Chris@16
|
1 // Copyright 2011 John Maddock. Distributed under the Boost
|
Chris@16
|
2 // Distributed under the Boost Software License, Version 1.0.
|
Chris@16
|
3 // (See accompanying file LICENSE_1_0.txt or copy at
|
Chris@16
|
4 // http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5 //
|
Chris@16
|
6 // This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp
|
Chris@16
|
7 //
|
Chris@16
|
8
|
Chris@16
|
9 template <class T>
|
Chris@16
|
10 void calc_log2(T& num, unsigned digits)
|
Chris@16
|
11 {
|
Chris@16
|
12 typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
|
Chris@16
|
13 typedef typename mpl::front<typename T::signed_types>::type si_type;
|
Chris@16
|
14
|
Chris@16
|
15 //
|
Chris@16
|
16 // String value with 1100 digits:
|
Chris@16
|
17 //
|
Chris@16
|
18 static const char* string_val = "0."
|
Chris@16
|
19 "6931471805599453094172321214581765680755001343602552541206800094933936219696947156058633269964186875"
|
Chris@16
|
20 "4200148102057068573368552023575813055703267075163507596193072757082837143519030703862389167347112335"
|
Chris@16
|
21 "0115364497955239120475172681574932065155524734139525882950453007095326366642654104239157814952043740"
|
Chris@16
|
22 "4303855008019441706416715186447128399681717845469570262716310645461502572074024816377733896385506952"
|
Chris@16
|
23 "6066834113727387372292895649354702576265209885969320196505855476470330679365443254763274495125040606"
|
Chris@16
|
24 "9438147104689946506220167720424524529612687946546193165174681392672504103802546259656869144192871608"
|
Chris@16
|
25 "2938031727143677826548775664850856740776484514644399404614226031930967354025744460703080960850474866"
|
Chris@16
|
26 "3852313818167675143866747664789088143714198549423151997354880375165861275352916610007105355824987941"
|
Chris@16
|
27 "4729509293113897155998205654392871700072180857610252368892132449713893203784393530887748259701715591"
|
Chris@16
|
28 "0708823683627589842589185353024363421436706118923678919237231467232172053401649256872747782344535347"
|
Chris@16
|
29 "6481149418642386776774406069562657379600867076257199184734022651462837904883062033061144630073719489";
|
Chris@16
|
30 //
|
Chris@16
|
31 // Check if we can just construct from string:
|
Chris@16
|
32 //
|
Chris@16
|
33 if(digits < 3640) // 3640 binary digits ~ 1100 decimal digits
|
Chris@16
|
34 {
|
Chris@16
|
35 num = string_val;
|
Chris@16
|
36 return;
|
Chris@16
|
37 }
|
Chris@16
|
38 //
|
Chris@16
|
39 // We calculate log2 from using the formula:
|
Chris@16
|
40 //
|
Chris@16
|
41 // ln(2) = 3/4 SUM[n>=0] ((-1)^n * N!^2 / (2^n(2n+1)!))
|
Chris@16
|
42 //
|
Chris@16
|
43 // Numerator and denominator are calculated separately and then
|
Chris@16
|
44 // divided at the end, we also precalculate the terms up to n = 5
|
Chris@16
|
45 // since these fit in a 32-bit integer anyway.
|
Chris@16
|
46 //
|
Chris@16
|
47 // See Gourdon, X., and Sebah, P. The logarithmic constant: log 2, Jan. 2004.
|
Chris@16
|
48 // Also http://www.mpfr.org/algorithms.pdf.
|
Chris@16
|
49 //
|
Chris@16
|
50 num = static_cast<ui_type>(1180509120uL);
|
Chris@16
|
51 T denom, next_term, temp;
|
Chris@16
|
52 denom = static_cast<ui_type>(1277337600uL);
|
Chris@16
|
53 next_term = static_cast<ui_type>(120uL);
|
Chris@16
|
54 si_type sign = -1;
|
Chris@16
|
55
|
Chris@16
|
56 ui_type limit = digits / 3 + 1;
|
Chris@16
|
57
|
Chris@16
|
58 for(ui_type n = 6; n < limit; ++n)
|
Chris@16
|
59 {
|
Chris@16
|
60 temp = static_cast<ui_type>(2);
|
Chris@16
|
61 eval_multiply(temp, ui_type(2 * n));
|
Chris@16
|
62 eval_multiply(temp, ui_type(2 * n + 1));
|
Chris@16
|
63 eval_multiply(num, temp);
|
Chris@16
|
64 eval_multiply(denom, temp);
|
Chris@16
|
65 sign = -sign;
|
Chris@16
|
66 eval_multiply(next_term, n);
|
Chris@16
|
67 eval_multiply(temp, next_term, next_term);
|
Chris@16
|
68 if(sign < 0)
|
Chris@16
|
69 temp.negate();
|
Chris@16
|
70 eval_add(num, temp);
|
Chris@16
|
71 }
|
Chris@16
|
72 eval_multiply(denom, ui_type(4));
|
Chris@16
|
73 eval_multiply(num, ui_type(3));
|
Chris@16
|
74 INSTRUMENT_BACKEND(denom);
|
Chris@16
|
75 INSTRUMENT_BACKEND(num);
|
Chris@16
|
76 eval_divide(num, denom);
|
Chris@16
|
77 INSTRUMENT_BACKEND(num);
|
Chris@16
|
78 }
|
Chris@16
|
79
|
Chris@16
|
80 template <class T>
|
Chris@16
|
81 void calc_e(T& result, unsigned digits)
|
Chris@16
|
82 {
|
Chris@16
|
83 typedef typename mpl::front<typename T::unsigned_types>::type ui_type;
|
Chris@16
|
84 //
|
Chris@16
|
85 // 1100 digits in string form:
|
Chris@16
|
86 //
|
Chris@16
|
87 const char* string_val = "2."
|
Chris@16
|
88 "7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274"
|
Chris@16
|
89 "2746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901"
|
Chris@16
|
90 "1573834187930702154089149934884167509244761460668082264800168477411853742345442437107539077744992069"
|
Chris@16
|
91 "5517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416"
|
Chris@16
|
92 "9283681902551510865746377211125238978442505695369677078544996996794686445490598793163688923009879312"
|
Chris@16
|
93 "7736178215424999229576351482208269895193668033182528869398496465105820939239829488793320362509443117"
|
Chris@16
|
94 "3012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509"
|
Chris@16
|
95 "9618188159304169035159888851934580727386673858942287922849989208680582574927961048419844436346324496"
|
Chris@16
|
96 "8487560233624827041978623209002160990235304369941849146314093431738143640546253152096183690888707016"
|
Chris@16
|
97 "7683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354"
|
Chris@16
|
98 "0212340784981933432106817012100562788023519303322474501585390473041995777709350366041699732972508869";
|
Chris@16
|
99 //
|
Chris@16
|
100 // Check if we can just construct from string:
|
Chris@16
|
101 //
|
Chris@16
|
102 if(digits < 3640) // 3640 binary digits ~ 1100 decimal digits
|
Chris@16
|
103 {
|
Chris@16
|
104 result = string_val;
|
Chris@16
|
105 return;
|
Chris@16
|
106 }
|
Chris@16
|
107
|
Chris@16
|
108 T lim;
|
Chris@16
|
109 lim = ui_type(1);
|
Chris@16
|
110 eval_ldexp(lim, lim, digits);
|
Chris@16
|
111
|
Chris@16
|
112 //
|
Chris@16
|
113 // Standard evaluation from the definition of e: http://functions.wolfram.com/Constants/E/02/
|
Chris@16
|
114 //
|
Chris@16
|
115 result = ui_type(2);
|
Chris@16
|
116 T denom;
|
Chris@16
|
117 denom = ui_type(1);
|
Chris@16
|
118 ui_type i = 2;
|
Chris@16
|
119 do{
|
Chris@16
|
120 eval_multiply(denom, i);
|
Chris@16
|
121 eval_multiply(result, i);
|
Chris@16
|
122 eval_add(result, ui_type(1));
|
Chris@16
|
123 ++i;
|
Chris@16
|
124 }while(denom.compare(lim) <= 0);
|
Chris@16
|
125 eval_divide(result, denom);
|
Chris@16
|
126 }
|
Chris@16
|
127
|
Chris@16
|
128 template <class T>
|
Chris@16
|
129 void calc_pi(T& result, unsigned digits)
|
Chris@16
|
130 {
|
Chris@16
|
131 typedef typename mpl::front<typename T::unsigned_types>::type ui_type;
|
Chris@16
|
132 typedef typename mpl::front<typename T::float_types>::type real_type;
|
Chris@16
|
133 //
|
Chris@16
|
134 // 1100 digits in string form:
|
Chris@16
|
135 //
|
Chris@16
|
136 const char* string_val = "3."
|
Chris@16
|
137 "1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679"
|
Chris@16
|
138 "8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196"
|
Chris@16
|
139 "4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273"
|
Chris@16
|
140 "7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094"
|
Chris@16
|
141 "3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912"
|
Chris@16
|
142 "9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132"
|
Chris@16
|
143 "0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235"
|
Chris@16
|
144 "4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859"
|
Chris@16
|
145 "5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303"
|
Chris@16
|
146 "5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989"
|
Chris@16
|
147 "3809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913152";
|
Chris@16
|
148 //
|
Chris@16
|
149 // Check if we can just construct from string:
|
Chris@16
|
150 //
|
Chris@16
|
151 if(digits < 3640) // 3640 binary digits ~ 1100 decimal digits
|
Chris@16
|
152 {
|
Chris@16
|
153 result = string_val;
|
Chris@16
|
154 return;
|
Chris@16
|
155 }
|
Chris@16
|
156
|
Chris@16
|
157 T a;
|
Chris@16
|
158 a = ui_type(1);
|
Chris@16
|
159 T b;
|
Chris@16
|
160 T A(a);
|
Chris@16
|
161 T B;
|
Chris@16
|
162 B = real_type(0.5f);
|
Chris@16
|
163 T D;
|
Chris@16
|
164 D = real_type(0.25f);
|
Chris@16
|
165
|
Chris@16
|
166 T lim;
|
Chris@16
|
167 lim = ui_type(1);
|
Chris@16
|
168 eval_ldexp(lim, lim, -(int)digits);
|
Chris@16
|
169
|
Chris@16
|
170 //
|
Chris@16
|
171 // This algorithm is from:
|
Chris@16
|
172 // Schonhage, A., Grotefeld, A. F. W., and Vetter, E. Fast Algorithms: A Multitape Turing
|
Chris@16
|
173 // Machine Implementation. BI Wissenschaftverlag, 1994.
|
Chris@16
|
174 // Also described in MPFR's algorithm guide: http://www.mpfr.org/algorithms.pdf.
|
Chris@16
|
175 //
|
Chris@16
|
176 // Let:
|
Chris@16
|
177 // a[0] = A[0] = 1
|
Chris@16
|
178 // B[0] = 1/2
|
Chris@16
|
179 // D[0] = 1/4
|
Chris@16
|
180 // Then:
|
Chris@16
|
181 // S[k+1] = (A[k]+B[k]) / 4
|
Chris@16
|
182 // b[k] = sqrt(B[k])
|
Chris@16
|
183 // a[k+1] = a[k]^2
|
Chris@16
|
184 // B[k+1] = 2(A[k+1]-S[k+1])
|
Chris@16
|
185 // D[k+1] = D[k] - 2^k(A[k+1]-B[k+1])
|
Chris@16
|
186 // Stop when |A[k]-B[k]| <= 2^(k-p)
|
Chris@16
|
187 // and PI = B[k]/D[k]
|
Chris@16
|
188
|
Chris@16
|
189 unsigned k = 1;
|
Chris@16
|
190
|
Chris@16
|
191 do
|
Chris@16
|
192 {
|
Chris@16
|
193 eval_add(result, A, B);
|
Chris@16
|
194 eval_ldexp(result, result, -2);
|
Chris@16
|
195 eval_sqrt(b, B);
|
Chris@16
|
196 eval_add(a, b);
|
Chris@16
|
197 eval_ldexp(a, a, -1);
|
Chris@16
|
198 eval_multiply(A, a, a);
|
Chris@16
|
199 eval_subtract(B, A, result);
|
Chris@16
|
200 eval_ldexp(B, B, 1);
|
Chris@16
|
201 eval_subtract(result, A, B);
|
Chris@16
|
202 bool neg = eval_get_sign(result) < 0;
|
Chris@16
|
203 if(neg)
|
Chris@16
|
204 result.negate();
|
Chris@16
|
205 if(result.compare(lim) <= 0)
|
Chris@16
|
206 break;
|
Chris@16
|
207 if(neg)
|
Chris@16
|
208 result.negate();
|
Chris@16
|
209 eval_ldexp(result, result, k - 1);
|
Chris@16
|
210 eval_subtract(D, result);
|
Chris@16
|
211 ++k;
|
Chris@16
|
212 eval_ldexp(lim, lim, 1);
|
Chris@16
|
213 }
|
Chris@16
|
214 while(true);
|
Chris@16
|
215
|
Chris@16
|
216 eval_divide(result, B, D);
|
Chris@16
|
217 }
|
Chris@16
|
218
|
Chris@16
|
219 template <class T, const T& (*F)(void)>
|
Chris@16
|
220 struct constant_initializer
|
Chris@16
|
221 {
|
Chris@16
|
222 static void do_nothing()
|
Chris@16
|
223 {
|
Chris@16
|
224 init.do_nothing();
|
Chris@16
|
225 }
|
Chris@16
|
226 private:
|
Chris@16
|
227 struct initializer
|
Chris@16
|
228 {
|
Chris@16
|
229 initializer()
|
Chris@16
|
230 {
|
Chris@16
|
231 F();
|
Chris@16
|
232 }
|
Chris@16
|
233 void do_nothing()const{}
|
Chris@16
|
234 };
|
Chris@16
|
235 static const initializer init;
|
Chris@16
|
236 };
|
Chris@16
|
237
|
Chris@16
|
238 template <class T, const T& (*F)(void)>
|
Chris@16
|
239 typename constant_initializer<T, F>::initializer const constant_initializer<T, F>::init;
|
Chris@16
|
240
|
Chris@16
|
241 template <class T>
|
Chris@16
|
242 const T& get_constant_ln2()
|
Chris@16
|
243 {
|
Chris@16
|
244 static T result;
|
Chris@16
|
245 static bool b = false;
|
Chris@16
|
246 if(!b)
|
Chris@16
|
247 {
|
Chris@16
|
248 calc_log2(result, boost::multiprecision::detail::digits2<number<T, et_on> >::value);
|
Chris@16
|
249 b = true;
|
Chris@16
|
250 }
|
Chris@16
|
251
|
Chris@16
|
252 constant_initializer<T, &get_constant_ln2<T> >::do_nothing();
|
Chris@16
|
253
|
Chris@16
|
254 return result;
|
Chris@16
|
255 }
|
Chris@16
|
256
|
Chris@16
|
257 template <class T>
|
Chris@16
|
258 const T& get_constant_e()
|
Chris@16
|
259 {
|
Chris@16
|
260 static T result;
|
Chris@16
|
261 static bool b = false;
|
Chris@16
|
262 if(!b)
|
Chris@16
|
263 {
|
Chris@16
|
264 calc_e(result, boost::multiprecision::detail::digits2<number<T, et_on> >::value);
|
Chris@16
|
265 b = true;
|
Chris@16
|
266 }
|
Chris@16
|
267
|
Chris@16
|
268 constant_initializer<T, &get_constant_e<T> >::do_nothing();
|
Chris@16
|
269
|
Chris@16
|
270 return result;
|
Chris@16
|
271 }
|
Chris@16
|
272
|
Chris@16
|
273 template <class T>
|
Chris@16
|
274 const T& get_constant_pi()
|
Chris@16
|
275 {
|
Chris@16
|
276 static T result;
|
Chris@16
|
277 static bool b = false;
|
Chris@16
|
278 if(!b)
|
Chris@16
|
279 {
|
Chris@16
|
280 calc_pi(result, boost::multiprecision::detail::digits2<number<T, et_on> >::value);
|
Chris@16
|
281 b = true;
|
Chris@16
|
282 }
|
Chris@16
|
283
|
Chris@16
|
284 constant_initializer<T, &get_constant_pi<T> >::do_nothing();
|
Chris@16
|
285
|
Chris@16
|
286 return result;
|
Chris@16
|
287 }
|
Chris@16
|
288
|