annotate DEPENDENCIES/generic/include/boost/math/special_functions/jacobi_zeta.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents f46d142149f5
children
rev   line source
Chris@102 1 // Copyright (c) 2015 John Maddock
Chris@102 2 // Use, modification and distribution are subject to the
Chris@102 3 // Boost Software License, Version 1.0. (See accompanying file
Chris@102 4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@102 5 //
Chris@102 6
Chris@102 7 #ifndef BOOST_MATH_ELLINT_JZ_HPP
Chris@102 8 #define BOOST_MATH_ELLINT_JZ_HPP
Chris@102 9
Chris@102 10 #ifdef _MSC_VER
Chris@102 11 #pragma once
Chris@102 12 #endif
Chris@102 13
Chris@102 14 #include <boost/math/special_functions/math_fwd.hpp>
Chris@102 15 #include <boost/math/special_functions/ellint_1.hpp>
Chris@102 16 #include <boost/math/special_functions/ellint_rj.hpp>
Chris@102 17 #include <boost/math/constants/constants.hpp>
Chris@102 18 #include <boost/math/policies/error_handling.hpp>
Chris@102 19 #include <boost/math/tools/workaround.hpp>
Chris@102 20
Chris@102 21 // Elliptic integral the Jacobi Zeta function.
Chris@102 22
Chris@102 23 namespace boost { namespace math {
Chris@102 24
Chris@102 25 namespace detail{
Chris@102 26
Chris@102 27 // Elliptic integral - Jacobi Zeta
Chris@102 28 template <typename T, typename Policy>
Chris@102 29 T jacobi_zeta_imp(T phi, T k, const Policy& pol)
Chris@102 30 {
Chris@102 31 BOOST_MATH_STD_USING
Chris@102 32 using namespace boost::math::tools;
Chris@102 33 using namespace boost::math::constants;
Chris@102 34
Chris@102 35 bool invert = false;
Chris@102 36 if(phi < 0)
Chris@102 37 {
Chris@102 38 phi = fabs(phi);
Chris@102 39 invert = true;
Chris@102 40 }
Chris@102 41
Chris@102 42 T result;
Chris@102 43 T sinp = sin(phi);
Chris@102 44 T cosp = cos(phi);
Chris@102 45 T s2 = sinp * sinp;
Chris@102 46 T k2 = k * k;
Chris@102 47 T kp = 1 - k2;
Chris@102 48 if(k == 1)
Chris@102 49 result = sinp * (boost::math::sign)(cosp); // We get here by simplifying JacobiZeta[w, 1] in Mathematica, and the fact that 0 <= phi.
Chris@102 50 else
Chris@102 51 result = k2 * sinp * cosp * sqrt(1 - k2 * s2) * ellint_rj_imp(T(0), kp, T(1), T(1 - k2 * s2), pol) / (3 * ellint_k_imp(k, pol));
Chris@102 52 return invert ? T(-result) : result;
Chris@102 53 }
Chris@102 54
Chris@102 55 } // detail
Chris@102 56
Chris@102 57 template <class T1, class T2, class Policy>
Chris@102 58 inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi, const Policy& pol)
Chris@102 59 {
Chris@102 60 typedef typename tools::promote_args<T1, T2>::type result_type;
Chris@102 61 typedef typename policies::evaluation<result_type, Policy>::type value_type;
Chris@102 62 return policies::checked_narrowing_cast<result_type, Policy>(detail::jacobi_zeta_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::jacobi_zeta<%1%>(%1%,%1%)");
Chris@102 63 }
Chris@102 64
Chris@102 65 template <class T1, class T2>
Chris@102 66 inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi)
Chris@102 67 {
Chris@102 68 return boost::math::jacobi_zeta(k, phi, policies::policy<>());
Chris@102 69 }
Chris@102 70
Chris@102 71 }} // namespaces
Chris@102 72
Chris@102 73 #endif // BOOST_MATH_ELLINT_D_HPP
Chris@102 74