chris@87
|
546
|
Chris@87
|
547 def test_neg_axis(self):
|
Chris@87
|
548 x = masked_array(np.arange(30).reshape(10, 3))
|
Chris@87
|
549 x[:3] = x[-3:] = masked
|
Chris@87
|
550 assert_equal(median(x, axis=-1), median(x, axis=1))
|
Chris@87
|
551
|
Chris@87
|
552 def test_out(self):
|
Chris@87
|
553 x = masked_array(np.arange(30).reshape(10, 3))
|
Chris@87
|
554 x[:3] = x[-3:] = masked
|
Chris@87
|
555 out = masked_array(np.ones(10))
|
Chris@87
|
556 r = median(x, axis=1, out=out)
|
Chris@87
|
557 assert_equal(r, out)
|
Chris@87
|
558 assert_(type(r) == MaskedArray)
|
Chris@87
|
559
|
Chris@87
|
560
|
Chris@87
|
561 class TestCov(TestCase):
|
Chris@87
|
562
|
Chris@87
|
563 def setUp(self):
|
Chris@87
|
564 self.data = array(np.random.rand(12))
|
Chris@87
|
565
|
Chris@87
|
566 def test_1d_wo_missing(self):
|
Chris@87
|
567 # Test cov on 1D variable w/o missing values
|
Chris@87
|
568 x = self.data
|
Chris@87
|
569 assert_almost_equal(np.cov(x), cov(x))
|
Chris@87
|
570 assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
|
Chris@87
|
571 assert_almost_equal(np.cov(x, rowvar=False, bias=True),
|
Chris@87
|
572 cov(x, rowvar=False, bias=True))
|
Chris@87
|
573
|
Chris@87
|
574 def test_2d_wo_missing(self):
|
Chris@87
|
575 # Test cov on 1 2D variable w/o missing values
|
Chris@87
|
576 x = self.data.reshape(3, 4)
|
Chris@87
|
577 assert_almost_equal(np.cov(x), cov(x))
|
Chris@87
|
578 assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
|
Chris@87
|
579 assert_almost_equal(np.cov(x, rowvar=False, bias=True),
|
Chris@87
|
580 cov(x, rowvar=False, bias=True))
|
Chris@87
|
581
|
Chris@87
|
582 def test_1d_w_missing(self):
|
Chris@87
|
583 # Test cov 1 1D variable w/missing values
|
Chris@87
|
584 x = self.data
|
Chris@87
|
585 x[-1] = masked
|
Chris@87
|
586 x -= x.mean()
|
Chris@87
|
587 nx = x.compressed()
|
Chris@87
|
588 assert_almost_equal(np.cov(nx), cov(x))
|
Chris@87
|
589 assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False))
|
Chris@87
|
590 assert_almost_equal(np.cov(nx, rowvar=False, bias=True),
|
Chris@87
|
591 cov(x, rowvar=False, bias=True))
|
Chris@87
|
592 #
|
Chris@87
|
593 try:
|
Chris@87
|
594 cov(x, allow_masked=False)
|
Chris@87
|
595 except ValueError:
|
Chris@87
|
596 pass
|
Chris@87
|
597 #
|
Chris@87
|
598 # 2 1D variables w/ missing values
|
Chris@87
|
599 nx = x[1:-1]
|
Chris@87
|
600 assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1]))
|
Chris@87
|
601 assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False),
|
Chris@87
|
602 cov(x, x[::-1], rowvar=False))
|
Chris@87
|
603 assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
|
Chris@87
|
604 cov(x, x[::-1], rowvar=False, bias=True))
|
Chris@87
|
605
|
Chris@87
|
606 def test_2d_w_missing(self):
|
Chris@87
|
607 # Test cov on 2D variable w/ missing value
|
Chris@87
|
608 x = self.data
|
Chris@87
|
609 x[-1] = masked
|
Chris@87
|
610 x = x.reshape(3, 4)
|
Chris@87
|
611 valid = np.logical_not(getmaskarray(x)).astype(int)
|
Chris@87
|
612 frac = np.dot(valid, valid.T)
|
Chris@87
|
613 xf = (x - x.mean(1)[:, None]).filled(0)
|
Chris@87
|
614 assert_almost_equal(cov(x),
|
Chris@87
|
615 np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
|
Chris@87
|
616 assert_almost_equal(cov(x, bias=True),
|
Chris@87
|
617 np.cov(xf, bias=True) * x.shape[1] / frac)
|
Chris@87
|
618 frac = np.dot(valid.T, valid)
|
Chris@87
|
619 xf = (x - x.mean(0)).filled(0)
|
Chris@87
|
620 assert_almost_equal(cov(x, rowvar=False),
|
Chris@87
|
621 (np.cov(xf, rowvar=False) *
|
Chris@87
|
622 (x.shape[0] - 1) / (frac - 1.)))
|
Chris@87
|
623 assert_almost_equal(cov(x, rowvar=False, bias=True),
|
Chris@87
|
624 (np.cov(xf, rowvar=False, bias=True) *
|
Chris@87
|
625 x.shape[0] / frac))
|
Chris@87
|
626
|
Chris@87
|
627
|
Chris@87
|
628 class TestCorrcoef(TestCase):
|
Chris@87
|
629
|
Chris@87
|
630 def setUp(self):
|
Chris@87
|
631 self.data = array(np.random.rand(12))
|
Chris@87
|
632
|
Chris@87
|
633 def test_ddof(self):
|
Chris@87
|
634 # Test ddof keyword
|
Chris@87
|
635 x = self.data
|
Chris@87
|
636 assert_almost_equal(np.corrcoef(x, ddof=0), corrcoef(x, ddof=0))
|
Chris@87
|
637
|
Chris@87
|
638 def test_1d_wo_missing(self):
|
Chris@87
|
639 # Test cov on 1D variable w/o missing values
|
Chris@87
|
640 x = self.data
|
Chris@87
|
641 assert_almost_equal(np.corrcoef(x), corrcoef(x))
|
Chris@87
|
642 assert_almost_equal(np.corrcoef(x, rowvar=False),
|
Chris@87
|
643 corrcoef(x, rowvar=False))
|
Chris@87
|
644 assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
|
Chris@87
|
645 corrcoef(x, rowvar=False, bias=True))
|
Chris@87
|
646
|
Chris@87
|
647 def test_2d_wo_missing(self):
|
Chris@87
|
648 # Test corrcoef on 1 2D variable w/o missing values
|
Chris@87
|
649 x = self.data.reshape(3, 4)
|
Chris@87
|
650 assert_almost_equal(np.corrcoef(x), corrcoef(x))
|
Chris@87
|
651 assert_almost_equal(np.corrcoef(x, rowvar=False),
|
Chris@87
|
652 corrcoef(x, rowvar=False))
|
Chris@87
|
653 assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
|
Chris@87
|
654 corrcoef(x, rowvar=False, bias=True))
|
Chris@87
|
655
|
Chris@87
|
656 def test_1d_w_missing(self):
|
Chris@87
|
657 # Test corrcoef 1 1D variable w/missing values
|
Chris@87
|
658 x = self.data
|
Chris@87
|
659 x[-1] = masked
|
Chris@87
|
660 x -= x.mean()
|
Chris@87
|
661 nx = x.compressed()
|
Chris@87
|
662 assert_almost_equal(np.corrcoef(nx), corrcoef(x))
|
Chris@87
|
663 assert_almost_equal(np.corrcoef(nx, rowvar=False),
|
Chris@87
|
664 corrcoef(x, rowvar=False))
|
Chris@87
|
665 assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True),
|
Chris@87
|
666 corrcoef(x, rowvar=False, bias=True))
|
Chris@87
|
667 #
|
Chris@87
|
668 try:
|
Chris@87
|
669 corrcoef(x, allow_masked=False)
|
Chris@87
|
670 except ValueError:
|
Chris@87
|
671 pass
|
Chris@87
|
672 #
|
Chris@87
|
673 # 2 1D variables w/ missing values
|
Chris@87
|
674 nx = x[1:-1]
|
Chris@87
|
675 assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1]))
|
Chris@87
|
676 assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
|
Chris@87
|
677 corrcoef(x, x[::-1], rowvar=False))
|
Chris@87
|
678 assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False, bias=True),
|
Chris@87
|
679 corrcoef(x, x[::-1], rowvar=False, bias=True))
|
Chris@87
|
680
|
Chris@87
|
681 def test_2d_w_missing(self):
|
Chris@87
|
682 # Test corrcoef on 2D variable w/ missing value
|
Chris@87
|
683 x = self.data
|
Chris@87
|
684 x[-1] = masked
|
Chris@87
|
685 x = x.reshape(3, 4)
|
Chris@87
|
686
|
Chris@87
|
687 test = corrcoef(x)
|
Chris@87
|
688 control = np.corrcoef(x)
|
Chris@87
|
689 assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
|
Chris@87
|
690
|
Chris@87
|
691
|
Chris@87
|
692 class TestPolynomial(TestCase):
|
Chris@87
|
693 #
|
Chris@87
|
694 def test_polyfit(self):
|
Chris@87
|
695 # Tests polyfit
|
Chris@87
|
696 # On ndarrays
|
Chris@87
|
697 x = np.random.rand(10)
|
Chris@87
|
698 y = np.random.rand(20).reshape(-1, 2)
|
Chris@87
|
699 assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3))
|
Chris@87
|
700 # ON 1D maskedarrays
|
Chris@87
|
701 x = x.view(MaskedArray)
|
Chris@87
|
702 x[0] = masked
|
Chris@87
|
703 y = y.view(MaskedArray)
|
Chris@87
|
704 y[0, 0] = y[-1, -1] = masked
|
Chris@87
|
705 #
|
Chris@87
|
706 (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True)
|
Chris@87
|
707 (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3,
|
Chris@87
|
708 full=True)
|
Chris@87
|
709 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
|
Chris@87
|
710 assert_almost_equal(a, a_)
|
Chris@87
|
711 #
|
Chris@87
|
712 (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True)
|
Chris@87
|
713 (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True)
|
Chris@87
|
714 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
|
Chris@87
|
715 assert_almost_equal(a, a_)
|
Chris@87
|
716 #
|
Chris@87
|
717 (C, R, K, S, D) = polyfit(x, y, 3, full=True)
|
Chris@87
|
718 (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True)
|
Chris@87
|
719 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
|
Chris@87
|
720 assert_almost_equal(a, a_)
|
Chris@87
|
721 #
|
Chris@87
|
722 w = np.random.rand(10) + 1
|
Chris@87
|
723 wo = w.copy()
|
Chris@87
|
724 xs = x[1:-1]
|
Chris@87
|
725 ys = y[1:-1]
|
Chris@87
|
726 ws = w[1:-1]
|
Chris@87
|
727 (C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w)
|
Chris@87
|
728 (c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws)
|
Chris@87
|
729 assert_equal(w, wo)
|
Chris@87
|
730 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
|
Chris@87
|
731 assert_almost_equal(a, a_)
|
Chris@87
|
732
|
Chris@87
|
733
|
Chris@87
|
734 class TestArraySetOps(TestCase):
|
Chris@87
|
735
|
Chris@87
|
736 def test_unique_onlist(self):
|
Chris@87
|
737 # Test unique on list
|
Chris@87
|
738 data = [1, 1, 1, 2, 2, 3]
|
Chris@87
|
739 test = unique(data, return_index=True, return_inverse=True)
|
Chris@87
|
740 self.assertTrue(isinstance(test[0], MaskedArray))
|
Chris@87
|
741 assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0]))
|
Chris@87
|
742 assert_equal(test[1], [0, 3, 5])
|
Chris@87
|
743 assert_equal(test[2], [0, 0, 0, 1, 1, 2])
|
Chris@87
|
744
|
Chris@87
|
745 def test_unique_onmaskedarray(self):
|
Chris@87
|
746 # Test unique on masked data w/use_mask=True
|
Chris@87
|
747 data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0])
|
Chris@87
|
748 test = unique(data, return_index=True, return_inverse=True)
|
Chris@87
|
749 assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
|
Chris@87
|
750 assert_equal(test[1], [0, 3, 5, 2])
|
Chris@87
|
751 assert_equal(test[2], [0, 0, 3, 1, 3, 2])
|
Chris@87
|
752 #
|
Chris@87
|
753 data.fill_value = 3
|
Chris@87
|
754 data = masked_array(data=[1, 1, 1, 2, 2, 3],
|
Chris@87
|
755 mask=[0, 0, 1, 0, 1, 0], fill_value=3)
|
Chris@87
|
756 test = unique(data, return_index=True, return_inverse=True)
|
Chris@87
|
757 assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
|
Chris@87
|
758 assert_equal(test[1], [0, 3, 5, 2])
|
Chris@87
|
759 assert_equal(test[2], [0, 0, 3, 1, 3, 2])
|
Chris@87
|
760
|
Chris@87
|
761 def test_unique_allmasked(self):
|
Chris@87
|
762 # Test all masked
|
Chris@87
|
763 data = masked_array([1, 1, 1], mask=True)
|
Chris@87
|
764 test = unique(data, return_index=True, return_inverse=True)
|
Chris@87
|
765 assert_equal(test[0], masked_array([1, ], mask=[True]))
|
Chris@87
|
766 assert_equal(test[1], [0])
|
Chris@87
|
767 assert_equal(test[2], [0, 0, 0])
|
Chris@87
|
768 #
|
Chris@87
|
769 # Test masked
|
Chris@87
|
770 data = masked
|
Chris@87
|
771 test = unique(data, return_index=True, return_inverse=True)
|
Chris@87
|
772 assert_equal(test[0], masked_array(masked))
|
Chris@87
|
773 assert_equal(test[1], [0])
|
Chris@87
|
774 assert_equal(test[2], [0])
|
Chris@87
|
775
|
Chris@87
|
776 def test_ediff1d(self):
|
Chris@87
|
777 # Tests mediff1d
|
Chris@87
|
778 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
|
Chris@87
|
779 control = array([1, 1, 1, 4], mask=[1, 0, 0, 1])
|
Chris@87
|
780 test = ediff1d(x)
|
Chris@87
|
781 assert_equal(test, control)
|
Chris@87
|
782 assert_equal(test.data, control.data)
|
Chris@87
|
783 assert_equal(test.mask, control.mask)
|
Chris@87
|
784
|
Chris@87
|
785 def test_ediff1d_tobegin(self):
|
Chris@87
|
786 # Test ediff1d w/ to_begin
|
Chris@87
|
787 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
|
Chris@87
|
788 test = ediff1d(x, to_begin=masked)
|
Chris@87
|
789 control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1])
|
Chris@87
|
790 assert_equal(test, control)
|
Chris@87
|
791 assert_equal(test.data, control.data)
|
Chris@87
|
792 assert_equal(test.mask, control.mask)
|
Chris@87
|
793 #
|
Chris@87
|
794 test = ediff1d(x, to_begin=[1, 2, 3])
|
Chris@87
|
795 control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1])
|
Chris@87
|
796 assert_equal(test, control)
|
Chris@87
|
797 assert_equal(test.data, control.data)
|
Chris@87
|
798 assert_equal(test.mask, control.mask)
|
Chris@87
|
799
|
Chris@87
|
800 def test_ediff1d_toend(self):
|
Chris@87
|
801 # Test ediff1d w/ to_end
|
Chris@87
|
802 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
|
Chris@87
|
803 test = ediff1d(x, to_end=masked)
|
Chris@87
|
804 control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1])
|
Chris@87
|
805 assert_equal(test, control)
|
Chris@87
|
806 assert_equal(test.data, control.data)
|
Chris@87
|
807 assert_equal(test.mask, control.mask)
|
Chris@87
|
808 #
|
Chris@87
|
809 test = ediff1d(x, to_end=[1, 2, 3])
|
Chris@87
|
810 control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0])
|
Chris@87
|
811 assert_equal(test, control)
|
Chris@87
|
812 assert_equal(test.data, control.data)
|
Chris@87
|
813 assert_equal(test.mask, control.mask)
|
Chris@87
|
814
|
Chris@87
|
815 def test_ediff1d_tobegin_toend(self):
|
Chris@87
|
816 # Test ediff1d w/ to_begin and to_end
|
Chris@87
|
817 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
|
Chris@87
|
818 test = ediff1d(x, to_end=masked, to_begin=masked)
|
Chris@87
|
819 control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1])
|
Chris@87
|
820 assert_equal(test, control)
|
Chris@87
|
821 assert_equal(test.data, control.data)
|
Chris@87
|
822 assert_equal(test.mask, control.mask)
|
Chris@87
|
823 #
|
Chris@87
|
824 test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked)
|
Chris@87
|
825 control = array([0, 1, 1, 1, 4, 1, 2, 3],
|
Chris@87
|
826 mask=[1, 1, 0, 0, 1, 0, 0, 0])
|
Chris@87
|
827 assert_equal(test, control)
|
Chris@87
|
828 assert_equal(test.data, control.data)
|
Chris@87
|
829 assert_equal(test.mask, control.mask)
|
Chris@87
|
830
|
Chris@87
|
831 def test_ediff1d_ndarray(self):
|
Chris@87
|
832 # Test ediff1d w/ a ndarray
|
Chris@87
|
833 x = np.arange(5)
|
Chris@87
|
834 test = ediff1d(x)
|
Chris@87
|
835 control = array([1, 1, 1, 1], mask=[0, 0, 0, 0])
|
Chris@87
|
836 assert_equal(test, control)
|
Chris@87
|
837 self.assertTrue(isinstance(test, MaskedArray))
|
Chris@87
|
838 assert_equal(test.data, control.data)
|
Chris@87
|
839 assert_equal(test.mask, control.mask)
|
Chris@87
|
840 #
|
Chris@87
|
841 test = ediff1d(x, to_end=masked, to_begin=masked)
|
Chris@87
|
842 control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1])
|
Chris@87
|
843 self.assertTrue(isinstance(test, MaskedArray))
|
Chris@87
|
844 assert_equal(test.data, control.data)
|
Chris@87
|
845 assert_equal(test.mask, control.mask)
|
Chris@87
|
846
|
Chris@87
|
847 def test_intersect1d(self):
|
Chris@87
|
848 # Test intersect1d
|
Chris@87
|
849 x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
|
Chris@87
|
850 y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
|
Chris@87
|
851 test = intersect1d(x, y)
|
Chris@87
|
852 control = array([1, 3, -1], mask=[0, 0, 1])
|
Chris@87
|
853 assert_equal(test, control)
|
Chris@87
|
854
|
Chris@87
|
855 def test_setxor1d(self):
|
Chris@87
|
856 # Test setxor1d
|
Chris@87
|
857 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
|
Chris@87
|
858 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
|
Chris@87
|
859 test = setxor1d(a, b)
|
Chris@87
|
860 assert_equal(test, array([3, 4, 7]))
|
Chris@87
|
861 #
|
Chris@87
|
862 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
|
Chris@87
|
863 b = [1, 2, 3, 4, 5]
|
Chris@87
|
864 test = setxor1d(a, b)
|
Chris@87
|
865 assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
|
Chris@87
|
866 #
|
Chris@87
|
867 a = array([1, 2, 3])
|
Chris@87
|
868 b = array([6, 5, 4])
|
Chris@87
|
869 test = setxor1d(a, b)
|
Chris@87
|
870 assert_(isinstance(test, MaskedArray))
|
Chris@87
|
871 assert_equal(test, [1, 2, 3, 4, 5, 6])
|
Chris@87
|
872 #
|
Chris@87
|
873 a = array([1, 8, 2, 3], mask=[0, 1, 0, 0])
|
Chris@87
|
874 b = array([6, 5, 4, 8], mask=[0, 0, 0, 1])
|
Chris@87
|
875 test = setxor1d(a, b)
|
Chris@87
|
876 assert_(isinstance(test, MaskedArray))
|
Chris@87
|
877 assert_equal(test, [1, 2, 3, 4, 5, 6])
|
Chris@87
|
878 #
|
Chris@87
|
879 assert_array_equal([], setxor1d([], []))
|
Chris@87
|
880
|
Chris@87
|
881 def test_in1d(self):
|
Chris@87
|
882 # Test in1d
|
Chris@87
|
883 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
|
Chris@87
|
884 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
|
Chris@87
|
885 test = in1d(a, b)
|
Chris@87
|
886 assert_equal(test, [True, True, True, False, True])
|
Chris@87
|
887 #
|
Chris@87
|
888 a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
|
Chris@87
|
889 b = array([1, 5, -1], mask=[0, 0, 1])
|
Chris@87
|
890 test = in1d(a, b)
|
Chris@87
|
891 assert_equal(test, [True, True, False, True, True])
|
Chris@87
|
892 #
|
Chris@87
|
893 assert_array_equal([], in1d([], []))
|
Chris@87
|
894
|
Chris@87
|
895 def test_in1d_invert(self):
|
Chris@87
|
896 # Test in1d's invert parameter
|
Chris@87
|
897 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
|
Chris@87
|
898 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
|
Chris@87
|
899 assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
|
Chris@87
|
900
|
Chris@87
|
901 a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
|
Chris@87
|
902 b = array([1, 5, -1], mask=[0, 0, 1])
|
Chris@87
|
903 assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
|
Chris@87
|
904
|
Chris@87
|
905 assert_array_equal([], in1d([], [], invert=True))
|
Chris@87
|
906
|
Chris@87
|
907 def test_union1d(self):
|
Chris@87
|
908 # Test union1d
|
Chris@87
|
909 a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1])
|
Chris@87
|
910 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
|
Chris@87
|
911 test = union1d(a, b)
|
Chris@87
|
912 control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1])
|
Chris@87
|
913 assert_equal(test, control)
|
Chris@87
|
914 #
|
Chris@87
|
915 assert_array_equal([], union1d([], []))
|
Chris@87
|
916
|
Chris@87
|
917 def test_setdiff1d(self):
|
Chris@87
|
918 # Test setdiff1d
|
Chris@87
|
919 a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1])
|
Chris@87
|
920 b = array([2, 4, 3, 3, 2, 1, 5])
|
Chris@87
|
921 test = setdiff1d(a, b)
|
Chris@87
|
922 assert_equal(test, array([6, 7, -1], mask=[0, 0, 1]))
|
Chris@87
|
923 #
|
Chris@87
|
924 a = arange(10)
|
Chris@87
|
925 b = arange(8)
|
Chris@87
|
926 assert_equal(setdiff1d(a, b), array([8, 9]))
|
Chris@87
|
927
|
Chris@87
|
928 def test_setdiff1d_char_array(self):
|
Chris@87
|
929 # Test setdiff1d_charray
|
Chris@87
|
930 a = np.array(['a', 'b', 'c'])
|
Chris@87
|
931 b = np.array(['a', 'b', 's'])
|
Chris@87
|
932 assert_array_equal(setdiff1d(a, b), np.array(['c']))
|
Chris@87
|
933
|
Chris@87
|
934
|
Chris@87
|
935 class TestShapeBase(TestCase):
|
Chris@87
|
936 #
|
Chris@87
|
937 def test_atleast2d(self):
|
Chris@87
|
938 # Test atleast_2d
|
Chris@87
|
939 a = masked_array([0, 1, 2], mask=[0, 1, 0])
|
Chris@87
|
940 b = atleast_2d(a)
|
Chris@87
|
941 assert_equal(b.shape, (1, 3))
|
Chris@87
|
942 assert_equal(b.mask.shape, b.data.shape)
|
Chris@87
|
943 assert_equal(a.shape, (3,))
|
Chris@87
|
944 assert_equal(a.mask.shape, a.data.shape)
|
Chris@87
|
945
|
Chris@87
|
946
|
Chris@87
|
947 ###############################################################################
|
Chris@87
|
948 #------------------------------------------------------------------------------
|
Chris@87
|
949 if __name__ == "__main__":
|
Chris@87
|
950 run_module_suite()
|