Chris@16
|
1 ///////////////////////////////////////////////////////////////////////////////
|
Chris@16
|
2 /// \file call.hpp
|
Chris@16
|
3 /// Contains definition of the call<> transform.
|
Chris@16
|
4 //
|
Chris@16
|
5 // Copyright 2008 Eric Niebler. Distributed under the Boost
|
Chris@16
|
6 // Software License, Version 1.0. (See accompanying file
|
Chris@16
|
7 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
8
|
Chris@16
|
9 #ifndef BOOST_PROTO_TRANSFORM_CALL_HPP_EAN_11_02_2007
|
Chris@16
|
10 #define BOOST_PROTO_TRANSFORM_CALL_HPP_EAN_11_02_2007
|
Chris@16
|
11
|
Chris@101
|
12 #if defined(_MSC_VER)
|
Chris@16
|
13 # pragma warning(push)
|
Chris@16
|
14 # pragma warning(disable: 4714) // function 'xxx' marked as __forceinline not inlined
|
Chris@16
|
15 #endif
|
Chris@16
|
16
|
Chris@16
|
17 #include <boost/preprocessor/cat.hpp>
|
Chris@16
|
18 #include <boost/preprocessor/facilities/intercept.hpp>
|
Chris@16
|
19 #include <boost/preprocessor/iteration/iterate.hpp>
|
Chris@16
|
20 #include <boost/preprocessor/repetition/enum.hpp>
|
Chris@16
|
21 #include <boost/preprocessor/repetition/repeat.hpp>
|
Chris@16
|
22 #include <boost/preprocessor/repetition/enum_params.hpp>
|
Chris@16
|
23 #include <boost/preprocessor/repetition/enum_binary_params.hpp>
|
Chris@16
|
24 #include <boost/preprocessor/repetition/enum_trailing_params.hpp>
|
Chris@16
|
25 #include <boost/ref.hpp>
|
Chris@16
|
26 #include <boost/utility/result_of.hpp>
|
Chris@16
|
27 #include <boost/proto/proto_fwd.hpp>
|
Chris@16
|
28 #include <boost/proto/traits.hpp>
|
Chris@16
|
29 #include <boost/proto/transform/impl.hpp>
|
Chris@16
|
30 #include <boost/proto/detail/as_lvalue.hpp>
|
Chris@16
|
31 #include <boost/proto/detail/poly_function.hpp>
|
Chris@16
|
32 #include <boost/proto/transform/detail/pack.hpp>
|
Chris@16
|
33
|
Chris@16
|
34 namespace boost { namespace proto
|
Chris@16
|
35 {
|
Chris@16
|
36 /// \brief Wrap \c PrimitiveTransform so that <tt>when\<\></tt> knows
|
Chris@16
|
37 /// it is callable. Requires that the parameter is actually a
|
Chris@16
|
38 /// PrimitiveTransform.
|
Chris@16
|
39 ///
|
Chris@16
|
40 /// This form of <tt>call\<\></tt> is useful for annotating an
|
Chris@16
|
41 /// arbitrary PrimitiveTransform as callable when using it with
|
Chris@16
|
42 /// <tt>when\<\></tt>. Consider the following transform, which
|
Chris@16
|
43 /// is parameterized with another transform.
|
Chris@16
|
44 ///
|
Chris@16
|
45 /// \code
|
Chris@16
|
46 /// template<typename Grammar>
|
Chris@16
|
47 /// struct Foo
|
Chris@16
|
48 /// : when<
|
Chris@16
|
49 /// unary_plus<Grammar>
|
Chris@16
|
50 /// , Grammar(_child) // May or may not work.
|
Chris@16
|
51 /// >
|
Chris@16
|
52 /// {};
|
Chris@16
|
53 /// \endcode
|
Chris@16
|
54 ///
|
Chris@16
|
55 /// The problem with the above is that <tt>when\<\></tt> may or
|
Chris@16
|
56 /// may not recognize \c Grammar as callable, depending on how
|
Chris@16
|
57 /// \c Grammar is implemented. (See <tt>is_callable\<\></tt> for
|
Chris@16
|
58 /// a discussion of this issue.) You can guard against
|
Chris@16
|
59 /// the issue by wrapping \c Grammar in <tt>call\<\></tt>, such
|
Chris@16
|
60 /// as:
|
Chris@16
|
61 ///
|
Chris@16
|
62 /// \code
|
Chris@16
|
63 /// template<typename Grammar>
|
Chris@16
|
64 /// struct Foo
|
Chris@16
|
65 /// : when<
|
Chris@16
|
66 /// unary_plus<Grammar>
|
Chris@16
|
67 /// , call<Grammar>(_child) // OK, this works
|
Chris@16
|
68 /// >
|
Chris@16
|
69 /// {};
|
Chris@16
|
70 /// \endcode
|
Chris@16
|
71 ///
|
Chris@16
|
72 /// The above could also have been written as:
|
Chris@16
|
73 ///
|
Chris@16
|
74 /// \code
|
Chris@16
|
75 /// template<typename Grammar>
|
Chris@16
|
76 /// struct Foo
|
Chris@16
|
77 /// : when<
|
Chris@16
|
78 /// unary_plus<Grammar>
|
Chris@16
|
79 /// , call<Grammar(_child)> // OK, this works, too
|
Chris@16
|
80 /// >
|
Chris@16
|
81 /// {};
|
Chris@16
|
82 /// \endcode
|
Chris@16
|
83 template<typename PrimitiveTransform>
|
Chris@16
|
84 struct call
|
Chris@16
|
85 : PrimitiveTransform
|
Chris@16
|
86 {};
|
Chris@16
|
87
|
Chris@16
|
88 /// \brief A specialization that treats function pointer Transforms as
|
Chris@16
|
89 /// if they were function type Transforms.
|
Chris@16
|
90 ///
|
Chris@16
|
91 /// This specialization requires that \c Fun is actually a function type.
|
Chris@16
|
92 ///
|
Chris@16
|
93 /// This specialization is required for nested transforms such as
|
Chris@16
|
94 /// <tt>call\<T0(T1(_))\></tt>. In C++, functions that are used as
|
Chris@16
|
95 /// parameters to other functions automatically decay to funtion
|
Chris@16
|
96 /// pointer types. In other words, the type <tt>T0(T1(_))</tt> is
|
Chris@16
|
97 /// indistinguishable from <tt>T0(T1(*)(_))</tt>. This specialization
|
Chris@16
|
98 /// is required to handle these nested function pointer type transforms
|
Chris@16
|
99 /// properly.
|
Chris@16
|
100 template<typename Fun>
|
Chris@16
|
101 struct call<Fun *>
|
Chris@16
|
102 : call<Fun>
|
Chris@16
|
103 {};
|
Chris@16
|
104
|
Chris@16
|
105 /// INTERNAL ONLY
|
Chris@16
|
106 template<typename Fun>
|
Chris@16
|
107 struct call<detail::msvc_fun_workaround<Fun> >
|
Chris@16
|
108 : call<Fun>
|
Chris@16
|
109 {};
|
Chris@16
|
110
|
Chris@16
|
111 /// \brief Either call the PolymorphicFunctionObject with 0
|
Chris@16
|
112 /// arguments, or invoke the PrimitiveTransform with 3
|
Chris@16
|
113 /// arguments.
|
Chris@16
|
114 template<typename Fun>
|
Chris@16
|
115 struct call<Fun()> : transform<call<Fun()> >
|
Chris@16
|
116 {
|
Chris@16
|
117 /// INTERNAL ONLY
|
Chris@16
|
118 template<typename Expr, typename State, typename Data, bool B>
|
Chris@16
|
119 struct impl2
|
Chris@16
|
120 : transform_impl<Expr, State, Data>
|
Chris@16
|
121 {
|
Chris@16
|
122 typedef typename BOOST_PROTO_RESULT_OF<Fun()>::type result_type;
|
Chris@16
|
123
|
Chris@16
|
124 BOOST_FORCEINLINE
|
Chris@16
|
125 result_type operator()(
|
Chris@16
|
126 typename impl2::expr_param
|
Chris@16
|
127 , typename impl2::state_param
|
Chris@16
|
128 , typename impl2::data_param
|
Chris@16
|
129 ) const
|
Chris@16
|
130 {
|
Chris@16
|
131 return Fun()();
|
Chris@16
|
132 }
|
Chris@16
|
133 };
|
Chris@16
|
134
|
Chris@16
|
135 /// INTERNAL ONLY
|
Chris@16
|
136 template<typename Expr, typename State, typename Data>
|
Chris@16
|
137 struct impl2<Expr, State, Data, true>
|
Chris@16
|
138 : Fun::template impl<Expr, State, Data>
|
Chris@16
|
139 {};
|
Chris@16
|
140
|
Chris@16
|
141 /// Either call the PolymorphicFunctionObject \c Fun with 0 arguments; or
|
Chris@16
|
142 /// invoke the PrimitiveTransform \c Fun with 3 arguments: the current
|
Chris@16
|
143 /// expression, state, and data.
|
Chris@16
|
144 ///
|
Chris@16
|
145 /// If \c Fun is a nullary PolymorphicFunctionObject, return <tt>Fun()()</tt>.
|
Chris@16
|
146 /// Otherwise, return <tt>Fun()(e, s, d)</tt>.
|
Chris@16
|
147 ///
|
Chris@16
|
148 /// \param e The current expression
|
Chris@16
|
149 /// \param s The current state
|
Chris@16
|
150 /// \param d An arbitrary data
|
Chris@16
|
151
|
Chris@16
|
152 /// If \c Fun is a nullary PolymorphicFunctionObject, \c type is a typedef
|
Chris@16
|
153 /// for <tt>boost::result_of\<Fun()\>::type</tt>. Otherwise, it is
|
Chris@16
|
154 /// a typedef for <tt>boost::result_of\<Fun(Expr, State, Data)\>::type</tt>.
|
Chris@16
|
155 template<typename Expr, typename State, typename Data>
|
Chris@16
|
156 struct impl
|
Chris@16
|
157 : impl2<Expr, State, Data, detail::is_transform_<Fun>::value>
|
Chris@16
|
158 {};
|
Chris@16
|
159 };
|
Chris@16
|
160
|
Chris@16
|
161 /// \brief Either call the PolymorphicFunctionObject with 1
|
Chris@16
|
162 /// argument, or invoke the PrimitiveTransform with 3
|
Chris@16
|
163 /// arguments.
|
Chris@16
|
164 template<typename Fun, typename A0>
|
Chris@16
|
165 struct call<Fun(A0)> : transform<call<Fun(A0)> >
|
Chris@16
|
166 {
|
Chris@16
|
167 template<typename Expr, typename State, typename Data, bool B>
|
Chris@16
|
168 struct impl2
|
Chris@16
|
169 : transform_impl<Expr, State, Data>
|
Chris@16
|
170 {
|
Chris@16
|
171 typedef typename when<_, A0>::template impl<Expr, State, Data>::result_type a0;
|
Chris@16
|
172 typedef typename detail::poly_function_traits<Fun, Fun(a0)>::result_type result_type;
|
Chris@16
|
173
|
Chris@16
|
174 BOOST_FORCEINLINE
|
Chris@16
|
175 result_type operator ()(
|
Chris@16
|
176 typename impl2::expr_param e
|
Chris@16
|
177 , typename impl2::state_param s
|
Chris@16
|
178 , typename impl2::data_param d
|
Chris@16
|
179 ) const
|
Chris@16
|
180 {
|
Chris@16
|
181 return typename detail::poly_function_traits<Fun, Fun(a0)>::function_type()(
|
Chris@16
|
182 detail::as_lvalue(typename when<_, A0>::template impl<Expr, State, Data>()(e, s, d))
|
Chris@16
|
183 );
|
Chris@16
|
184 }
|
Chris@16
|
185 };
|
Chris@16
|
186
|
Chris@16
|
187 template<typename Expr, typename State, typename Data>
|
Chris@16
|
188 struct impl2<Expr, State, Data, true>
|
Chris@16
|
189 : transform_impl<Expr, State, Data>
|
Chris@16
|
190 {
|
Chris@16
|
191 typedef typename when<_, A0>::template impl<Expr, State, Data>::result_type a0;
|
Chris@16
|
192 typedef typename Fun::template impl<a0, State, Data>::result_type result_type;
|
Chris@16
|
193
|
Chris@16
|
194 BOOST_FORCEINLINE
|
Chris@16
|
195 result_type operator ()(
|
Chris@16
|
196 typename impl2::expr_param e
|
Chris@16
|
197 , typename impl2::state_param s
|
Chris@16
|
198 , typename impl2::data_param d
|
Chris@16
|
199 ) const
|
Chris@16
|
200 {
|
Chris@16
|
201 return typename Fun::template impl<a0, State, Data>()(
|
Chris@16
|
202 typename when<_, A0>::template impl<Expr, State, Data>()(e, s, d)
|
Chris@16
|
203 , s
|
Chris@16
|
204 , d
|
Chris@16
|
205 );
|
Chris@16
|
206 }
|
Chris@16
|
207 };
|
Chris@16
|
208 /// Let \c x be <tt>when\<_, A0\>()(e, s, d)</tt> and \c X
|
Chris@16
|
209 /// be the type of \c x.
|
Chris@16
|
210 /// If \c Fun is a unary PolymorphicFunctionObject that accepts \c x,
|
Chris@16
|
211 /// then \c type is a typedef for <tt>boost::result_of\<Fun(X)\>::type</tt>.
|
Chris@16
|
212 /// Otherwise, it is a typedef for <tt>boost::result_of\<Fun(X, State, Data)\>::type</tt>.
|
Chris@16
|
213
|
Chris@16
|
214 /// Either call the PolymorphicFunctionObject with 1 argument:
|
Chris@16
|
215 /// the result of applying the \c A0 transform; or
|
Chris@16
|
216 /// invoke the PrimitiveTransform with 3 arguments:
|
Chris@16
|
217 /// result of applying the \c A0 transform, the state, and the
|
Chris@16
|
218 /// data.
|
Chris@16
|
219 ///
|
Chris@16
|
220 /// Let \c x be <tt>when\<_, A0\>()(e, s, d)</tt>.
|
Chris@16
|
221 /// If \c Fun is a unary PolymorphicFunctionObject that accepts \c x,
|
Chris@16
|
222 /// then return <tt>Fun()(x)</tt>. Otherwise, return
|
Chris@16
|
223 /// <tt>Fun()(x, s, d)</tt>.
|
Chris@16
|
224 ///
|
Chris@16
|
225 /// \param e The current expression
|
Chris@16
|
226 /// \param s The current state
|
Chris@16
|
227 /// \param d An arbitrary data
|
Chris@16
|
228 template<typename Expr, typename State, typename Data>
|
Chris@16
|
229 struct impl
|
Chris@16
|
230 : impl2<Expr, State, Data, detail::is_transform_<Fun>::value>
|
Chris@16
|
231 {};
|
Chris@16
|
232 };
|
Chris@16
|
233
|
Chris@16
|
234 /// \brief Either call the PolymorphicFunctionObject with 2
|
Chris@16
|
235 /// arguments, or invoke the PrimitiveTransform with 3
|
Chris@16
|
236 /// arguments.
|
Chris@16
|
237 template<typename Fun, typename A0, typename A1>
|
Chris@16
|
238 struct call<Fun(A0, A1)> : transform<call<Fun(A0, A1)> >
|
Chris@16
|
239 {
|
Chris@16
|
240 template<typename Expr, typename State, typename Data, bool B>
|
Chris@16
|
241 struct impl2
|
Chris@16
|
242 : transform_impl<Expr, State, Data>
|
Chris@16
|
243 {
|
Chris@16
|
244 typedef typename when<_, A0>::template impl<Expr, State, Data>::result_type a0;
|
Chris@16
|
245 typedef typename when<_, A1>::template impl<Expr, State, Data>::result_type a1;
|
Chris@16
|
246 typedef typename detail::poly_function_traits<Fun, Fun(a0, a1)>::result_type result_type;
|
Chris@16
|
247
|
Chris@16
|
248 BOOST_FORCEINLINE
|
Chris@16
|
249 result_type operator ()(
|
Chris@16
|
250 typename impl2::expr_param e
|
Chris@16
|
251 , typename impl2::state_param s
|
Chris@16
|
252 , typename impl2::data_param d
|
Chris@16
|
253 ) const
|
Chris@16
|
254 {
|
Chris@16
|
255 return typename detail::poly_function_traits<Fun, Fun(a0, a1)>::function_type()(
|
Chris@16
|
256 detail::as_lvalue(typename when<_, A0>::template impl<Expr, State, Data>()(e, s, d))
|
Chris@16
|
257 , detail::as_lvalue(typename when<_, A1>::template impl<Expr, State, Data>()(e, s, d))
|
Chris@16
|
258 );
|
Chris@16
|
259 }
|
Chris@16
|
260 };
|
Chris@16
|
261
|
Chris@16
|
262 template<typename Expr, typename State, typename Data>
|
Chris@16
|
263 struct impl2<Expr, State, Data, true>
|
Chris@16
|
264 : transform_impl<Expr, State, Data>
|
Chris@16
|
265 {
|
Chris@16
|
266 typedef typename when<_, A0>::template impl<Expr, State, Data>::result_type a0;
|
Chris@16
|
267 typedef typename when<_, A1>::template impl<Expr, State, Data>::result_type a1;
|
Chris@16
|
268 typedef typename Fun::template impl<a0, a1, Data>::result_type result_type;
|
Chris@16
|
269
|
Chris@16
|
270 BOOST_FORCEINLINE
|
Chris@16
|
271 result_type operator ()(
|
Chris@16
|
272 typename impl2::expr_param e
|
Chris@16
|
273 , typename impl2::state_param s
|
Chris@16
|
274 , typename impl2::data_param d
|
Chris@16
|
275 ) const
|
Chris@16
|
276 {
|
Chris@16
|
277 return typename Fun::template impl<a0, a1, Data>()(
|
Chris@16
|
278 typename when<_, A0>::template impl<Expr, State, Data>()(e, s, d)
|
Chris@16
|
279 , typename when<_, A1>::template impl<Expr, State, Data>()(e, s, d)
|
Chris@16
|
280 , d
|
Chris@16
|
281 );
|
Chris@16
|
282 }
|
Chris@16
|
283 };
|
Chris@16
|
284
|
Chris@16
|
285 /// Let \c x be <tt>when\<_, A0\>()(e, s, d)</tt> and \c X
|
Chris@16
|
286 /// be the type of \c x.
|
Chris@16
|
287 /// Let \c y be <tt>when\<_, A1\>()(e, s, d)</tt> and \c Y
|
Chris@16
|
288 /// be the type of \c y.
|
Chris@16
|
289 /// If \c Fun is a binary PolymorphicFunction object that accepts \c x
|
Chris@16
|
290 /// and \c y, then \c type is a typedef for
|
Chris@16
|
291 /// <tt>boost::result_of\<Fun(X, Y)\>::type</tt>. Otherwise, it is
|
Chris@16
|
292 /// a typedef for <tt>boost::result_of\<Fun(X, Y, Data)\>::type</tt>.
|
Chris@16
|
293
|
Chris@16
|
294 /// Either call the PolymorphicFunctionObject with 2 arguments:
|
Chris@16
|
295 /// the result of applying the \c A0 transform, and the
|
Chris@16
|
296 /// result of applying the \c A1 transform; or invoke the
|
Chris@16
|
297 /// PrimitiveTransform with 3 arguments: the result of applying
|
Chris@16
|
298 /// the \c A0 transform, the result of applying the \c A1
|
Chris@16
|
299 /// transform, and the data.
|
Chris@16
|
300 ///
|
Chris@16
|
301 /// Let \c x be <tt>when\<_, A0\>()(e, s, d)</tt>.
|
Chris@16
|
302 /// Let \c y be <tt>when\<_, A1\>()(e, s, d)</tt>.
|
Chris@16
|
303 /// If \c Fun is a binary PolymorphicFunction object that accepts \c x
|
Chris@16
|
304 /// and \c y, return <tt>Fun()(x, y)</tt>. Otherwise, return
|
Chris@16
|
305 /// <tt>Fun()(x, y, d)</tt>.
|
Chris@16
|
306 ///
|
Chris@16
|
307 /// \param e The current expression
|
Chris@16
|
308 /// \param s The current state
|
Chris@16
|
309 /// \param d An arbitrary data
|
Chris@16
|
310 template<typename Expr, typename State, typename Data>
|
Chris@16
|
311 struct impl
|
Chris@16
|
312 : impl2<Expr, State, Data, detail::is_transform_<Fun>::value>
|
Chris@16
|
313 {};
|
Chris@16
|
314 };
|
Chris@16
|
315
|
Chris@16
|
316 /// \brief Call the PolymorphicFunctionObject or the
|
Chris@16
|
317 /// PrimitiveTransform with the current expression, state
|
Chris@16
|
318 /// and data, transformed according to \c A0, \c A1, and
|
Chris@16
|
319 /// \c A2, respectively.
|
Chris@16
|
320 template<typename Fun, typename A0, typename A1, typename A2>
|
Chris@16
|
321 struct call<Fun(A0, A1, A2)> : transform<call<Fun(A0, A1, A2)> >
|
Chris@16
|
322 {
|
Chris@16
|
323 template<typename Expr, typename State, typename Data, bool B>
|
Chris@16
|
324 struct impl2
|
Chris@16
|
325 : transform_impl<Expr, State, Data>
|
Chris@16
|
326 {
|
Chris@16
|
327 typedef typename when<_, A0>::template impl<Expr, State, Data>::result_type a0;
|
Chris@16
|
328 typedef typename when<_, A1>::template impl<Expr, State, Data>::result_type a1;
|
Chris@16
|
329 typedef typename when<_, A2>::template impl<Expr, State, Data>::result_type a2;
|
Chris@16
|
330 typedef typename detail::poly_function_traits<Fun, Fun(a0, a1, a2)>::result_type result_type;
|
Chris@16
|
331
|
Chris@16
|
332 BOOST_FORCEINLINE
|
Chris@16
|
333 result_type operator ()(
|
Chris@16
|
334 typename impl2::expr_param e
|
Chris@16
|
335 , typename impl2::state_param s
|
Chris@16
|
336 , typename impl2::data_param d
|
Chris@16
|
337 ) const
|
Chris@16
|
338 {
|
Chris@16
|
339 return typename detail::poly_function_traits<Fun, Fun(a0, a1, a2)>::function_type()(
|
Chris@16
|
340 detail::as_lvalue(typename when<_, A0>::template impl<Expr, State, Data>()(e, s, d))
|
Chris@16
|
341 , detail::as_lvalue(typename when<_, A1>::template impl<Expr, State, Data>()(e, s, d))
|
Chris@16
|
342 , detail::as_lvalue(typename when<_, A2>::template impl<Expr, State, Data>()(e, s, d))
|
Chris@16
|
343 );
|
Chris@16
|
344 }
|
Chris@16
|
345 };
|
Chris@16
|
346
|
Chris@16
|
347 template<typename Expr, typename State, typename Data>
|
Chris@16
|
348 struct impl2<Expr, State, Data, true>
|
Chris@16
|
349 : transform_impl<Expr, State, Data>
|
Chris@16
|
350 {
|
Chris@16
|
351 typedef typename when<_, A0>::template impl<Expr, State, Data>::result_type a0;
|
Chris@16
|
352 typedef typename when<_, A1>::template impl<Expr, State, Data>::result_type a1;
|
Chris@16
|
353 typedef typename when<_, A2>::template impl<Expr, State, Data>::result_type a2;
|
Chris@16
|
354 typedef typename Fun::template impl<a0, a1, a2>::result_type result_type;
|
Chris@16
|
355
|
Chris@16
|
356 BOOST_FORCEINLINE
|
Chris@16
|
357 result_type operator ()(
|
Chris@16
|
358 typename impl2::expr_param e
|
Chris@16
|
359 , typename impl2::state_param s
|
Chris@16
|
360 , typename impl2::data_param d
|
Chris@16
|
361 ) const
|
Chris@16
|
362 {
|
Chris@16
|
363 return typename Fun::template impl<a0, a1, a2>()(
|
Chris@16
|
364 typename when<_, A0>::template impl<Expr, State, Data>()(e, s, d)
|
Chris@16
|
365 , typename when<_, A1>::template impl<Expr, State, Data>()(e, s, d)
|
Chris@16
|
366 , typename when<_, A2>::template impl<Expr, State, Data>()(e, s, d)
|
Chris@16
|
367 );
|
Chris@16
|
368 }
|
Chris@16
|
369 };
|
Chris@16
|
370
|
Chris@16
|
371 /// Let \c x be <tt>when\<_, A0\>()(e, s, d)</tt>.
|
Chris@16
|
372 /// Let \c y be <tt>when\<_, A1\>()(e, s, d)</tt>.
|
Chris@16
|
373 /// Let \c z be <tt>when\<_, A2\>()(e, s, d)</tt>.
|
Chris@16
|
374 /// Return <tt>Fun()(x, y, z)</tt>.
|
Chris@16
|
375 ///
|
Chris@16
|
376 /// \param e The current expression
|
Chris@16
|
377 /// \param s The current state
|
Chris@16
|
378 /// \param d An arbitrary data
|
Chris@16
|
379
|
Chris@16
|
380 template<typename Expr, typename State, typename Data>
|
Chris@16
|
381 struct impl
|
Chris@16
|
382 : impl2<Expr, State, Data, detail::is_transform_<Fun>::value>
|
Chris@16
|
383 {};
|
Chris@16
|
384 };
|
Chris@16
|
385
|
Chris@16
|
386 #include <boost/proto/transform/detail/call.hpp>
|
Chris@16
|
387
|
Chris@16
|
388 /// INTERNAL ONLY
|
Chris@16
|
389 ///
|
Chris@16
|
390 template<typename Fun>
|
Chris@16
|
391 struct is_callable<call<Fun> >
|
Chris@16
|
392 : mpl::true_
|
Chris@16
|
393 {};
|
Chris@16
|
394
|
Chris@16
|
395 }} // namespace boost::proto
|
Chris@16
|
396
|
Chris@101
|
397 #if defined(_MSC_VER)
|
Chris@16
|
398 # pragma warning(pop)
|
Chris@16
|
399 #endif
|
Chris@16
|
400
|
Chris@16
|
401 #endif
|