annotate DEPENDENCIES/generic/include/boost/math/special_functions/log1p.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // (C) Copyright John Maddock 2005-2006.
Chris@16 2 // Use, modification and distribution are subject to the
Chris@16 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 5
Chris@16 6 #ifndef BOOST_MATH_LOG1P_INCLUDED
Chris@16 7 #define BOOST_MATH_LOG1P_INCLUDED
Chris@16 8
Chris@16 9 #ifdef _MSC_VER
Chris@16 10 #pragma once
Chris@16 11 #endif
Chris@16 12
Chris@16 13 #include <boost/config/no_tr1/cmath.hpp>
Chris@16 14 #include <math.h> // platform's ::log1p
Chris@16 15 #include <boost/limits.hpp>
Chris@16 16 #include <boost/math/tools/config.hpp>
Chris@16 17 #include <boost/math/tools/series.hpp>
Chris@16 18 #include <boost/math/tools/rational.hpp>
Chris@16 19 #include <boost/math/tools/big_constant.hpp>
Chris@16 20 #include <boost/math/policies/error_handling.hpp>
Chris@16 21 #include <boost/math/special_functions/math_fwd.hpp>
Chris@16 22
Chris@16 23 #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
Chris@16 24 # include <boost/static_assert.hpp>
Chris@16 25 #else
Chris@16 26 # include <boost/assert.hpp>
Chris@16 27 #endif
Chris@16 28
Chris@16 29 namespace boost{ namespace math{
Chris@16 30
Chris@16 31 namespace detail
Chris@16 32 {
Chris@16 33 // Functor log1p_series returns the next term in the Taylor series
Chris@16 34 // pow(-1, k-1)*pow(x, k) / k
Chris@16 35 // each time that operator() is invoked.
Chris@16 36 //
Chris@16 37 template <class T>
Chris@16 38 struct log1p_series
Chris@16 39 {
Chris@16 40 typedef T result_type;
Chris@16 41
Chris@16 42 log1p_series(T x)
Chris@16 43 : k(0), m_mult(-x), m_prod(-1){}
Chris@16 44
Chris@16 45 T operator()()
Chris@16 46 {
Chris@16 47 m_prod *= m_mult;
Chris@16 48 return m_prod / ++k;
Chris@16 49 }
Chris@16 50
Chris@16 51 int count()const
Chris@16 52 {
Chris@16 53 return k;
Chris@16 54 }
Chris@16 55
Chris@16 56 private:
Chris@16 57 int k;
Chris@16 58 const T m_mult;
Chris@16 59 T m_prod;
Chris@16 60 log1p_series(const log1p_series&);
Chris@16 61 log1p_series& operator=(const log1p_series&);
Chris@16 62 };
Chris@16 63
Chris@16 64 // Algorithm log1p is part of C99, but is not yet provided by many compilers.
Chris@16 65 //
Chris@16 66 // This version uses a Taylor series expansion for 0.5 > x > epsilon, which may
Chris@16 67 // require up to std::numeric_limits<T>::digits+1 terms to be calculated.
Chris@16 68 // It would be much more efficient to use the equivalence:
Chris@16 69 // log(1+x) == (log(1+x) * x) / ((1-x) - 1)
Chris@16 70 // Unfortunately many optimizing compilers make such a mess of this, that
Chris@16 71 // it performs no better than log(1+x): which is to say not very well at all.
Chris@16 72 //
Chris@16 73 template <class T, class Policy>
Chris@16 74 T log1p_imp(T const & x, const Policy& pol, const mpl::int_<0>&)
Chris@16 75 { // The function returns the natural logarithm of 1 + x.
Chris@16 76 typedef typename tools::promote_args<T>::type result_type;
Chris@16 77 BOOST_MATH_STD_USING
Chris@16 78
Chris@16 79 static const char* function = "boost::math::log1p<%1%>(%1%)";
Chris@16 80
Chris@16 81 if(x < -1)
Chris@16 82 return policies::raise_domain_error<T>(
Chris@16 83 function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 84 if(x == -1)
Chris@16 85 return -policies::raise_overflow_error<T>(
Chris@16 86 function, 0, pol);
Chris@16 87
Chris@16 88 result_type a = abs(result_type(x));
Chris@16 89 if(a > result_type(0.5f))
Chris@16 90 return log(1 + result_type(x));
Chris@16 91 // Note that without numeric_limits specialisation support,
Chris@16 92 // epsilon just returns zero, and our "optimisation" will always fail:
Chris@16 93 if(a < tools::epsilon<result_type>())
Chris@16 94 return x;
Chris@16 95 detail::log1p_series<result_type> s(x);
Chris@16 96 boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
Chris@16 97 #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245)
Chris@16 98 result_type result = tools::sum_series(s, policies::get_epsilon<result_type, Policy>(), max_iter);
Chris@16 99 #else
Chris@16 100 result_type zero = 0;
Chris@16 101 result_type result = tools::sum_series(s, policies::get_epsilon<result_type, Policy>(), max_iter, zero);
Chris@16 102 #endif
Chris@16 103 policies::check_series_iterations<T>(function, max_iter, pol);
Chris@16 104 return result;
Chris@16 105 }
Chris@16 106
Chris@16 107 template <class T, class Policy>
Chris@16 108 T log1p_imp(T const& x, const Policy& pol, const mpl::int_<53>&)
Chris@16 109 { // The function returns the natural logarithm of 1 + x.
Chris@16 110 BOOST_MATH_STD_USING
Chris@16 111
Chris@16 112 static const char* function = "boost::math::log1p<%1%>(%1%)";
Chris@16 113
Chris@16 114 if(x < -1)
Chris@16 115 return policies::raise_domain_error<T>(
Chris@16 116 function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 117 if(x == -1)
Chris@16 118 return -policies::raise_overflow_error<T>(
Chris@16 119 function, 0, pol);
Chris@16 120
Chris@16 121 T a = fabs(x);
Chris@16 122 if(a > 0.5f)
Chris@16 123 return log(1 + x);
Chris@16 124 // Note that without numeric_limits specialisation support,
Chris@16 125 // epsilon just returns zero, and our "optimisation" will always fail:
Chris@16 126 if(a < tools::epsilon<T>())
Chris@16 127 return x;
Chris@16 128
Chris@16 129 // Maximum Deviation Found: 1.846e-017
Chris@16 130 // Expected Error Term: 1.843e-017
Chris@16 131 // Maximum Relative Change in Control Points: 8.138e-004
Chris@16 132 // Max Error found at double precision = 3.250766e-016
Chris@16 133 static const T P[] = {
Chris@16 134 0.15141069795941984e-16L,
Chris@16 135 0.35495104378055055e-15L,
Chris@16 136 0.33333333333332835L,
Chris@16 137 0.99249063543365859L,
Chris@16 138 1.1143969784156509L,
Chris@16 139 0.58052937949269651L,
Chris@16 140 0.13703234928513215L,
Chris@16 141 0.011294864812099712L
Chris@16 142 };
Chris@16 143 static const T Q[] = {
Chris@16 144 1L,
Chris@16 145 3.7274719063011499L,
Chris@16 146 5.5387948649720334L,
Chris@16 147 4.159201143419005L,
Chris@16 148 1.6423855110312755L,
Chris@16 149 0.31706251443180914L,
Chris@16 150 0.022665554431410243L,
Chris@16 151 -0.29252538135177773e-5L
Chris@16 152 };
Chris@16 153
Chris@16 154 T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
Chris@16 155 result *= x;
Chris@16 156
Chris@16 157 return result;
Chris@16 158 }
Chris@16 159
Chris@16 160 template <class T, class Policy>
Chris@16 161 T log1p_imp(T const& x, const Policy& pol, const mpl::int_<64>&)
Chris@16 162 { // The function returns the natural logarithm of 1 + x.
Chris@16 163 BOOST_MATH_STD_USING
Chris@16 164
Chris@16 165 static const char* function = "boost::math::log1p<%1%>(%1%)";
Chris@16 166
Chris@16 167 if(x < -1)
Chris@16 168 return policies::raise_domain_error<T>(
Chris@16 169 function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 170 if(x == -1)
Chris@16 171 return -policies::raise_overflow_error<T>(
Chris@16 172 function, 0, pol);
Chris@16 173
Chris@16 174 T a = fabs(x);
Chris@16 175 if(a > 0.5f)
Chris@16 176 return log(1 + x);
Chris@16 177 // Note that without numeric_limits specialisation support,
Chris@16 178 // epsilon just returns zero, and our "optimisation" will always fail:
Chris@16 179 if(a < tools::epsilon<T>())
Chris@16 180 return x;
Chris@16 181
Chris@16 182 // Maximum Deviation Found: 8.089e-20
Chris@16 183 // Expected Error Term: 8.088e-20
Chris@16 184 // Maximum Relative Change in Control Points: 9.648e-05
Chris@16 185 // Max Error found at long double precision = 2.242324e-19
Chris@16 186 static const T P[] = {
Chris@16 187 BOOST_MATH_BIG_CONSTANT(T, 64, -0.807533446680736736712e-19),
Chris@16 188 BOOST_MATH_BIG_CONSTANT(T, 64, -0.490881544804798926426e-18),
Chris@16 189 BOOST_MATH_BIG_CONSTANT(T, 64, 0.333333333333333373941),
Chris@16 190 BOOST_MATH_BIG_CONSTANT(T, 64, 1.17141290782087994162),
Chris@16 191 BOOST_MATH_BIG_CONSTANT(T, 64, 1.62790522814926264694),
Chris@16 192 BOOST_MATH_BIG_CONSTANT(T, 64, 1.13156411870766876113),
Chris@16 193 BOOST_MATH_BIG_CONSTANT(T, 64, 0.408087379932853785336),
Chris@16 194 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0706537026422828914622),
Chris@16 195 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00441709903782239229447)
Chris@16 196 };
Chris@16 197 static const T Q[] = {
Chris@101 198 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
Chris@16 199 BOOST_MATH_BIG_CONSTANT(T, 64, 4.26423872346263928361),
Chris@16 200 BOOST_MATH_BIG_CONSTANT(T, 64, 7.48189472704477708962),
Chris@16 201 BOOST_MATH_BIG_CONSTANT(T, 64, 6.94757016732904280913),
Chris@16 202 BOOST_MATH_BIG_CONSTANT(T, 64, 3.6493508622280767304),
Chris@16 203 BOOST_MATH_BIG_CONSTANT(T, 64, 1.06884863623790638317),
Chris@16 204 BOOST_MATH_BIG_CONSTANT(T, 64, 0.158292216998514145947),
Chris@16 205 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00885295524069924328658),
Chris@16 206 BOOST_MATH_BIG_CONSTANT(T, 64, -0.560026216133415663808e-6)
Chris@16 207 };
Chris@16 208
Chris@16 209 T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
Chris@16 210 result *= x;
Chris@16 211
Chris@16 212 return result;
Chris@16 213 }
Chris@16 214
Chris@16 215 template <class T, class Policy>
Chris@16 216 T log1p_imp(T const& x, const Policy& pol, const mpl::int_<24>&)
Chris@16 217 { // The function returns the natural logarithm of 1 + x.
Chris@16 218 BOOST_MATH_STD_USING
Chris@16 219
Chris@16 220 static const char* function = "boost::math::log1p<%1%>(%1%)";
Chris@16 221
Chris@16 222 if(x < -1)
Chris@16 223 return policies::raise_domain_error<T>(
Chris@16 224 function, "log1p(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 225 if(x == -1)
Chris@16 226 return -policies::raise_overflow_error<T>(
Chris@16 227 function, 0, pol);
Chris@16 228
Chris@16 229 T a = fabs(x);
Chris@16 230 if(a > 0.5f)
Chris@16 231 return log(1 + x);
Chris@16 232 // Note that without numeric_limits specialisation support,
Chris@16 233 // epsilon just returns zero, and our "optimisation" will always fail:
Chris@16 234 if(a < tools::epsilon<T>())
Chris@16 235 return x;
Chris@16 236
Chris@16 237 // Maximum Deviation Found: 6.910e-08
Chris@16 238 // Expected Error Term: 6.910e-08
Chris@16 239 // Maximum Relative Change in Control Points: 2.509e-04
Chris@16 240 // Max Error found at double precision = 6.910422e-08
Chris@16 241 // Max Error found at float precision = 8.357242e-08
Chris@16 242 static const T P[] = {
Chris@16 243 -0.671192866803148236519e-7L,
Chris@16 244 0.119670999140731844725e-6L,
Chris@16 245 0.333339469182083148598L,
Chris@16 246 0.237827183019664122066L
Chris@16 247 };
Chris@16 248 static const T Q[] = {
Chris@16 249 1L,
Chris@16 250 1.46348272586988539733L,
Chris@16 251 0.497859871350117338894L,
Chris@16 252 -0.00471666268910169651936L
Chris@16 253 };
Chris@16 254
Chris@16 255 T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x);
Chris@16 256 result *= x;
Chris@16 257
Chris@16 258 return result;
Chris@16 259 }
Chris@16 260
Chris@16 261 template <class T, class Policy, class tag>
Chris@16 262 struct log1p_initializer
Chris@16 263 {
Chris@16 264 struct init
Chris@16 265 {
Chris@16 266 init()
Chris@16 267 {
Chris@16 268 do_init(tag());
Chris@16 269 }
Chris@16 270 template <int N>
Chris@16 271 static void do_init(const mpl::int_<N>&){}
Chris@16 272 static void do_init(const mpl::int_<64>&)
Chris@16 273 {
Chris@16 274 boost::math::log1p(static_cast<T>(0.25), Policy());
Chris@16 275 }
Chris@16 276 void force_instantiate()const{}
Chris@16 277 };
Chris@16 278 static const init initializer;
Chris@16 279 static void force_instantiate()
Chris@16 280 {
Chris@16 281 initializer.force_instantiate();
Chris@16 282 }
Chris@16 283 };
Chris@16 284
Chris@16 285 template <class T, class Policy, class tag>
Chris@16 286 const typename log1p_initializer<T, Policy, tag>::init log1p_initializer<T, Policy, tag>::initializer;
Chris@16 287
Chris@16 288
Chris@16 289 } // namespace detail
Chris@16 290
Chris@16 291 template <class T, class Policy>
Chris@16 292 inline typename tools::promote_args<T>::type log1p(T x, const Policy&)
Chris@16 293 {
Chris@16 294 typedef typename tools::promote_args<T>::type result_type;
Chris@16 295 typedef typename policies::evaluation<result_type, Policy>::type value_type;
Chris@16 296 typedef typename policies::precision<result_type, Policy>::type precision_type;
Chris@16 297 typedef typename policies::normalise<
Chris@16 298 Policy,
Chris@16 299 policies::promote_float<false>,
Chris@16 300 policies::promote_double<false>,
Chris@16 301 policies::discrete_quantile<>,
Chris@16 302 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 303
Chris@16 304 typedef typename mpl::if_<
Chris@16 305 mpl::less_equal<precision_type, mpl::int_<0> >,
Chris@16 306 mpl::int_<0>,
Chris@16 307 typename mpl::if_<
Chris@16 308 mpl::less_equal<precision_type, mpl::int_<53> >,
Chris@16 309 mpl::int_<53>, // double
Chris@16 310 typename mpl::if_<
Chris@16 311 mpl::less_equal<precision_type, mpl::int_<64> >,
Chris@16 312 mpl::int_<64>, // 80-bit long double
Chris@16 313 mpl::int_<0> // too many bits, use generic version.
Chris@16 314 >::type
Chris@16 315 >::type
Chris@16 316 >::type tag_type;
Chris@16 317
Chris@16 318 detail::log1p_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
Chris@16 319
Chris@16 320 return policies::checked_narrowing_cast<result_type, forwarding_policy>(
Chris@16 321 detail::log1p_imp(static_cast<value_type>(x), forwarding_policy(), tag_type()), "boost::math::log1p<%1%>(%1%)");
Chris@16 322 }
Chris@16 323
Chris@16 324 #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
Chris@16 325 // These overloads work around a type deduction bug:
Chris@16 326 inline float log1p(float z)
Chris@16 327 {
Chris@16 328 return log1p<float>(z);
Chris@16 329 }
Chris@16 330 inline double log1p(double z)
Chris@16 331 {
Chris@16 332 return log1p<double>(z);
Chris@16 333 }
Chris@16 334 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Chris@16 335 inline long double log1p(long double z)
Chris@16 336 {
Chris@16 337 return log1p<long double>(z);
Chris@16 338 }
Chris@16 339 #endif
Chris@16 340 #endif
Chris@16 341
Chris@16 342 #ifdef log1p
Chris@16 343 # ifndef BOOST_HAS_LOG1P
Chris@16 344 # define BOOST_HAS_LOG1P
Chris@16 345 # endif
Chris@16 346 # undef log1p
Chris@16 347 #endif
Chris@16 348
Chris@16 349 #if defined(BOOST_HAS_LOG1P) && !(defined(__osf__) && defined(__DECCXX_VER))
Chris@16 350 # ifdef BOOST_MATH_USE_C99
Chris@16 351 template <class Policy>
Chris@16 352 inline float log1p(float x, const Policy& pol)
Chris@16 353 {
Chris@16 354 if(x < -1)
Chris@16 355 return policies::raise_domain_error<float>(
Chris@16 356 "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 357 if(x == -1)
Chris@16 358 return -policies::raise_overflow_error<float>(
Chris@16 359 "log1p<%1%>(%1%)", 0, pol);
Chris@16 360 return ::log1pf(x);
Chris@16 361 }
Chris@16 362 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Chris@16 363 template <class Policy>
Chris@16 364 inline long double log1p(long double x, const Policy& pol)
Chris@16 365 {
Chris@16 366 if(x < -1)
Chris@16 367 return policies::raise_domain_error<long double>(
Chris@16 368 "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 369 if(x == -1)
Chris@16 370 return -policies::raise_overflow_error<long double>(
Chris@16 371 "log1p<%1%>(%1%)", 0, pol);
Chris@16 372 return ::log1pl(x);
Chris@16 373 }
Chris@16 374 #endif
Chris@16 375 #else
Chris@16 376 template <class Policy>
Chris@16 377 inline float log1p(float x, const Policy& pol)
Chris@16 378 {
Chris@16 379 if(x < -1)
Chris@16 380 return policies::raise_domain_error<float>(
Chris@16 381 "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 382 if(x == -1)
Chris@16 383 return -policies::raise_overflow_error<float>(
Chris@16 384 "log1p<%1%>(%1%)", 0, pol);
Chris@16 385 return ::log1p(x);
Chris@16 386 }
Chris@16 387 #endif
Chris@16 388 template <class Policy>
Chris@16 389 inline double log1p(double x, const Policy& pol)
Chris@16 390 {
Chris@16 391 if(x < -1)
Chris@16 392 return policies::raise_domain_error<double>(
Chris@16 393 "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 394 if(x == -1)
Chris@16 395 return -policies::raise_overflow_error<double>(
Chris@16 396 "log1p<%1%>(%1%)", 0, pol);
Chris@16 397 return ::log1p(x);
Chris@16 398 }
Chris@16 399 #elif defined(_MSC_VER) && (BOOST_MSVC >= 1400)
Chris@16 400 //
Chris@16 401 // You should only enable this branch if you are absolutely sure
Chris@16 402 // that your compilers optimizer won't mess this code up!!
Chris@16 403 // Currently tested with VC8 and Intel 9.1.
Chris@16 404 //
Chris@16 405 template <class Policy>
Chris@16 406 inline double log1p(double x, const Policy& pol)
Chris@16 407 {
Chris@16 408 if(x < -1)
Chris@16 409 return policies::raise_domain_error<double>(
Chris@16 410 "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 411 if(x == -1)
Chris@16 412 return -policies::raise_overflow_error<double>(
Chris@16 413 "log1p<%1%>(%1%)", 0, pol);
Chris@16 414 double u = 1+x;
Chris@16 415 if(u == 1.0)
Chris@16 416 return x;
Chris@16 417 else
Chris@16 418 return ::log(u)*(x/(u-1.0));
Chris@16 419 }
Chris@16 420 template <class Policy>
Chris@16 421 inline float log1p(float x, const Policy& pol)
Chris@16 422 {
Chris@16 423 return static_cast<float>(boost::math::log1p(static_cast<double>(x), pol));
Chris@16 424 }
Chris@16 425 #ifndef _WIN32_WCE
Chris@16 426 //
Chris@16 427 // For some reason this fails to compile under WinCE...
Chris@16 428 // Needs more investigation.
Chris@16 429 //
Chris@16 430 template <class Policy>
Chris@16 431 inline long double log1p(long double x, const Policy& pol)
Chris@16 432 {
Chris@16 433 if(x < -1)
Chris@16 434 return policies::raise_domain_error<long double>(
Chris@16 435 "log1p<%1%>(%1%)", "log1p(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 436 if(x == -1)
Chris@16 437 return -policies::raise_overflow_error<long double>(
Chris@16 438 "log1p<%1%>(%1%)", 0, pol);
Chris@16 439 long double u = 1+x;
Chris@16 440 if(u == 1.0)
Chris@16 441 return x;
Chris@16 442 else
Chris@16 443 return ::logl(u)*(x/(u-1.0));
Chris@16 444 }
Chris@16 445 #endif
Chris@16 446 #endif
Chris@16 447
Chris@16 448 template <class T>
Chris@16 449 inline typename tools::promote_args<T>::type log1p(T x)
Chris@16 450 {
Chris@16 451 return boost::math::log1p(x, policies::policy<>());
Chris@16 452 }
Chris@16 453 //
Chris@16 454 // Compute log(1+x)-x:
Chris@16 455 //
Chris@16 456 template <class T, class Policy>
Chris@16 457 inline typename tools::promote_args<T>::type
Chris@16 458 log1pmx(T x, const Policy& pol)
Chris@16 459 {
Chris@16 460 typedef typename tools::promote_args<T>::type result_type;
Chris@16 461 BOOST_MATH_STD_USING
Chris@16 462 static const char* function = "boost::math::log1pmx<%1%>(%1%)";
Chris@16 463
Chris@16 464 if(x < -1)
Chris@16 465 return policies::raise_domain_error<T>(
Chris@16 466 function, "log1pmx(x) requires x > -1, but got x = %1%.", x, pol);
Chris@16 467 if(x == -1)
Chris@16 468 return -policies::raise_overflow_error<T>(
Chris@16 469 function, 0, pol);
Chris@16 470
Chris@16 471 result_type a = abs(result_type(x));
Chris@16 472 if(a > result_type(0.95f))
Chris@16 473 return log(1 + result_type(x)) - result_type(x);
Chris@16 474 // Note that without numeric_limits specialisation support,
Chris@16 475 // epsilon just returns zero, and our "optimisation" will always fail:
Chris@16 476 if(a < tools::epsilon<result_type>())
Chris@16 477 return -x * x / 2;
Chris@16 478 boost::math::detail::log1p_series<T> s(x);
Chris@16 479 s();
Chris@16 480 boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
Chris@16 481 #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
Chris@16 482 T zero = 0;
Chris@16 483 T result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero);
Chris@16 484 #else
Chris@16 485 T result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter);
Chris@16 486 #endif
Chris@16 487 policies::check_series_iterations<T>(function, max_iter, pol);
Chris@16 488 return result;
Chris@16 489 }
Chris@16 490
Chris@16 491 template <class T>
Chris@16 492 inline typename tools::promote_args<T>::type log1pmx(T x)
Chris@16 493 {
Chris@16 494 return log1pmx(x, policies::policy<>());
Chris@16 495 }
Chris@16 496
Chris@16 497 } // namespace math
Chris@16 498 } // namespace boost
Chris@16 499
Chris@16 500 #endif // BOOST_MATH_LOG1P_INCLUDED
Chris@16 501
Chris@16 502
Chris@16 503