Chris@87
|
1 from __future__ import division, absolute_import, print_function
|
Chris@87
|
2
|
Chris@87
|
3 import warnings
|
Chris@87
|
4
|
Chris@87
|
5 import numpy as np
|
Chris@87
|
6 from numpy.testing import (
|
Chris@87
|
7 run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal,
|
Chris@87
|
8 assert_raises, assert_array_equal
|
Chris@87
|
9 )
|
Chris@87
|
10
|
Chris@87
|
11
|
Chris@87
|
12 # Test data
|
Chris@87
|
13 _ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
|
Chris@87
|
14 [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833],
|
Chris@87
|
15 [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954],
|
Chris@87
|
16 [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]])
|
Chris@87
|
17
|
Chris@87
|
18
|
Chris@87
|
19 # Rows of _ndat with nans removed
|
Chris@87
|
20 _rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]),
|
Chris@87
|
21 np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]),
|
Chris@87
|
22 np.array([0.1042, -0.5954]),
|
Chris@87
|
23 np.array([0.1610, 0.1859, 0.3146])]
|
Chris@87
|
24
|
Chris@87
|
25
|
Chris@87
|
26 class TestNanFunctions_MinMax(TestCase):
|
Chris@87
|
27
|
Chris@87
|
28 nanfuncs = [np.nanmin, np.nanmax]
|
Chris@87
|
29 stdfuncs = [np.min, np.max]
|
Chris@87
|
30
|
Chris@87
|
31 def test_mutation(self):
|
Chris@87
|
32 # Check that passed array is not modified.
|
Chris@87
|
33 ndat = _ndat.copy()
|
Chris@87
|
34 for f in self.nanfuncs:
|
Chris@87
|
35 f(ndat)
|
Chris@87
|
36 assert_equal(ndat, _ndat)
|
Chris@87
|
37
|
Chris@87
|
38 def test_keepdims(self):
|
Chris@87
|
39 mat = np.eye(3)
|
Chris@87
|
40 for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
Chris@87
|
41 for axis in [None, 0, 1]:
|
Chris@87
|
42 tgt = rf(mat, axis=axis, keepdims=True)
|
Chris@87
|
43 res = nf(mat, axis=axis, keepdims=True)
|
Chris@87
|
44 assert_(res.ndim == tgt.ndim)
|
Chris@87
|
45
|
Chris@87
|
46 def test_out(self):
|
Chris@87
|
47 mat = np.eye(3)
|
Chris@87
|
48 for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
Chris@87
|
49 resout = np.zeros(3)
|
Chris@87
|
50 tgt = rf(mat, axis=1)
|
Chris@87
|
51 res = nf(mat, axis=1, out=resout)
|
Chris@87
|
52 assert_almost_equal(res, resout)
|
Chris@87
|
53 assert_almost_equal(res, tgt)
|
Chris@87
|
54
|
Chris@87
|
55 def test_dtype_from_input(self):
|
Chris@87
|
56 codes = 'efdgFDG'
|
Chris@87
|
57 for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
Chris@87
|
58 for c in codes:
|
Chris@87
|
59 mat = np.eye(3, dtype=c)
|
Chris@87
|
60 tgt = rf(mat, axis=1).dtype.type
|
Chris@87
|
61 res = nf(mat, axis=1).dtype.type
|
Chris@87
|
62 assert_(res is tgt)
|
Chris@87
|
63 # scalar case
|
Chris@87
|
64 tgt = rf(mat, axis=None).dtype.type
|
Chris@87
|
65 res = nf(mat, axis=None).dtype.type
|
Chris@87
|
66 assert_(res is tgt)
|
Chris@87
|
67
|
Chris@87
|
68 def test_result_values(self):
|
Chris@87
|
69 for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
Chris@87
|
70 tgt = [rf(d) for d in _rdat]
|
Chris@87
|
71 res = nf(_ndat, axis=1)
|
Chris@87
|
72 assert_almost_equal(res, tgt)
|
Chris@87
|
73
|
Chris@87
|
74 def test_allnans(self):
|
Chris@87
|
75 mat = np.array([np.nan]*9).reshape(3, 3)
|
Chris@87
|
76 for f in self.nanfuncs:
|
Chris@87
|
77 for axis in [None, 0, 1]:
|
Chris@87
|
78 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
79 warnings.simplefilter('always')
|
Chris@87
|
80 assert_(np.isnan(f(mat, axis=axis)).all())
|
Chris@87
|
81 assert_(len(w) == 1, 'no warning raised')
|
Chris@87
|
82 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
83 # Check scalars
|
Chris@87
|
84 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
85 warnings.simplefilter('always')
|
Chris@87
|
86 assert_(np.isnan(f(np.nan)))
|
Chris@87
|
87 assert_(len(w) == 1, 'no warning raised')
|
Chris@87
|
88 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
89
|
Chris@87
|
90 def test_masked(self):
|
Chris@87
|
91 mat = np.ma.fix_invalid(_ndat)
|
Chris@87
|
92 msk = mat._mask.copy()
|
Chris@87
|
93 for f in [np.nanmin]:
|
Chris@87
|
94 res = f(mat, axis=1)
|
Chris@87
|
95 tgt = f(_ndat, axis=1)
|
Chris@87
|
96 assert_equal(res, tgt)
|
Chris@87
|
97 assert_equal(mat._mask, msk)
|
Chris@87
|
98 assert_(not np.isinf(mat).any())
|
Chris@87
|
99
|
Chris@87
|
100 def test_scalar(self):
|
Chris@87
|
101 for f in self.nanfuncs:
|
Chris@87
|
102 assert_(f(0.) == 0.)
|
Chris@87
|
103
|
Chris@87
|
104 def test_matrices(self):
|
Chris@87
|
105 # Check that it works and that type and
|
Chris@87
|
106 # shape are preserved
|
Chris@87
|
107 mat = np.matrix(np.eye(3))
|
Chris@87
|
108 for f in self.nanfuncs:
|
Chris@87
|
109 res = f(mat, axis=0)
|
Chris@87
|
110 assert_(isinstance(res, np.matrix))
|
Chris@87
|
111 assert_(res.shape == (1, 3))
|
Chris@87
|
112 res = f(mat, axis=1)
|
Chris@87
|
113 assert_(isinstance(res, np.matrix))
|
Chris@87
|
114 assert_(res.shape == (3, 1))
|
Chris@87
|
115 res = f(mat)
|
Chris@87
|
116 assert_(np.isscalar(res))
|
Chris@87
|
117 # check that rows of nan are dealt with for subclasses (#4628)
|
Chris@87
|
118 mat[1] = np.nan
|
Chris@87
|
119 for f in self.nanfuncs:
|
Chris@87
|
120 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
121 warnings.simplefilter('always')
|
Chris@87
|
122 res = f(mat, axis=0)
|
Chris@87
|
123 assert_(isinstance(res, np.matrix))
|
Chris@87
|
124 assert_(not np.any(np.isnan(res)))
|
Chris@87
|
125 assert_(len(w) == 0)
|
Chris@87
|
126
|
Chris@87
|
127 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
128 warnings.simplefilter('always')
|
Chris@87
|
129 res = f(mat, axis=1)
|
Chris@87
|
130 assert_(isinstance(res, np.matrix))
|
Chris@87
|
131 assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
|
Chris@87
|
132 and not np.isnan(res[2, 0]))
|
Chris@87
|
133 assert_(len(w) == 1, 'no warning raised')
|
Chris@87
|
134 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
135
|
Chris@87
|
136 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
137 warnings.simplefilter('always')
|
Chris@87
|
138 res = f(mat)
|
Chris@87
|
139 assert_(np.isscalar(res))
|
Chris@87
|
140 assert_(res != np.nan)
|
Chris@87
|
141 assert_(len(w) == 0)
|
Chris@87
|
142
|
Chris@87
|
143
|
Chris@87
|
144 class TestNanFunctions_ArgminArgmax(TestCase):
|
Chris@87
|
145
|
Chris@87
|
146 nanfuncs = [np.nanargmin, np.nanargmax]
|
Chris@87
|
147
|
Chris@87
|
148 def test_mutation(self):
|
Chris@87
|
149 # Check that passed array is not modified.
|
Chris@87
|
150 ndat = _ndat.copy()
|
Chris@87
|
151 for f in self.nanfuncs:
|
Chris@87
|
152 f(ndat)
|
Chris@87
|
153 assert_equal(ndat, _ndat)
|
Chris@87
|
154
|
Chris@87
|
155 def test_result_values(self):
|
Chris@87
|
156 for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]):
|
Chris@87
|
157 for row in _ndat:
|
Chris@87
|
158 with warnings.catch_warnings(record=True):
|
Chris@87
|
159 warnings.simplefilter('always')
|
Chris@87
|
160 ind = f(row)
|
Chris@87
|
161 val = row[ind]
|
Chris@87
|
162 # comparing with NaN is tricky as the result
|
Chris@87
|
163 # is always false except for NaN != NaN
|
Chris@87
|
164 assert_(not np.isnan(val))
|
Chris@87
|
165 assert_(not fcmp(val, row).any())
|
Chris@87
|
166 assert_(not np.equal(val, row[:ind]).any())
|
Chris@87
|
167
|
Chris@87
|
168 def test_allnans(self):
|
Chris@87
|
169 mat = np.array([np.nan]*9).reshape(3, 3)
|
Chris@87
|
170 for f in self.nanfuncs:
|
Chris@87
|
171 for axis in [None, 0, 1]:
|
Chris@87
|
172 assert_raises(ValueError, f, mat, axis=axis)
|
Chris@87
|
173 assert_raises(ValueError, f, np.nan)
|
Chris@87
|
174
|
Chris@87
|
175 def test_empty(self):
|
Chris@87
|
176 mat = np.zeros((0, 3))
|
Chris@87
|
177 for f in self.nanfuncs:
|
Chris@87
|
178 for axis in [0, None]:
|
Chris@87
|
179 assert_raises(ValueError, f, mat, axis=axis)
|
Chris@87
|
180 for axis in [1]:
|
Chris@87
|
181 res = f(mat, axis=axis)
|
Chris@87
|
182 assert_equal(res, np.zeros(0))
|
Chris@87
|
183
|
Chris@87
|
184 def test_scalar(self):
|
Chris@87
|
185 for f in self.nanfuncs:
|
Chris@87
|
186 assert_(f(0.) == 0.)
|
Chris@87
|
187
|
Chris@87
|
188 def test_matrices(self):
|
Chris@87
|
189 # Check that it works and that type and
|
Chris@87
|
190 # shape are preserved
|
Chris@87
|
191 mat = np.matrix(np.eye(3))
|
Chris@87
|
192 for f in self.nanfuncs:
|
Chris@87
|
193 res = f(mat, axis=0)
|
Chris@87
|
194 assert_(isinstance(res, np.matrix))
|
Chris@87
|
195 assert_(res.shape == (1, 3))
|
Chris@87
|
196 res = f(mat, axis=1)
|
Chris@87
|
197 assert_(isinstance(res, np.matrix))
|
Chris@87
|
198 assert_(res.shape == (3, 1))
|
Chris@87
|
199 res = f(mat)
|
Chris@87
|
200 assert_(np.isscalar(res))
|
Chris@87
|
201
|
Chris@87
|
202
|
Chris@87
|
203 class TestNanFunctions_IntTypes(TestCase):
|
Chris@87
|
204
|
Chris@87
|
205 int_types = (np.int8, np.int16, np.int32, np.int64, np.uint8,
|
Chris@87
|
206 np.uint16, np.uint32, np.uint64)
|
Chris@87
|
207
|
Chris@87
|
208 mat = np.array([127, 39, 93, 87, 46])
|
Chris@87
|
209
|
Chris@87
|
210 def integer_arrays(self):
|
Chris@87
|
211 for dtype in self.int_types:
|
Chris@87
|
212 yield self.mat.astype(dtype)
|
Chris@87
|
213
|
Chris@87
|
214 def test_nanmin(self):
|
Chris@87
|
215 tgt = np.min(self.mat)
|
Chris@87
|
216 for mat in self.integer_arrays():
|
Chris@87
|
217 assert_equal(np.nanmin(mat), tgt)
|
Chris@87
|
218
|
Chris@87
|
219 def test_nanmax(self):
|
Chris@87
|
220 tgt = np.max(self.mat)
|
Chris@87
|
221 for mat in self.integer_arrays():
|
Chris@87
|
222 assert_equal(np.nanmax(mat), tgt)
|
Chris@87
|
223
|
Chris@87
|
224 def test_nanargmin(self):
|
Chris@87
|
225 tgt = np.argmin(self.mat)
|
Chris@87
|
226 for mat in self.integer_arrays():
|
Chris@87
|
227 assert_equal(np.nanargmin(mat), tgt)
|
Chris@87
|
228
|
Chris@87
|
229 def test_nanargmax(self):
|
Chris@87
|
230 tgt = np.argmax(self.mat)
|
Chris@87
|
231 for mat in self.integer_arrays():
|
Chris@87
|
232 assert_equal(np.nanargmax(mat), tgt)
|
Chris@87
|
233
|
Chris@87
|
234 def test_nansum(self):
|
Chris@87
|
235 tgt = np.sum(self.mat)
|
Chris@87
|
236 for mat in self.integer_arrays():
|
Chris@87
|
237 assert_equal(np.nansum(mat), tgt)
|
Chris@87
|
238
|
Chris@87
|
239 def test_nanmean(self):
|
Chris@87
|
240 tgt = np.mean(self.mat)
|
Chris@87
|
241 for mat in self.integer_arrays():
|
Chris@87
|
242 assert_equal(np.nanmean(mat), tgt)
|
Chris@87
|
243
|
Chris@87
|
244 def test_nanvar(self):
|
Chris@87
|
245 tgt = np.var(self.mat)
|
Chris@87
|
246 for mat in self.integer_arrays():
|
Chris@87
|
247 assert_equal(np.nanvar(mat), tgt)
|
Chris@87
|
248
|
Chris@87
|
249 tgt = np.var(mat, ddof=1)
|
Chris@87
|
250 for mat in self.integer_arrays():
|
Chris@87
|
251 assert_equal(np.nanvar(mat, ddof=1), tgt)
|
Chris@87
|
252
|
Chris@87
|
253 def test_nanstd(self):
|
Chris@87
|
254 tgt = np.std(self.mat)
|
Chris@87
|
255 for mat in self.integer_arrays():
|
Chris@87
|
256 assert_equal(np.nanstd(mat), tgt)
|
Chris@87
|
257
|
Chris@87
|
258 tgt = np.std(self.mat, ddof=1)
|
Chris@87
|
259 for mat in self.integer_arrays():
|
Chris@87
|
260 assert_equal(np.nanstd(mat, ddof=1), tgt)
|
Chris@87
|
261
|
Chris@87
|
262
|
Chris@87
|
263 class TestNanFunctions_Sum(TestCase):
|
Chris@87
|
264
|
Chris@87
|
265 def test_mutation(self):
|
Chris@87
|
266 # Check that passed array is not modified.
|
Chris@87
|
267 ndat = _ndat.copy()
|
Chris@87
|
268 np.nansum(ndat)
|
Chris@87
|
269 assert_equal(ndat, _ndat)
|
Chris@87
|
270
|
Chris@87
|
271 def test_keepdims(self):
|
Chris@87
|
272 mat = np.eye(3)
|
Chris@87
|
273 for axis in [None, 0, 1]:
|
Chris@87
|
274 tgt = np.sum(mat, axis=axis, keepdims=True)
|
Chris@87
|
275 res = np.nansum(mat, axis=axis, keepdims=True)
|
Chris@87
|
276 assert_(res.ndim == tgt.ndim)
|
Chris@87
|
277
|
Chris@87
|
278 def test_out(self):
|
Chris@87
|
279 mat = np.eye(3)
|
Chris@87
|
280 resout = np.zeros(3)
|
Chris@87
|
281 tgt = np.sum(mat, axis=1)
|
Chris@87
|
282 res = np.nansum(mat, axis=1, out=resout)
|
Chris@87
|
283 assert_almost_equal(res, resout)
|
Chris@87
|
284 assert_almost_equal(res, tgt)
|
Chris@87
|
285
|
Chris@87
|
286 def test_dtype_from_dtype(self):
|
Chris@87
|
287 mat = np.eye(3)
|
Chris@87
|
288 codes = 'efdgFDG'
|
Chris@87
|
289 for c in codes:
|
Chris@87
|
290 tgt = np.sum(mat, dtype=np.dtype(c), axis=1).dtype.type
|
Chris@87
|
291 res = np.nansum(mat, dtype=np.dtype(c), axis=1).dtype.type
|
Chris@87
|
292 assert_(res is tgt)
|
Chris@87
|
293 # scalar case
|
Chris@87
|
294 tgt = np.sum(mat, dtype=np.dtype(c), axis=None).dtype.type
|
Chris@87
|
295 res = np.nansum(mat, dtype=np.dtype(c), axis=None).dtype.type
|
Chris@87
|
296 assert_(res is tgt)
|
Chris@87
|
297
|
Chris@87
|
298 def test_dtype_from_char(self):
|
Chris@87
|
299 mat = np.eye(3)
|
Chris@87
|
300 codes = 'efdgFDG'
|
Chris@87
|
301 for c in codes:
|
Chris@87
|
302 tgt = np.sum(mat, dtype=c, axis=1).dtype.type
|
Chris@87
|
303 res = np.nansum(mat, dtype=c, axis=1).dtype.type
|
Chris@87
|
304 assert_(res is tgt)
|
Chris@87
|
305 # scalar case
|
Chris@87
|
306 tgt = np.sum(mat, dtype=c, axis=None).dtype.type
|
Chris@87
|
307 res = np.nansum(mat, dtype=c, axis=None).dtype.type
|
Chris@87
|
308 assert_(res is tgt)
|
Chris@87
|
309
|
Chris@87
|
310 def test_dtype_from_input(self):
|
Chris@87
|
311 codes = 'efdgFDG'
|
Chris@87
|
312 for c in codes:
|
Chris@87
|
313 mat = np.eye(3, dtype=c)
|
Chris@87
|
314 tgt = np.sum(mat, axis=1).dtype.type
|
Chris@87
|
315 res = np.nansum(mat, axis=1).dtype.type
|
Chris@87
|
316 assert_(res is tgt)
|
Chris@87
|
317 # scalar case
|
Chris@87
|
318 tgt = np.sum(mat, axis=None).dtype.type
|
Chris@87
|
319 res = np.nansum(mat, axis=None).dtype.type
|
Chris@87
|
320 assert_(res is tgt)
|
Chris@87
|
321
|
Chris@87
|
322 def test_result_values(self):
|
Chris@87
|
323 tgt = [np.sum(d) for d in _rdat]
|
Chris@87
|
324 res = np.nansum(_ndat, axis=1)
|
Chris@87
|
325 assert_almost_equal(res, tgt)
|
Chris@87
|
326
|
Chris@87
|
327 def test_allnans(self):
|
Chris@87
|
328 # Check for FutureWarning
|
Chris@87
|
329 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
330 warnings.simplefilter('always')
|
Chris@87
|
331 res = np.nansum([np.nan]*3, axis=None)
|
Chris@87
|
332 assert_(res == 0, 'result is not 0')
|
Chris@87
|
333 assert_(len(w) == 0, 'warning raised')
|
Chris@87
|
334 # Check scalar
|
Chris@87
|
335 res = np.nansum(np.nan)
|
Chris@87
|
336 assert_(res == 0, 'result is not 0')
|
Chris@87
|
337 assert_(len(w) == 0, 'warning raised')
|
Chris@87
|
338 # Check there is no warning for not all-nan
|
Chris@87
|
339 np.nansum([0]*3, axis=None)
|
Chris@87
|
340 assert_(len(w) == 0, 'unwanted warning raised')
|
Chris@87
|
341
|
Chris@87
|
342 def test_empty(self):
|
Chris@87
|
343 mat = np.zeros((0, 3))
|
Chris@87
|
344 tgt = [0]*3
|
Chris@87
|
345 res = np.nansum(mat, axis=0)
|
Chris@87
|
346 assert_equal(res, tgt)
|
Chris@87
|
347 tgt = []
|
Chris@87
|
348 res = np.nansum(mat, axis=1)
|
Chris@87
|
349 assert_equal(res, tgt)
|
Chris@87
|
350 tgt = 0
|
Chris@87
|
351 res = np.nansum(mat, axis=None)
|
Chris@87
|
352 assert_equal(res, tgt)
|
Chris@87
|
353
|
Chris@87
|
354 def test_scalar(self):
|
Chris@87
|
355 assert_(np.nansum(0.) == 0.)
|
Chris@87
|
356
|
Chris@87
|
357 def test_matrices(self):
|
Chris@87
|
358 # Check that it works and that type and
|
Chris@87
|
359 # shape are preserved
|
Chris@87
|
360 mat = np.matrix(np.eye(3))
|
Chris@87
|
361 res = np.nansum(mat, axis=0)
|
Chris@87
|
362 assert_(isinstance(res, np.matrix))
|
Chris@87
|
363 assert_(res.shape == (1, 3))
|
Chris@87
|
364 res = np.nansum(mat, axis=1)
|
Chris@87
|
365 assert_(isinstance(res, np.matrix))
|
Chris@87
|
366 assert_(res.shape == (3, 1))
|
Chris@87
|
367 res = np.nansum(mat)
|
Chris@87
|
368 assert_(np.isscalar(res))
|
Chris@87
|
369
|
Chris@87
|
370
|
Chris@87
|
371 class TestNanFunctions_MeanVarStd(TestCase):
|
Chris@87
|
372
|
Chris@87
|
373 nanfuncs = [np.nanmean, np.nanvar, np.nanstd]
|
Chris@87
|
374 stdfuncs = [np.mean, np.var, np.std]
|
Chris@87
|
375
|
Chris@87
|
376 def test_mutation(self):
|
Chris@87
|
377 # Check that passed array is not modified.
|
Chris@87
|
378 ndat = _ndat.copy()
|
Chris@87
|
379 for f in self.nanfuncs:
|
Chris@87
|
380 f(ndat)
|
Chris@87
|
381 assert_equal(ndat, _ndat)
|
Chris@87
|
382
|
Chris@87
|
383 def test_dtype_error(self):
|
Chris@87
|
384 for f in self.nanfuncs:
|
Chris@87
|
385 for dtype in [np.bool_, np.int_, np.object]:
|
Chris@87
|
386 assert_raises(TypeError, f, _ndat, axis=1, dtype=np.int)
|
Chris@87
|
387
|
Chris@87
|
388 def test_out_dtype_error(self):
|
Chris@87
|
389 for f in self.nanfuncs:
|
Chris@87
|
390 for dtype in [np.bool_, np.int_, np.object]:
|
Chris@87
|
391 out = np.empty(_ndat.shape[0], dtype=dtype)
|
Chris@87
|
392 assert_raises(TypeError, f, _ndat, axis=1, out=out)
|
Chris@87
|
393
|
Chris@87
|
394 def test_keepdims(self):
|
Chris@87
|
395 mat = np.eye(3)
|
Chris@87
|
396 for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
Chris@87
|
397 for axis in [None, 0, 1]:
|
Chris@87
|
398 tgt = rf(mat, axis=axis, keepdims=True)
|
Chris@87
|
399 res = nf(mat, axis=axis, keepdims=True)
|
Chris@87
|
400 assert_(res.ndim == tgt.ndim)
|
Chris@87
|
401
|
Chris@87
|
402 def test_out(self):
|
Chris@87
|
403 mat = np.eye(3)
|
Chris@87
|
404 for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
Chris@87
|
405 resout = np.zeros(3)
|
Chris@87
|
406 tgt = rf(mat, axis=1)
|
Chris@87
|
407 res = nf(mat, axis=1, out=resout)
|
Chris@87
|
408 assert_almost_equal(res, resout)
|
Chris@87
|
409 assert_almost_equal(res, tgt)
|
Chris@87
|
410
|
Chris@87
|
411 def test_dtype_from_dtype(self):
|
Chris@87
|
412 mat = np.eye(3)
|
Chris@87
|
413 codes = 'efdgFDG'
|
Chris@87
|
414 for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
Chris@87
|
415 for c in codes:
|
Chris@87
|
416 tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
|
Chris@87
|
417 res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
|
Chris@87
|
418 assert_(res is tgt)
|
Chris@87
|
419 # scalar case
|
Chris@87
|
420 tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
|
Chris@87
|
421 res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
|
Chris@87
|
422 assert_(res is tgt)
|
Chris@87
|
423
|
Chris@87
|
424 def test_dtype_from_char(self):
|
Chris@87
|
425 mat = np.eye(3)
|
Chris@87
|
426 codes = 'efdgFDG'
|
Chris@87
|
427 for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
Chris@87
|
428 for c in codes:
|
Chris@87
|
429 tgt = rf(mat, dtype=c, axis=1).dtype.type
|
Chris@87
|
430 res = nf(mat, dtype=c, axis=1).dtype.type
|
Chris@87
|
431 assert_(res is tgt)
|
Chris@87
|
432 # scalar case
|
Chris@87
|
433 tgt = rf(mat, dtype=c, axis=None).dtype.type
|
Chris@87
|
434 res = nf(mat, dtype=c, axis=None).dtype.type
|
Chris@87
|
435 assert_(res is tgt)
|
Chris@87
|
436
|
Chris@87
|
437 def test_dtype_from_input(self):
|
Chris@87
|
438 codes = 'efdgFDG'
|
Chris@87
|
439 for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
Chris@87
|
440 for c in codes:
|
Chris@87
|
441 mat = np.eye(3, dtype=c)
|
Chris@87
|
442 tgt = rf(mat, axis=1).dtype.type
|
Chris@87
|
443 res = nf(mat, axis=1).dtype.type
|
Chris@87
|
444 assert_(res is tgt, "res %s, tgt %s" % (res, tgt))
|
Chris@87
|
445 # scalar case
|
Chris@87
|
446 tgt = rf(mat, axis=None).dtype.type
|
Chris@87
|
447 res = nf(mat, axis=None).dtype.type
|
Chris@87
|
448 assert_(res is tgt)
|
Chris@87
|
449
|
Chris@87
|
450 def test_ddof(self):
|
Chris@87
|
451 nanfuncs = [np.nanvar, np.nanstd]
|
Chris@87
|
452 stdfuncs = [np.var, np.std]
|
Chris@87
|
453 for nf, rf in zip(nanfuncs, stdfuncs):
|
Chris@87
|
454 for ddof in [0, 1]:
|
Chris@87
|
455 tgt = [rf(d, ddof=ddof) for d in _rdat]
|
Chris@87
|
456 res = nf(_ndat, axis=1, ddof=ddof)
|
Chris@87
|
457 assert_almost_equal(res, tgt)
|
Chris@87
|
458
|
Chris@87
|
459 def test_ddof_too_big(self):
|
Chris@87
|
460 nanfuncs = [np.nanvar, np.nanstd]
|
Chris@87
|
461 stdfuncs = [np.var, np.std]
|
Chris@87
|
462 dsize = [len(d) for d in _rdat]
|
Chris@87
|
463 for nf, rf in zip(nanfuncs, stdfuncs):
|
Chris@87
|
464 for ddof in range(5):
|
Chris@87
|
465 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
466 warnings.simplefilter('always')
|
Chris@87
|
467 tgt = [ddof >= d for d in dsize]
|
Chris@87
|
468 res = nf(_ndat, axis=1, ddof=ddof)
|
Chris@87
|
469 assert_equal(np.isnan(res), tgt)
|
Chris@87
|
470 if any(tgt):
|
Chris@87
|
471 assert_(len(w) == 1)
|
Chris@87
|
472 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
473 else:
|
Chris@87
|
474 assert_(len(w) == 0)
|
Chris@87
|
475
|
Chris@87
|
476 def test_result_values(self):
|
Chris@87
|
477 for nf, rf in zip(self.nanfuncs, self.stdfuncs):
|
Chris@87
|
478 tgt = [rf(d) for d in _rdat]
|
Chris@87
|
479 res = nf(_ndat, axis=1)
|
Chris@87
|
480 assert_almost_equal(res, tgt)
|
Chris@87
|
481
|
Chris@87
|
482 def test_allnans(self):
|
Chris@87
|
483 mat = np.array([np.nan]*9).reshape(3, 3)
|
Chris@87
|
484 for f in self.nanfuncs:
|
Chris@87
|
485 for axis in [None, 0, 1]:
|
Chris@87
|
486 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
487 warnings.simplefilter('always')
|
Chris@87
|
488 assert_(np.isnan(f(mat, axis=axis)).all())
|
Chris@87
|
489 assert_(len(w) == 1)
|
Chris@87
|
490 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
491 # Check scalar
|
Chris@87
|
492 assert_(np.isnan(f(np.nan)))
|
Chris@87
|
493 assert_(len(w) == 2)
|
Chris@87
|
494 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
495
|
Chris@87
|
496 def test_empty(self):
|
Chris@87
|
497 mat = np.zeros((0, 3))
|
Chris@87
|
498 for f in self.nanfuncs:
|
Chris@87
|
499 for axis in [0, None]:
|
Chris@87
|
500 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
501 warnings.simplefilter('always')
|
Chris@87
|
502 assert_(np.isnan(f(mat, axis=axis)).all())
|
Chris@87
|
503 assert_(len(w) == 1)
|
Chris@87
|
504 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
505 for axis in [1]:
|
Chris@87
|
506 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
507 warnings.simplefilter('always')
|
Chris@87
|
508 assert_equal(f(mat, axis=axis), np.zeros([]))
|
Chris@87
|
509 assert_(len(w) == 0)
|
Chris@87
|
510
|
Chris@87
|
511 def test_scalar(self):
|
Chris@87
|
512 for f in self.nanfuncs:
|
Chris@87
|
513 assert_(f(0.) == 0.)
|
Chris@87
|
514
|
Chris@87
|
515 def test_matrices(self):
|
Chris@87
|
516 # Check that it works and that type and
|
Chris@87
|
517 # shape are preserved
|
Chris@87
|
518 mat = np.matrix(np.eye(3))
|
Chris@87
|
519 for f in self.nanfuncs:
|
Chris@87
|
520 res = f(mat, axis=0)
|
Chris@87
|
521 assert_(isinstance(res, np.matrix))
|
Chris@87
|
522 assert_(res.shape == (1, 3))
|
Chris@87
|
523 res = f(mat, axis=1)
|
Chris@87
|
524 assert_(isinstance(res, np.matrix))
|
Chris@87
|
525 assert_(res.shape == (3, 1))
|
Chris@87
|
526 res = f(mat)
|
Chris@87
|
527 assert_(np.isscalar(res))
|
Chris@87
|
528
|
Chris@87
|
529
|
Chris@87
|
530 class TestNanFunctions_Median(TestCase):
|
Chris@87
|
531
|
Chris@87
|
532 def test_mutation(self):
|
Chris@87
|
533 # Check that passed array is not modified.
|
Chris@87
|
534 ndat = _ndat.copy()
|
Chris@87
|
535 np.nanmedian(ndat)
|
Chris@87
|
536 assert_equal(ndat, _ndat)
|
Chris@87
|
537
|
Chris@87
|
538 def test_keepdims(self):
|
Chris@87
|
539 mat = np.eye(3)
|
Chris@87
|
540 for axis in [None, 0, 1]:
|
Chris@87
|
541 tgt = np.median(mat, axis=axis, out=None, overwrite_input=False)
|
Chris@87
|
542 res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False)
|
Chris@87
|
543 assert_(res.ndim == tgt.ndim)
|
Chris@87
|
544
|
Chris@87
|
545 d = np.ones((3, 5, 7, 11))
|
Chris@87
|
546 # Randomly set some elements to NaN:
|
Chris@87
|
547 w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
|
Chris@87
|
548 w = w.astype(np.intp)
|
Chris@87
|
549 d[tuple(w)] = np.nan
|
Chris@87
|
550 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
551 warnings.simplefilter('always', RuntimeWarning)
|
Chris@87
|
552 res = np.nanmedian(d, axis=None, keepdims=True)
|
Chris@87
|
553 assert_equal(res.shape, (1, 1, 1, 1))
|
Chris@87
|
554 res = np.nanmedian(d, axis=(0, 1), keepdims=True)
|
Chris@87
|
555 assert_equal(res.shape, (1, 1, 7, 11))
|
Chris@87
|
556 res = np.nanmedian(d, axis=(0, 3), keepdims=True)
|
Chris@87
|
557 assert_equal(res.shape, (1, 5, 7, 1))
|
Chris@87
|
558 res = np.nanmedian(d, axis=(1,), keepdims=True)
|
Chris@87
|
559 assert_equal(res.shape, (3, 1, 7, 11))
|
Chris@87
|
560 res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True)
|
Chris@87
|
561 assert_equal(res.shape, (1, 1, 1, 1))
|
Chris@87
|
562 res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True)
|
Chris@87
|
563 assert_equal(res.shape, (1, 1, 7, 1))
|
Chris@87
|
564
|
Chris@87
|
565 def test_out(self):
|
Chris@87
|
566 mat = np.random.rand(3, 3)
|
Chris@87
|
567 nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
|
Chris@87
|
568 resout = np.zeros(3)
|
Chris@87
|
569 tgt = np.median(mat, axis=1)
|
Chris@87
|
570 res = np.nanmedian(nan_mat, axis=1, out=resout)
|
Chris@87
|
571 assert_almost_equal(res, resout)
|
Chris@87
|
572 assert_almost_equal(res, tgt)
|
Chris@87
|
573 # 0-d output:
|
Chris@87
|
574 resout = np.zeros(())
|
Chris@87
|
575 tgt = np.median(mat, axis=None)
|
Chris@87
|
576 res = np.nanmedian(nan_mat, axis=None, out=resout)
|
Chris@87
|
577 assert_almost_equal(res, resout)
|
Chris@87
|
578 assert_almost_equal(res, tgt)
|
Chris@87
|
579 res = np.nanmedian(nan_mat, axis=(0, 1), out=resout)
|
Chris@87
|
580 assert_almost_equal(res, resout)
|
Chris@87
|
581 assert_almost_equal(res, tgt)
|
Chris@87
|
582
|
Chris@87
|
583 def test_small_large(self):
|
Chris@87
|
584 # test the small and large code paths, current cutoff 400 elements
|
Chris@87
|
585 for s in [5, 20, 51, 200, 1000]:
|
Chris@87
|
586 d = np.random.randn(4, s)
|
Chris@87
|
587 # Randomly set some elements to NaN:
|
Chris@87
|
588 w = np.random.randint(0, d.size, size=d.size // 5)
|
Chris@87
|
589 d.ravel()[w] = np.nan
|
Chris@87
|
590 d[:,0] = 1. # ensure at least one good value
|
Chris@87
|
591 # use normal median without nans to compare
|
Chris@87
|
592 tgt = []
|
Chris@87
|
593 for x in d:
|
Chris@87
|
594 nonan = np.compress(~np.isnan(x), x)
|
Chris@87
|
595 tgt.append(np.median(nonan, overwrite_input=True))
|
Chris@87
|
596
|
Chris@87
|
597 assert_array_equal(np.nanmedian(d, axis=-1), tgt)
|
Chris@87
|
598
|
Chris@87
|
599 def test_result_values(self):
|
Chris@87
|
600 tgt = [np.median(d) for d in _rdat]
|
Chris@87
|
601 res = np.nanmedian(_ndat, axis=1)
|
Chris@87
|
602 assert_almost_equal(res, tgt)
|
Chris@87
|
603
|
Chris@87
|
604 def test_allnans(self):
|
Chris@87
|
605 mat = np.array([np.nan]*9).reshape(3, 3)
|
Chris@87
|
606 for axis in [None, 0, 1]:
|
Chris@87
|
607 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
608 warnings.simplefilter('always')
|
Chris@87
|
609 assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
|
Chris@87
|
610 if axis is None:
|
Chris@87
|
611 assert_(len(w) == 1)
|
Chris@87
|
612 else:
|
Chris@87
|
613 assert_(len(w) == 3)
|
Chris@87
|
614 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
615 # Check scalar
|
Chris@87
|
616 assert_(np.isnan(np.nanmedian(np.nan)))
|
Chris@87
|
617 if axis is None:
|
Chris@87
|
618 assert_(len(w) == 2)
|
Chris@87
|
619 else:
|
Chris@87
|
620 assert_(len(w) == 4)
|
Chris@87
|
621 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
622
|
Chris@87
|
623 def test_empty(self):
|
Chris@87
|
624 mat = np.zeros((0, 3))
|
Chris@87
|
625 for axis in [0, None]:
|
Chris@87
|
626 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
627 warnings.simplefilter('always')
|
Chris@87
|
628 assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
|
Chris@87
|
629 assert_(len(w) == 1)
|
Chris@87
|
630 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
631 for axis in [1]:
|
Chris@87
|
632 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
633 warnings.simplefilter('always')
|
Chris@87
|
634 assert_equal(np.nanmedian(mat, axis=axis), np.zeros([]))
|
Chris@87
|
635 assert_(len(w) == 0)
|
Chris@87
|
636
|
Chris@87
|
637 def test_scalar(self):
|
Chris@87
|
638 assert_(np.nanmedian(0.) == 0.)
|
Chris@87
|
639
|
Chris@87
|
640 def test_extended_axis_invalid(self):
|
Chris@87
|
641 d = np.ones((3, 5, 7, 11))
|
Chris@87
|
642 assert_raises(IndexError, np.nanmedian, d, axis=-5)
|
Chris@87
|
643 assert_raises(IndexError, np.nanmedian, d, axis=(0, -5))
|
Chris@87
|
644 assert_raises(IndexError, np.nanmedian, d, axis=4)
|
Chris@87
|
645 assert_raises(IndexError, np.nanmedian, d, axis=(0, 4))
|
Chris@87
|
646 assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))
|
Chris@87
|
647
|
Chris@87
|
648 def test_float_special(self):
|
Chris@87
|
649 with warnings.catch_warnings(record=True):
|
Chris@87
|
650 warnings.simplefilter('ignore', RuntimeWarning)
|
Chris@87
|
651 a = np.array([[np.inf, np.nan], [np.nan, np.nan]])
|
Chris@87
|
652 assert_equal(np.nanmedian(a, axis=0), [np.inf, np.nan])
|
Chris@87
|
653 assert_equal(np.nanmedian(a, axis=1), [np.inf, np.nan])
|
Chris@87
|
654 assert_equal(np.nanmedian(a), np.inf)
|
Chris@87
|
655
|
Chris@87
|
656 # minimum fill value check
|
Chris@87
|
657 a = np.array([[np.nan, np.nan, np.inf], [np.nan, np.nan, np.inf]])
|
Chris@87
|
658 assert_equal(np.nanmedian(a, axis=1), np.inf)
|
Chris@87
|
659
|
Chris@87
|
660 # no mask path
|
Chris@87
|
661 a = np.array([[np.inf, np.inf], [np.inf, np.inf]])
|
Chris@87
|
662 assert_equal(np.nanmedian(a, axis=1), np.inf)
|
Chris@87
|
663
|
Chris@87
|
664
|
Chris@87
|
665 class TestNanFunctions_Percentile(TestCase):
|
Chris@87
|
666
|
Chris@87
|
667 def test_mutation(self):
|
Chris@87
|
668 # Check that passed array is not modified.
|
Chris@87
|
669 ndat = _ndat.copy()
|
Chris@87
|
670 np.nanpercentile(ndat, 30)
|
Chris@87
|
671 assert_equal(ndat, _ndat)
|
Chris@87
|
672
|
Chris@87
|
673 def test_keepdims(self):
|
Chris@87
|
674 mat = np.eye(3)
|
Chris@87
|
675 for axis in [None, 0, 1]:
|
Chris@87
|
676 tgt = np.percentile(mat, 70, axis=axis, out=None,
|
Chris@87
|
677 overwrite_input=False)
|
Chris@87
|
678 res = np.nanpercentile(mat, 70, axis=axis, out=None,
|
Chris@87
|
679 overwrite_input=False)
|
Chris@87
|
680 assert_(res.ndim == tgt.ndim)
|
Chris@87
|
681
|
Chris@87
|
682 d = np.ones((3, 5, 7, 11))
|
Chris@87
|
683 # Randomly set some elements to NaN:
|
Chris@87
|
684 w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
|
Chris@87
|
685 w = w.astype(np.intp)
|
Chris@87
|
686 d[tuple(w)] = np.nan
|
Chris@87
|
687 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
688 warnings.simplefilter('always', RuntimeWarning)
|
Chris@87
|
689 res = np.nanpercentile(d, 90, axis=None, keepdims=True)
|
Chris@87
|
690 assert_equal(res.shape, (1, 1, 1, 1))
|
Chris@87
|
691 res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True)
|
Chris@87
|
692 assert_equal(res.shape, (1, 1, 7, 11))
|
Chris@87
|
693 res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True)
|
Chris@87
|
694 assert_equal(res.shape, (1, 5, 7, 1))
|
Chris@87
|
695 res = np.nanpercentile(d, 90, axis=(1,), keepdims=True)
|
Chris@87
|
696 assert_equal(res.shape, (3, 1, 7, 11))
|
Chris@87
|
697 res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True)
|
Chris@87
|
698 assert_equal(res.shape, (1, 1, 1, 1))
|
Chris@87
|
699 res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True)
|
Chris@87
|
700 assert_equal(res.shape, (1, 1, 7, 1))
|
Chris@87
|
701
|
Chris@87
|
702 def test_out(self):
|
Chris@87
|
703 mat = np.random.rand(3, 3)
|
Chris@87
|
704 nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
|
Chris@87
|
705 resout = np.zeros(3)
|
Chris@87
|
706 tgt = np.percentile(mat, 42, axis=1)
|
Chris@87
|
707 res = np.nanpercentile(nan_mat, 42, axis=1, out=resout)
|
Chris@87
|
708 assert_almost_equal(res, resout)
|
Chris@87
|
709 assert_almost_equal(res, tgt)
|
Chris@87
|
710 # 0-d output:
|
Chris@87
|
711 resout = np.zeros(())
|
Chris@87
|
712 tgt = np.percentile(mat, 42, axis=None)
|
Chris@87
|
713 res = np.nanpercentile(nan_mat, 42, axis=None, out=resout)
|
Chris@87
|
714 assert_almost_equal(res, resout)
|
Chris@87
|
715 assert_almost_equal(res, tgt)
|
Chris@87
|
716 res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout)
|
Chris@87
|
717 assert_almost_equal(res, resout)
|
Chris@87
|
718 assert_almost_equal(res, tgt)
|
Chris@87
|
719
|
Chris@87
|
720 def test_result_values(self):
|
Chris@87
|
721 tgt = [np.percentile(d, 28) for d in _rdat]
|
Chris@87
|
722 res = np.nanpercentile(_ndat, 28, axis=1)
|
Chris@87
|
723 assert_almost_equal(res, tgt)
|
Chris@87
|
724 tgt = [np.percentile(d, (28, 98)) for d in _rdat]
|
Chris@87
|
725 res = np.nanpercentile(_ndat, (28, 98), axis=1)
|
Chris@87
|
726 assert_almost_equal(res, tgt)
|
Chris@87
|
727
|
Chris@87
|
728 def test_allnans(self):
|
Chris@87
|
729 mat = np.array([np.nan]*9).reshape(3, 3)
|
Chris@87
|
730 for axis in [None, 0, 1]:
|
Chris@87
|
731 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
732 warnings.simplefilter('always')
|
Chris@87
|
733 assert_(np.isnan(np.nanpercentile(mat, 60, axis=axis)).all())
|
Chris@87
|
734 if axis is None:
|
Chris@87
|
735 assert_(len(w) == 1)
|
Chris@87
|
736 else:
|
Chris@87
|
737 assert_(len(w) == 3)
|
Chris@87
|
738 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
739 # Check scalar
|
Chris@87
|
740 assert_(np.isnan(np.nanpercentile(np.nan, 60)))
|
Chris@87
|
741 if axis is None:
|
Chris@87
|
742 assert_(len(w) == 2)
|
Chris@87
|
743 else:
|
Chris@87
|
744 assert_(len(w) == 4)
|
Chris@87
|
745 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
746
|
Chris@87
|
747 def test_empty(self):
|
Chris@87
|
748 mat = np.zeros((0, 3))
|
Chris@87
|
749 for axis in [0, None]:
|
Chris@87
|
750 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
751 warnings.simplefilter('always')
|
Chris@87
|
752 assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all())
|
Chris@87
|
753 assert_(len(w) == 1)
|
Chris@87
|
754 assert_(issubclass(w[0].category, RuntimeWarning))
|
Chris@87
|
755 for axis in [1]:
|
Chris@87
|
756 with warnings.catch_warnings(record=True) as w:
|
Chris@87
|
757 warnings.simplefilter('always')
|
Chris@87
|
758 assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([]))
|
Chris@87
|
759 assert_(len(w) == 0)
|
Chris@87
|
760
|
Chris@87
|
761 def test_scalar(self):
|
Chris@87
|
762 assert_(np.nanpercentile(0., 100) == 0.)
|
Chris@87
|
763
|
Chris@87
|
764 def test_extended_axis_invalid(self):
|
Chris@87
|
765 d = np.ones((3, 5, 7, 11))
|
Chris@87
|
766 assert_raises(IndexError, np.nanpercentile, d, q=5, axis=-5)
|
Chris@87
|
767 assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, -5))
|
Chris@87
|
768 assert_raises(IndexError, np.nanpercentile, d, q=5, axis=4)
|
Chris@87
|
769 assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, 4))
|
Chris@87
|
770 assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1))
|
Chris@87
|
771
|
Chris@87
|
772
|
Chris@87
|
773 if __name__ == "__main__":
|
Chris@87
|
774 run_module_suite()
|