annotate DEPENDENCIES/generic/include/boost/math/tools/minima.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 // (C) Copyright John Maddock 2006.
Chris@16 2 // Use, modification and distribution are subject to the
Chris@16 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5
Chris@16 6
Chris@16 7 #ifndef BOOST_MATH_TOOLS_MINIMA_HPP
Chris@16 8 #define BOOST_MATH_TOOLS_MINIMA_HPP
Chris@16 9
Chris@16 10 #ifdef _MSC_VER
Chris@16 11 #pragma once
Chris@16 12 #endif
Chris@16 13
Chris@16 14 #include <utility>
Chris@16 15 #include <boost/config/no_tr1/cmath.hpp>
Chris@16 16 #include <boost/math/tools/precision.hpp>
Chris@16 17 #include <boost/math/policies/policy.hpp>
Chris@16 18 #include <boost/cstdint.hpp>
Chris@16 19
Chris@16 20 namespace boost{ namespace math{ namespace tools{
Chris@16 21
Chris@16 22 template <class F, class T>
Chris@16 23 std::pair<T, T> brent_find_minima(F f, T min, T max, int bits, boost::uintmax_t& max_iter)
Chris@16 24 {
Chris@16 25 BOOST_MATH_STD_USING
Chris@16 26 bits = (std::min)(policies::digits<T, policies::policy<> >() / 2, bits);
Chris@16 27 T tolerance = static_cast<T>(ldexp(1.0, 1-bits));
Chris@16 28 T x; // minima so far
Chris@16 29 T w; // second best point
Chris@16 30 T v; // previous value of w
Chris@16 31 T u; // most recent evaluation point
Chris@16 32 T delta; // The distance moved in the last step
Chris@16 33 T delta2; // The distance moved in the step before last
Chris@16 34 T fu, fv, fw, fx; // function evaluations at u, v, w, x
Chris@16 35 T mid; // midpoint of min and max
Chris@16 36 T fract1, fract2; // minimal relative movement in x
Chris@16 37
Chris@16 38 static const T golden = 0.3819660f; // golden ratio, don't need too much precision here!
Chris@16 39
Chris@16 40 x = w = v = max;
Chris@16 41 fw = fv = fx = f(x);
Chris@16 42 delta2 = delta = 0;
Chris@16 43
Chris@16 44 uintmax_t count = max_iter;
Chris@16 45
Chris@16 46 do{
Chris@16 47 // get midpoint
Chris@16 48 mid = (min + max) / 2;
Chris@16 49 // work out if we're done already:
Chris@16 50 fract1 = tolerance * fabs(x) + tolerance / 4;
Chris@16 51 fract2 = 2 * fract1;
Chris@16 52 if(fabs(x - mid) <= (fract2 - (max - min) / 2))
Chris@16 53 break;
Chris@16 54
Chris@16 55 if(fabs(delta2) > fract1)
Chris@16 56 {
Chris@16 57 // try and construct a parabolic fit:
Chris@16 58 T r = (x - w) * (fx - fv);
Chris@16 59 T q = (x - v) * (fx - fw);
Chris@16 60 T p = (x - v) * q - (x - w) * r;
Chris@16 61 q = 2 * (q - r);
Chris@16 62 if(q > 0)
Chris@16 63 p = -p;
Chris@16 64 q = fabs(q);
Chris@16 65 T td = delta2;
Chris@16 66 delta2 = delta;
Chris@16 67 // determine whether a parabolic step is acceptible or not:
Chris@16 68 if((fabs(p) >= fabs(q * td / 2)) || (p <= q * (min - x)) || (p >= q * (max - x)))
Chris@16 69 {
Chris@16 70 // nope, try golden section instead
Chris@16 71 delta2 = (x >= mid) ? min - x : max - x;
Chris@16 72 delta = golden * delta2;
Chris@16 73 }
Chris@16 74 else
Chris@16 75 {
Chris@16 76 // whew, parabolic fit:
Chris@16 77 delta = p / q;
Chris@16 78 u = x + delta;
Chris@16 79 if(((u - min) < fract2) || ((max- u) < fract2))
Chris@16 80 delta = (mid - x) < 0 ? (T)-fabs(fract1) : (T)fabs(fract1);
Chris@16 81 }
Chris@16 82 }
Chris@16 83 else
Chris@16 84 {
Chris@16 85 // golden section:
Chris@16 86 delta2 = (x >= mid) ? min - x : max - x;
Chris@16 87 delta = golden * delta2;
Chris@16 88 }
Chris@16 89 // update current position:
Chris@16 90 u = (fabs(delta) >= fract1) ? T(x + delta) : (delta > 0 ? T(x + fabs(fract1)) : T(x - fabs(fract1)));
Chris@16 91 fu = f(u);
Chris@16 92 if(fu <= fx)
Chris@16 93 {
Chris@16 94 // good new point is an improvement!
Chris@16 95 // update brackets:
Chris@16 96 if(u >= x)
Chris@16 97 min = x;
Chris@16 98 else
Chris@16 99 max = x;
Chris@16 100 // update control points:
Chris@16 101 v = w;
Chris@16 102 w = x;
Chris@16 103 x = u;
Chris@16 104 fv = fw;
Chris@16 105 fw = fx;
Chris@16 106 fx = fu;
Chris@16 107 }
Chris@16 108 else
Chris@16 109 {
Chris@16 110 // Oh dear, point u is worse than what we have already,
Chris@16 111 // even so it *must* be better than one of our endpoints:
Chris@16 112 if(u < x)
Chris@16 113 min = u;
Chris@16 114 else
Chris@16 115 max = u;
Chris@16 116 if((fu <= fw) || (w == x))
Chris@16 117 {
Chris@16 118 // however it is at least second best:
Chris@16 119 v = w;
Chris@16 120 w = u;
Chris@16 121 fv = fw;
Chris@16 122 fw = fu;
Chris@16 123 }
Chris@16 124 else if((fu <= fv) || (v == x) || (v == w))
Chris@16 125 {
Chris@16 126 // third best:
Chris@16 127 v = u;
Chris@16 128 fv = fu;
Chris@16 129 }
Chris@16 130 }
Chris@16 131
Chris@16 132 }while(--count);
Chris@16 133
Chris@16 134 max_iter -= count;
Chris@16 135
Chris@16 136 return std::make_pair(x, fx);
Chris@16 137 }
Chris@16 138
Chris@16 139 template <class F, class T>
Chris@16 140 inline std::pair<T, T> brent_find_minima(F f, T min, T max, int digits)
Chris@16 141 {
Chris@16 142 boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
Chris@16 143 return brent_find_minima(f, min, max, digits, m);
Chris@16 144 }
Chris@16 145
Chris@16 146 }}} // namespaces
Chris@16 147
Chris@16 148 #endif
Chris@16 149
Chris@16 150
Chris@16 151
Chris@16 152