annotate DEPENDENCIES/generic/include/boost/multiprecision/cpp_bin_float/transcendental.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents f46d142149f5
children
rev   line source
Chris@102 1 ///////////////////////////////////////////////////////////////
Chris@102 2 // Copyright 2013 John Maddock. Distributed under the Boost
Chris@102 3 // Software License, Version 1.0. (See accompanying file
Chris@102 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_
Chris@102 5
Chris@102 6 #ifndef BOOST_MULTIPRECISION_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP
Chris@102 7 #define BOOST_MULTIPRECISION_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP
Chris@102 8
Chris@102 9 namespace boost{ namespace multiprecision{ namespace backends{
Chris@102 10
Chris@102 11 template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
Chris@102 12 void eval_exp_taylor(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
Chris@102 13 {
Chris@102 14 static const int bits = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count;
Chris@102 15 //
Chris@102 16 // Taylor series for small argument, note returns exp(x) - 1:
Chris@102 17 //
Chris@102 18 res = limb_type(0);
Chris@102 19 cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> num(arg), denom, t;
Chris@102 20 denom = limb_type(1);
Chris@102 21 eval_add(res, num);
Chris@102 22
Chris@102 23 for(unsigned k = 2; ; ++k)
Chris@102 24 {
Chris@102 25 eval_multiply(denom, k);
Chris@102 26 eval_multiply(num, arg);
Chris@102 27 eval_divide(t, num, denom);
Chris@102 28 eval_add(res, t);
Chris@102 29 if(eval_is_zero(t) || (res.exponent() - bits > t.exponent()))
Chris@102 30 break;
Chris@102 31 }
Chris@102 32 }
Chris@102 33
Chris@102 34 template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
Chris@102 35 void eval_exp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> &arg)
Chris@102 36 {
Chris@102 37 //
Chris@102 38 // This is based on MPFR's method, let:
Chris@102 39 //
Chris@102 40 // n = floor(x / ln(2))
Chris@102 41 //
Chris@102 42 // Then:
Chris@102 43 //
Chris@102 44 // r = x - n ln(2) : 0 <= r < ln(2)
Chris@102 45 //
Chris@102 46 // We can reduce r further by dividing by 2^k, with k ~ sqrt(n),
Chris@102 47 // so if:
Chris@102 48 //
Chris@102 49 // e0 = exp(r / 2^k) - 1
Chris@102 50 //
Chris@102 51 // With e0 evaluated by taylor series for small arguments, then:
Chris@102 52 //
Chris@102 53 // exp(x) = 2^n (1 + e0)^2^k
Chris@102 54 //
Chris@102 55 // Note that to preserve precision we actually square (1 + e0) k times, calculating
Chris@102 56 // the result less one each time, i.e.
Chris@102 57 //
Chris@102 58 // (1 + e0)^2 - 1 = e0^2 + 2e0
Chris@102 59 //
Chris@102 60 // Then add the final 1 at the end, given that e0 is small, this effectively wipes
Chris@102 61 // out the error in the last step.
Chris@102 62 //
Chris@102 63 using default_ops::eval_multiply;
Chris@102 64 using default_ops::eval_subtract;
Chris@102 65 using default_ops::eval_add;
Chris@102 66 using default_ops::eval_convert_to;
Chris@102 67
Chris@102 68 int type = eval_fpclassify(arg);
Chris@102 69 bool isneg = eval_get_sign(arg) < 0;
Chris@102 70 if(type == (int)FP_NAN)
Chris@102 71 {
Chris@102 72 res = arg;
Chris@102 73 return;
Chris@102 74 }
Chris@102 75 else if(type == (int)FP_INFINITE)
Chris@102 76 {
Chris@102 77 res = arg;
Chris@102 78 if(isneg)
Chris@102 79 res = limb_type(0u);
Chris@102 80 else
Chris@102 81 res = arg;
Chris@102 82 return;
Chris@102 83 }
Chris@102 84 else if(type == (int)FP_ZERO)
Chris@102 85 {
Chris@102 86 res = limb_type(1);
Chris@102 87 return;
Chris@102 88 }
Chris@102 89 cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> t, n;
Chris@102 90 if(isneg)
Chris@102 91 {
Chris@102 92 t = arg;
Chris@102 93 t.negate();
Chris@102 94 eval_exp(res, t);
Chris@102 95 t.swap(res);
Chris@102 96 res = limb_type(1);
Chris@102 97 eval_divide(res, t);
Chris@102 98 return;
Chris@102 99 }
Chris@102 100
Chris@102 101 eval_divide(n, arg, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >());
Chris@102 102 eval_floor(n, n);
Chris@102 103 eval_multiply(t, n, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >());
Chris@102 104 eval_subtract(t, arg);
Chris@102 105 t.negate();
Chris@102 106 if(eval_get_sign(t) < 0)
Chris@102 107 {
Chris@102 108 // There are some very rare cases where arg/ln2 is an integer, and the subsequent multiply
Chris@102 109 // rounds up, in that situation t ends up negative at this point which breaks our invariants below:
Chris@102 110 t = limb_type(0);
Chris@102 111 }
Chris@102 112 BOOST_ASSERT(t.compare(default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >()) < 0);
Chris@102 113
Chris@102 114 Exponent k, nn;
Chris@102 115 eval_convert_to(&nn, n);
Chris@102 116 k = nn ? Exponent(1) << (msb(nn) / 2) : 0;
Chris@102 117 eval_ldexp(t, t, -k);
Chris@102 118
Chris@102 119 eval_exp_taylor(res, t);
Chris@102 120 //
Chris@102 121 // Square 1 + res k times:
Chris@102 122 //
Chris@102 123 for(int s = 0; s < k; ++s)
Chris@102 124 {
Chris@102 125 t.swap(res);
Chris@102 126 eval_multiply(res, t, t);
Chris@102 127 eval_ldexp(t, t, 1);
Chris@102 128 eval_add(res, t);
Chris@102 129 }
Chris@102 130 eval_add(res, limb_type(1));
Chris@102 131 eval_ldexp(res, res, nn);
Chris@102 132 }
Chris@102 133
Chris@102 134 }}} // namespaces
Chris@102 135
Chris@102 136 #endif
Chris@102 137