Chris@16
|
1 /*
|
Chris@16
|
2 [auto_generated]
|
Chris@16
|
3 boost/numeric/odeint/stepper/euler.hpp
|
Chris@16
|
4
|
Chris@16
|
5 [begin_description]
|
Chris@16
|
6 Implementation of the classical explicit Euler stepper. This method is really simple and should only
|
Chris@16
|
7 be used for demonstration purposes.
|
Chris@16
|
8 [end_description]
|
Chris@16
|
9
|
Chris@101
|
10 Copyright 2010-2013 Karsten Ahnert
|
Chris@101
|
11 Copyright 2010-2013 Mario Mulansky
|
Chris@16
|
12
|
Chris@16
|
13 Distributed under the Boost Software License, Version 1.0.
|
Chris@16
|
14 (See accompanying file LICENSE_1_0.txt or
|
Chris@16
|
15 copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
16 */
|
Chris@16
|
17
|
Chris@16
|
18
|
Chris@16
|
19 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_EULER_HPP_INCLUDED
|
Chris@16
|
20 #define BOOST_NUMERIC_ODEINT_STEPPER_EULER_HPP_INCLUDED
|
Chris@16
|
21
|
Chris@16
|
22
|
Chris@16
|
23 #include <boost/numeric/odeint/stepper/base/explicit_stepper_base.hpp>
|
Chris@16
|
24 #include <boost/numeric/odeint/util/resizer.hpp>
|
Chris@16
|
25 #include <boost/numeric/odeint/algebra/range_algebra.hpp>
|
Chris@16
|
26 #include <boost/numeric/odeint/algebra/default_operations.hpp>
|
Chris@101
|
27 #include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
|
Chris@101
|
28 #include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
|
Chris@16
|
29
|
Chris@16
|
30 namespace boost {
|
Chris@16
|
31 namespace numeric {
|
Chris@16
|
32 namespace odeint {
|
Chris@16
|
33
|
Chris@16
|
34
|
Chris@16
|
35 template<
|
Chris@16
|
36 class State ,
|
Chris@16
|
37 class Value = double ,
|
Chris@16
|
38 class Deriv = State ,
|
Chris@16
|
39 class Time = Value ,
|
Chris@101
|
40 class Algebra = typename algebra_dispatcher< State >::algebra_type ,
|
Chris@101
|
41 class Operations = typename operations_dispatcher< State >::operations_type ,
|
Chris@16
|
42 class Resizer = initially_resizer
|
Chris@16
|
43 >
|
Chris@16
|
44 #ifndef DOXYGEN_SKIP
|
Chris@16
|
45 class euler
|
Chris@16
|
46 : public explicit_stepper_base<
|
Chris@16
|
47 euler< State , Value , Deriv , Time , Algebra , Operations , Resizer > ,
|
Chris@16
|
48 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer >
|
Chris@16
|
49 #else
|
Chris@16
|
50 class euler : public explicit_stepper_base
|
Chris@16
|
51 #endif
|
Chris@16
|
52 {
|
Chris@16
|
53 public :
|
Chris@16
|
54
|
Chris@16
|
55 #ifndef DOXYGEN_SKIP
|
Chris@16
|
56 typedef explicit_stepper_base< euler< State , Value , Deriv , Time , Algebra , Operations , Resizer > , 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer > stepper_base_type;
|
Chris@16
|
57 #else
|
Chris@16
|
58 typedef explicit_stepper_base< euler< ... > , ... > stepper_base_type;
|
Chris@16
|
59 #endif
|
Chris@16
|
60 typedef typename stepper_base_type::state_type state_type;
|
Chris@16
|
61 typedef typename stepper_base_type::value_type value_type;
|
Chris@16
|
62 typedef typename stepper_base_type::deriv_type deriv_type;
|
Chris@16
|
63 typedef typename stepper_base_type::time_type time_type;
|
Chris@16
|
64 typedef typename stepper_base_type::algebra_type algebra_type;
|
Chris@16
|
65 typedef typename stepper_base_type::operations_type operations_type;
|
Chris@16
|
66 typedef typename stepper_base_type::resizer_type resizer_type;
|
Chris@16
|
67
|
Chris@16
|
68 #ifndef DOXYGEN_SKIP
|
Chris@16
|
69 typedef typename stepper_base_type::stepper_type stepper_type;
|
Chris@16
|
70 typedef typename stepper_base_type::wrapped_state_type wrapped_state_type;
|
Chris@16
|
71 typedef typename stepper_base_type::wrapped_deriv_type wrapped_deriv_type;
|
Chris@16
|
72 #endif
|
Chris@16
|
73
|
Chris@16
|
74
|
Chris@16
|
75 euler( const algebra_type &algebra = algebra_type() ) : stepper_base_type( algebra )
|
Chris@16
|
76 { }
|
Chris@16
|
77
|
Chris@16
|
78 template< class System , class StateIn , class DerivIn , class StateOut >
|
Chris@101
|
79 void do_step_impl( System /* system */ , const StateIn &in , const DerivIn &dxdt , time_type /* t */ , StateOut &out , time_type dt )
|
Chris@16
|
80 {
|
Chris@16
|
81 stepper_base_type::m_algebra.for_each3( out , in , dxdt ,
|
Chris@16
|
82 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , dt ) );
|
Chris@16
|
83
|
Chris@16
|
84 }
|
Chris@16
|
85
|
Chris@16
|
86 template< class StateOut , class StateIn1 , class StateIn2 >
|
Chris@101
|
87 void calc_state( StateOut &x , time_type t , const StateIn1 &old_state , time_type t_old , const StateIn2 & /*current_state*/ , time_type /* t_new */ ) const
|
Chris@16
|
88 {
|
Chris@16
|
89 const time_type delta = t - t_old;
|
Chris@16
|
90 stepper_base_type::m_algebra.for_each3( x , old_state , stepper_base_type::m_dxdt.m_v ,
|
Chris@16
|
91 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , delta ) );
|
Chris@16
|
92 }
|
Chris@16
|
93
|
Chris@16
|
94 template< class StateType >
|
Chris@16
|
95 void adjust_size( const StateType &x )
|
Chris@16
|
96 {
|
Chris@16
|
97 stepper_base_type::adjust_size( x );
|
Chris@16
|
98 }
|
Chris@16
|
99 };
|
Chris@16
|
100
|
Chris@16
|
101
|
Chris@16
|
102
|
Chris@16
|
103 /********** DOXYGEN ***********/
|
Chris@16
|
104
|
Chris@16
|
105 /**
|
Chris@16
|
106 * \class euler
|
Chris@16
|
107 * \brief An implementation of the Euler method.
|
Chris@16
|
108 *
|
Chris@16
|
109 * The Euler method is a very simply solver for ordinary differential equations. This method should not be used
|
Chris@16
|
110 * for real applications. It is only useful for demonstration purposes. Step size control is not provided but
|
Chris@16
|
111 * trivial continuous output is available.
|
Chris@16
|
112 *
|
Chris@16
|
113 * This class derives from explicit_stepper_base and inherits its interface via CRTP (current recurring template pattern),
|
Chris@16
|
114 * see explicit_stepper_base
|
Chris@16
|
115 *
|
Chris@16
|
116 * \tparam State The state type.
|
Chris@16
|
117 * \tparam Value The value type.
|
Chris@16
|
118 * \tparam Deriv The type representing the time derivative of the state.
|
Chris@16
|
119 * \tparam Time The time representing the independent variable - the time.
|
Chris@16
|
120 * \tparam Algebra The algebra type.
|
Chris@16
|
121 * \tparam Operations The operations type.
|
Chris@16
|
122 * \tparam Resizer The resizer policy type.
|
Chris@16
|
123 */
|
Chris@16
|
124
|
Chris@16
|
125 /**
|
Chris@16
|
126 * \fn euler::euler( const algebra_type &algebra )
|
Chris@16
|
127 * \brief Constructs the euler class. This constructor can be used as a default
|
Chris@16
|
128 * constructor of the algebra has a default constructor.
|
Chris@16
|
129 * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
|
Chris@16
|
130 */
|
Chris@16
|
131
|
Chris@16
|
132 /**
|
Chris@16
|
133 * \fn euler::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
|
Chris@16
|
134 * \brief This method performs one step. The derivative `dxdt` of `in` at the time `t` is passed to the method.
|
Chris@16
|
135 * The result is updated out of place, hence the input is in `in` and the output in `out`.
|
Chris@16
|
136 * Access to this step functionality is provided by explicit_stepper_base and
|
Chris@16
|
137 * `do_step_impl` should not be called directly.
|
Chris@16
|
138 *
|
Chris@16
|
139 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
|
Chris@16
|
140 * Simple System concept.
|
Chris@16
|
141 * \param in The state of the ODE which should be solved. in is not modified in this method
|
Chris@16
|
142 * \param dxdt The derivative of x at t.
|
Chris@16
|
143 * \param t The value of the time, at which the step should be performed.
|
Chris@16
|
144 * \param out The result of the step is written in out.
|
Chris@16
|
145 * \param dt The step size.
|
Chris@16
|
146 */
|
Chris@16
|
147
|
Chris@16
|
148
|
Chris@16
|
149 /**
|
Chris@16
|
150 * \fn euler::calc_state( StateOut &x , time_type t , const StateIn1 &old_state , time_type t_old , const StateIn2 ¤t_state , time_type t_new ) const
|
Chris@16
|
151 * \brief This method is used for continuous output and it calculates the state `x` at a time `t` from the
|
Chris@16
|
152 * knowledge of two states `old_state` and `current_state` at time points `t_old` and `t_new`.
|
Chris@16
|
153 */
|
Chris@16
|
154
|
Chris@16
|
155 /**
|
Chris@16
|
156 * \fn euler::adjust_size( const StateType &x )
|
Chris@16
|
157 * \brief Adjust the size of all temporaries in the stepper manually.
|
Chris@16
|
158 * \param x A state from which the size of the temporaries to be resized is deduced.
|
Chris@16
|
159 */
|
Chris@16
|
160
|
Chris@16
|
161 } // odeint
|
Chris@16
|
162 } // numeric
|
Chris@16
|
163 } // boost
|
Chris@16
|
164
|
Chris@16
|
165
|
Chris@16
|
166 #endif // BOOST_NUMERIC_ODEINT_STEPPER_EULER_HPP_INCLUDED
|