Chris@16
|
1 // Copyright John Maddock 2007.
|
Chris@16
|
2 // Use, modification and distribution are subject to the
|
Chris@16
|
3 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5
|
Chris@16
|
6 #ifndef BOOST_MATH_EXPINT_HPP
|
Chris@16
|
7 #define BOOST_MATH_EXPINT_HPP
|
Chris@16
|
8
|
Chris@16
|
9 #ifdef _MSC_VER
|
Chris@16
|
10 #pragma once
|
Chris@16
|
11 #endif
|
Chris@16
|
12
|
Chris@16
|
13 #include <boost/math/tools/precision.hpp>
|
Chris@16
|
14 #include <boost/math/tools/promotion.hpp>
|
Chris@16
|
15 #include <boost/math/tools/fraction.hpp>
|
Chris@16
|
16 #include <boost/math/tools/series.hpp>
|
Chris@16
|
17 #include <boost/math/policies/error_handling.hpp>
|
Chris@101
|
18 #include <boost/math/special_functions/math_fwd.hpp>
|
Chris@16
|
19 #include <boost/math/special_functions/digamma.hpp>
|
Chris@16
|
20 #include <boost/math/special_functions/log1p.hpp>
|
Chris@16
|
21 #include <boost/math/special_functions/pow.hpp>
|
Chris@16
|
22
|
Chris@16
|
23 namespace boost{ namespace math{
|
Chris@16
|
24
|
Chris@16
|
25 template <class T, class Policy>
|
Chris@16
|
26 inline typename tools::promote_args<T>::type
|
Chris@16
|
27 expint(unsigned n, T z, const Policy& /*pol*/);
|
Chris@16
|
28
|
Chris@16
|
29 namespace detail{
|
Chris@16
|
30
|
Chris@16
|
31 template <class T>
|
Chris@16
|
32 inline T expint_1_rational(const T& z, const mpl::int_<0>&)
|
Chris@16
|
33 {
|
Chris@16
|
34 // this function is never actually called
|
Chris@16
|
35 BOOST_ASSERT(0);
|
Chris@16
|
36 return z;
|
Chris@16
|
37 }
|
Chris@16
|
38
|
Chris@16
|
39 template <class T>
|
Chris@16
|
40 T expint_1_rational(const T& z, const mpl::int_<53>&)
|
Chris@16
|
41 {
|
Chris@16
|
42 BOOST_MATH_STD_USING
|
Chris@16
|
43 T result;
|
Chris@16
|
44 if(z <= 1)
|
Chris@16
|
45 {
|
Chris@16
|
46 // Maximum Deviation Found: 2.006e-18
|
Chris@16
|
47 // Expected Error Term: 2.006e-18
|
Chris@16
|
48 // Max error found at double precision: 2.760e-17
|
Chris@16
|
49 static const T Y = 0.66373538970947265625F;
|
Chris@16
|
50 static const T P[6] = {
|
Chris@16
|
51 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0865197248079397976498),
|
Chris@16
|
52 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0320913665303559189999),
|
Chris@16
|
53 BOOST_MATH_BIG_CONSTANT(T, 53, -0.245088216639761496153),
|
Chris@16
|
54 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0368031736257943745142),
|
Chris@16
|
55 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00399167106081113256961),
|
Chris@16
|
56 BOOST_MATH_BIG_CONSTANT(T, 53, -0.000111507792921197858394)
|
Chris@16
|
57 };
|
Chris@16
|
58 static const T Q[6] = {
|
Chris@101
|
59 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
|
Chris@16
|
60 BOOST_MATH_BIG_CONSTANT(T, 53, 0.37091387659397013215),
|
Chris@16
|
61 BOOST_MATH_BIG_CONSTANT(T, 53, 0.056770677104207528384),
|
Chris@16
|
62 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00427347600017103698101),
|
Chris@16
|
63 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000131049900798434683324),
|
Chris@16
|
64 BOOST_MATH_BIG_CONSTANT(T, 53, -0.528611029520217142048e-6)
|
Chris@16
|
65 };
|
Chris@16
|
66 result = tools::evaluate_polynomial(P, z)
|
Chris@16
|
67 / tools::evaluate_polynomial(Q, z);
|
Chris@16
|
68 result += z - log(z) - Y;
|
Chris@16
|
69 }
|
Chris@16
|
70 else if(z < -boost::math::tools::log_min_value<T>())
|
Chris@16
|
71 {
|
Chris@16
|
72 // Maximum Deviation Found (interpolated): 1.444e-17
|
Chris@16
|
73 // Max error found at double precision: 3.119e-17
|
Chris@16
|
74 static const T P[11] = {
|
Chris@16
|
75 BOOST_MATH_BIG_CONSTANT(T, 53, -0.121013190657725568138e-18),
|
Chris@16
|
76 BOOST_MATH_BIG_CONSTANT(T, 53, -0.999999999999998811143),
|
Chris@16
|
77 BOOST_MATH_BIG_CONSTANT(T, 53, -43.3058660811817946037),
|
Chris@16
|
78 BOOST_MATH_BIG_CONSTANT(T, 53, -724.581482791462469795),
|
Chris@16
|
79 BOOST_MATH_BIG_CONSTANT(T, 53, -6046.8250112711035463),
|
Chris@16
|
80 BOOST_MATH_BIG_CONSTANT(T, 53, -27182.6254466733970467),
|
Chris@16
|
81 BOOST_MATH_BIG_CONSTANT(T, 53, -66598.2652345418633509),
|
Chris@16
|
82 BOOST_MATH_BIG_CONSTANT(T, 53, -86273.1567711649528784),
|
Chris@16
|
83 BOOST_MATH_BIG_CONSTANT(T, 53, -54844.4587226402067411),
|
Chris@16
|
84 BOOST_MATH_BIG_CONSTANT(T, 53, -14751.4895786128450662),
|
Chris@16
|
85 BOOST_MATH_BIG_CONSTANT(T, 53, -1185.45720315201027667)
|
Chris@16
|
86 };
|
Chris@16
|
87 static const T Q[12] = {
|
Chris@101
|
88 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
|
Chris@16
|
89 BOOST_MATH_BIG_CONSTANT(T, 53, 45.3058660811801465927),
|
Chris@16
|
90 BOOST_MATH_BIG_CONSTANT(T, 53, 809.193214954550328455),
|
Chris@16
|
91 BOOST_MATH_BIG_CONSTANT(T, 53, 7417.37624454689546708),
|
Chris@16
|
92 BOOST_MATH_BIG_CONSTANT(T, 53, 38129.5594484818471461),
|
Chris@16
|
93 BOOST_MATH_BIG_CONSTANT(T, 53, 113057.05869159631492),
|
Chris@16
|
94 BOOST_MATH_BIG_CONSTANT(T, 53, 192104.047790227984431),
|
Chris@16
|
95 BOOST_MATH_BIG_CONSTANT(T, 53, 180329.498380501819718),
|
Chris@16
|
96 BOOST_MATH_BIG_CONSTANT(T, 53, 86722.3403467334749201),
|
Chris@16
|
97 BOOST_MATH_BIG_CONSTANT(T, 53, 18455.4124737722049515),
|
Chris@16
|
98 BOOST_MATH_BIG_CONSTANT(T, 53, 1229.20784182403048905),
|
Chris@16
|
99 BOOST_MATH_BIG_CONSTANT(T, 53, -0.776491285282330997549)
|
Chris@16
|
100 };
|
Chris@16
|
101 T recip = 1 / z;
|
Chris@16
|
102 result = 1 + tools::evaluate_polynomial(P, recip)
|
Chris@16
|
103 / tools::evaluate_polynomial(Q, recip);
|
Chris@16
|
104 result *= exp(-z) * recip;
|
Chris@16
|
105 }
|
Chris@16
|
106 else
|
Chris@16
|
107 {
|
Chris@16
|
108 result = 0;
|
Chris@16
|
109 }
|
Chris@16
|
110 return result;
|
Chris@16
|
111 }
|
Chris@16
|
112
|
Chris@16
|
113 template <class T>
|
Chris@16
|
114 T expint_1_rational(const T& z, const mpl::int_<64>&)
|
Chris@16
|
115 {
|
Chris@16
|
116 BOOST_MATH_STD_USING
|
Chris@16
|
117 T result;
|
Chris@16
|
118 if(z <= 1)
|
Chris@16
|
119 {
|
Chris@16
|
120 // Maximum Deviation Found: 3.807e-20
|
Chris@16
|
121 // Expected Error Term: 3.807e-20
|
Chris@16
|
122 // Max error found at long double precision: 6.249e-20
|
Chris@16
|
123
|
Chris@16
|
124 static const T Y = 0.66373538970947265625F;
|
Chris@16
|
125 static const T P[6] = {
|
Chris@16
|
126 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0865197248079397956816),
|
Chris@16
|
127 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0275114007037026844633),
|
Chris@16
|
128 BOOST_MATH_BIG_CONSTANT(T, 64, -0.246594388074877139824),
|
Chris@16
|
129 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0237624819878732642231),
|
Chris@16
|
130 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00259113319641673986276),
|
Chris@16
|
131 BOOST_MATH_BIG_CONSTANT(T, 64, 0.30853660894346057053e-4)
|
Chris@16
|
132 };
|
Chris@16
|
133 static const T Q[7] = {
|
Chris@101
|
134 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
|
Chris@16
|
135 BOOST_MATH_BIG_CONSTANT(T, 64, 0.317978365797784100273),
|
Chris@16
|
136 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0393622602554758722511),
|
Chris@16
|
137 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00204062029115966323229),
|
Chris@16
|
138 BOOST_MATH_BIG_CONSTANT(T, 64, 0.732512107100088047854e-5),
|
Chris@16
|
139 BOOST_MATH_BIG_CONSTANT(T, 64, -0.202872781770207871975e-5),
|
Chris@16
|
140 BOOST_MATH_BIG_CONSTANT(T, 64, 0.52779248094603709945e-7)
|
Chris@16
|
141 };
|
Chris@16
|
142 result = tools::evaluate_polynomial(P, z)
|
Chris@16
|
143 / tools::evaluate_polynomial(Q, z);
|
Chris@16
|
144 result += z - log(z) - Y;
|
Chris@16
|
145 }
|
Chris@16
|
146 else if(z < -boost::math::tools::log_min_value<T>())
|
Chris@16
|
147 {
|
Chris@16
|
148 // Maximum Deviation Found (interpolated): 2.220e-20
|
Chris@16
|
149 // Max error found at long double precision: 1.346e-19
|
Chris@16
|
150 static const T P[14] = {
|
Chris@16
|
151 BOOST_MATH_BIG_CONSTANT(T, 64, -0.534401189080684443046e-23),
|
Chris@16
|
152 BOOST_MATH_BIG_CONSTANT(T, 64, -0.999999999999999999905),
|
Chris@16
|
153 BOOST_MATH_BIG_CONSTANT(T, 64, -62.1517806091379402505),
|
Chris@16
|
154 BOOST_MATH_BIG_CONSTANT(T, 64, -1568.45688271895145277),
|
Chris@16
|
155 BOOST_MATH_BIG_CONSTANT(T, 64, -21015.3431990874009619),
|
Chris@16
|
156 BOOST_MATH_BIG_CONSTANT(T, 64, -164333.011755931661949),
|
Chris@16
|
157 BOOST_MATH_BIG_CONSTANT(T, 64, -777917.270775426696103),
|
Chris@16
|
158 BOOST_MATH_BIG_CONSTANT(T, 64, -2244188.56195255112937),
|
Chris@16
|
159 BOOST_MATH_BIG_CONSTANT(T, 64, -3888702.98145335643429),
|
Chris@16
|
160 BOOST_MATH_BIG_CONSTANT(T, 64, -3909822.65621952648353),
|
Chris@16
|
161 BOOST_MATH_BIG_CONSTANT(T, 64, -2149033.9538897398457),
|
Chris@16
|
162 BOOST_MATH_BIG_CONSTANT(T, 64, -584705.537139793925189),
|
Chris@16
|
163 BOOST_MATH_BIG_CONSTANT(T, 64, -65815.2605361889477244),
|
Chris@16
|
164 BOOST_MATH_BIG_CONSTANT(T, 64, -2038.82870680427258038)
|
Chris@16
|
165 };
|
Chris@16
|
166 static const T Q[14] = {
|
Chris@101
|
167 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
|
Chris@16
|
168 BOOST_MATH_BIG_CONSTANT(T, 64, 64.1517806091379399478),
|
Chris@16
|
169 BOOST_MATH_BIG_CONSTANT(T, 64, 1690.76044393722763785),
|
Chris@16
|
170 BOOST_MATH_BIG_CONSTANT(T, 64, 24035.9534033068949426),
|
Chris@16
|
171 BOOST_MATH_BIG_CONSTANT(T, 64, 203679.998633572361706),
|
Chris@16
|
172 BOOST_MATH_BIG_CONSTANT(T, 64, 1074661.58459976978285),
|
Chris@16
|
173 BOOST_MATH_BIG_CONSTANT(T, 64, 3586552.65020899358773),
|
Chris@16
|
174 BOOST_MATH_BIG_CONSTANT(T, 64, 7552186.84989547621411),
|
Chris@16
|
175 BOOST_MATH_BIG_CONSTANT(T, 64, 9853333.79353054111434),
|
Chris@16
|
176 BOOST_MATH_BIG_CONSTANT(T, 64, 7689642.74550683631258),
|
Chris@16
|
177 BOOST_MATH_BIG_CONSTANT(T, 64, 3385553.35146759180739),
|
Chris@16
|
178 BOOST_MATH_BIG_CONSTANT(T, 64, 763218.072732396428725),
|
Chris@16
|
179 BOOST_MATH_BIG_CONSTANT(T, 64, 73930.2995984054930821),
|
Chris@16
|
180 BOOST_MATH_BIG_CONSTANT(T, 64, 2063.86994219629165937)
|
Chris@16
|
181 };
|
Chris@16
|
182 T recip = 1 / z;
|
Chris@16
|
183 result = 1 + tools::evaluate_polynomial(P, recip)
|
Chris@16
|
184 / tools::evaluate_polynomial(Q, recip);
|
Chris@16
|
185 result *= exp(-z) * recip;
|
Chris@16
|
186 }
|
Chris@16
|
187 else
|
Chris@16
|
188 {
|
Chris@16
|
189 result = 0;
|
Chris@16
|
190 }
|
Chris@16
|
191 return result;
|
Chris@16
|
192 }
|
Chris@16
|
193
|
Chris@16
|
194 template <class T>
|
Chris@16
|
195 T expint_1_rational(const T& z, const mpl::int_<113>&)
|
Chris@16
|
196 {
|
Chris@16
|
197 BOOST_MATH_STD_USING
|
Chris@16
|
198 T result;
|
Chris@16
|
199 if(z <= 1)
|
Chris@16
|
200 {
|
Chris@16
|
201 // Maximum Deviation Found: 2.477e-35
|
Chris@16
|
202 // Expected Error Term: 2.477e-35
|
Chris@16
|
203 // Max error found at long double precision: 6.810e-35
|
Chris@16
|
204
|
Chris@16
|
205 static const T Y = 0.66373538970947265625F;
|
Chris@16
|
206 static const T P[10] = {
|
Chris@16
|
207 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0865197248079397956434879099175975937),
|
Chris@16
|
208 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0369066175910795772830865304506087759),
|
Chris@16
|
209 BOOST_MATH_BIG_CONSTANT(T, 113, -0.24272036838415474665971599314725545),
|
Chris@16
|
210 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0502166331248948515282379137550178307),
|
Chris@16
|
211 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00768384138547489410285101483730424919),
|
Chris@16
|
212 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000612574337702109683505224915484717162),
|
Chris@16
|
213 BOOST_MATH_BIG_CONSTANT(T, 113, -0.380207107950635046971492617061708534e-4),
|
Chris@16
|
214 BOOST_MATH_BIG_CONSTANT(T, 113, -0.136528159460768830763009294683628406e-5),
|
Chris@16
|
215 BOOST_MATH_BIG_CONSTANT(T, 113, -0.346839106212658259681029388908658618e-7),
|
Chris@16
|
216 BOOST_MATH_BIG_CONSTANT(T, 113, -0.340500302777838063940402160594523429e-9)
|
Chris@16
|
217 };
|
Chris@16
|
218 static const T Q[10] = {
|
Chris@101
|
219 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
220 BOOST_MATH_BIG_CONSTANT(T, 113, 0.426568827778942588160423015589537302),
|
Chris@16
|
221 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0841384046470893490592450881447510148),
|
Chris@16
|
222 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0100557215850668029618957359471132995),
|
Chris@16
|
223 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000799334870474627021737357294799839363),
|
Chris@16
|
224 BOOST_MATH_BIG_CONSTANT(T, 113, 0.434452090903862735242423068552687688e-4),
|
Chris@16
|
225 BOOST_MATH_BIG_CONSTANT(T, 113, 0.15829674748799079874182885081231252e-5),
|
Chris@16
|
226 BOOST_MATH_BIG_CONSTANT(T, 113, 0.354406206738023762100882270033082198e-7),
|
Chris@16
|
227 BOOST_MATH_BIG_CONSTANT(T, 113, 0.369373328141051577845488477377890236e-9),
|
Chris@16
|
228 BOOST_MATH_BIG_CONSTANT(T, 113, -0.274149801370933606409282434677600112e-12)
|
Chris@16
|
229 };
|
Chris@16
|
230 result = tools::evaluate_polynomial(P, z)
|
Chris@16
|
231 / tools::evaluate_polynomial(Q, z);
|
Chris@16
|
232 result += z - log(z) - Y;
|
Chris@16
|
233 }
|
Chris@16
|
234 else if(z <= 4)
|
Chris@16
|
235 {
|
Chris@16
|
236 // Max error in interpolated form: 5.614e-35
|
Chris@16
|
237 // Max error found at long double precision: 7.979e-35
|
Chris@16
|
238
|
Chris@16
|
239 static const T Y = 0.70190334320068359375F;
|
Chris@16
|
240
|
Chris@16
|
241 static const T P[16] = {
|
Chris@16
|
242 BOOST_MATH_BIG_CONSTANT(T, 113, 0.298096656795020369955077350585959794),
|
Chris@16
|
243 BOOST_MATH_BIG_CONSTANT(T, 113, 12.9314045995266142913135497455971247),
|
Chris@16
|
244 BOOST_MATH_BIG_CONSTANT(T, 113, 226.144334921582637462526628217345501),
|
Chris@16
|
245 BOOST_MATH_BIG_CONSTANT(T, 113, 2070.83670924261732722117682067381405),
|
Chris@16
|
246 BOOST_MATH_BIG_CONSTANT(T, 113, 10715.1115684330959908244769731347186),
|
Chris@16
|
247 BOOST_MATH_BIG_CONSTANT(T, 113, 30728.7876355542048019664777316053311),
|
Chris@16
|
248 BOOST_MATH_BIG_CONSTANT(T, 113, 38520.6078609349855436936232610875297),
|
Chris@16
|
249 BOOST_MATH_BIG_CONSTANT(T, 113, -27606.0780981527583168728339620565165),
|
Chris@16
|
250 BOOST_MATH_BIG_CONSTANT(T, 113, -169026.485055785605958655247592604835),
|
Chris@16
|
251 BOOST_MATH_BIG_CONSTANT(T, 113, -254361.919204983608659069868035092282),
|
Chris@16
|
252 BOOST_MATH_BIG_CONSTANT(T, 113, -195765.706874132267953259272028679935),
|
Chris@16
|
253 BOOST_MATH_BIG_CONSTANT(T, 113, -83352.6826013533205474990119962408675),
|
Chris@16
|
254 BOOST_MATH_BIG_CONSTANT(T, 113, -19251.6828496869586415162597993050194),
|
Chris@16
|
255 BOOST_MATH_BIG_CONSTANT(T, 113, -2226.64251774578542836725386936102339),
|
Chris@16
|
256 BOOST_MATH_BIG_CONSTANT(T, 113, -109.009437301400845902228611986479816),
|
Chris@16
|
257 BOOST_MATH_BIG_CONSTANT(T, 113, -1.51492042209561411434644938098833499)
|
Chris@16
|
258 };
|
Chris@16
|
259 static const T Q[16] = {
|
Chris@101
|
260 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
261 BOOST_MATH_BIG_CONSTANT(T, 113, 46.734521442032505570517810766704587),
|
Chris@16
|
262 BOOST_MATH_BIG_CONSTANT(T, 113, 908.694714348462269000247450058595655),
|
Chris@16
|
263 BOOST_MATH_BIG_CONSTANT(T, 113, 9701.76053033673927362784882748513195),
|
Chris@16
|
264 BOOST_MATH_BIG_CONSTANT(T, 113, 63254.2815292641314236625196594947774),
|
Chris@16
|
265 BOOST_MATH_BIG_CONSTANT(T, 113, 265115.641285880437335106541757711092),
|
Chris@16
|
266 BOOST_MATH_BIG_CONSTANT(T, 113, 732707.841188071900498536533086567735),
|
Chris@16
|
267 BOOST_MATH_BIG_CONSTANT(T, 113, 1348514.02492635723327306628712057794),
|
Chris@16
|
268 BOOST_MATH_BIG_CONSTANT(T, 113, 1649986.81455283047769673308781585991),
|
Chris@16
|
269 BOOST_MATH_BIG_CONSTANT(T, 113, 1326000.828522976970116271208812099),
|
Chris@16
|
270 BOOST_MATH_BIG_CONSTANT(T, 113, 683643.09490612171772350481773951341),
|
Chris@16
|
271 BOOST_MATH_BIG_CONSTANT(T, 113, 217640.505137263607952365685653352229),
|
Chris@16
|
272 BOOST_MATH_BIG_CONSTANT(T, 113, 40288.3467237411710881822569476155485),
|
Chris@16
|
273 BOOST_MATH_BIG_CONSTANT(T, 113, 3932.89353979531632559232883283175754),
|
Chris@16
|
274 BOOST_MATH_BIG_CONSTANT(T, 113, 169.845369689596739824177412096477219),
|
Chris@16
|
275 BOOST_MATH_BIG_CONSTANT(T, 113, 2.17607292280092201170768401876895354)
|
Chris@16
|
276 };
|
Chris@16
|
277 T recip = 1 / z;
|
Chris@16
|
278 result = Y + tools::evaluate_polynomial(P, recip)
|
Chris@16
|
279 / tools::evaluate_polynomial(Q, recip);
|
Chris@16
|
280 result *= exp(-z) * recip;
|
Chris@16
|
281 }
|
Chris@16
|
282 else if(z < -boost::math::tools::log_min_value<T>())
|
Chris@16
|
283 {
|
Chris@16
|
284 // Max error in interpolated form: 4.413e-35
|
Chris@16
|
285 // Max error found at long double precision: 8.928e-35
|
Chris@16
|
286
|
Chris@16
|
287 static const T P[19] = {
|
Chris@16
|
288 BOOST_MATH_BIG_CONSTANT(T, 113, -0.559148411832951463689610809550083986e-40),
|
Chris@16
|
289 BOOST_MATH_BIG_CONSTANT(T, 113, -0.999999999999999999999999999999999997),
|
Chris@16
|
290 BOOST_MATH_BIG_CONSTANT(T, 113, -166.542326331163836642960118190147367),
|
Chris@16
|
291 BOOST_MATH_BIG_CONSTANT(T, 113, -12204.639128796330005065904675153652),
|
Chris@16
|
292 BOOST_MATH_BIG_CONSTANT(T, 113, -520807.069767086071806275022036146855),
|
Chris@16
|
293 BOOST_MATH_BIG_CONSTANT(T, 113, -14435981.5242137970691490903863125326),
|
Chris@16
|
294 BOOST_MATH_BIG_CONSTANT(T, 113, -274574945.737064301247496460758654196),
|
Chris@16
|
295 BOOST_MATH_BIG_CONSTANT(T, 113, -3691611582.99810039356254671781473079),
|
Chris@16
|
296 BOOST_MATH_BIG_CONSTANT(T, 113, -35622515944.8255047299363690814678763),
|
Chris@16
|
297 BOOST_MATH_BIG_CONSTANT(T, 113, -248040014774.502043161750715548451142),
|
Chris@16
|
298 BOOST_MATH_BIG_CONSTANT(T, 113, -1243190389769.53458416330946622607913),
|
Chris@16
|
299 BOOST_MATH_BIG_CONSTANT(T, 113, -4441730126135.54739052731990368425339),
|
Chris@16
|
300 BOOST_MATH_BIG_CONSTANT(T, 113, -11117043181899.7388524310281751971366),
|
Chris@16
|
301 BOOST_MATH_BIG_CONSTANT(T, 113, -18976497615396.9717776601813519498961),
|
Chris@16
|
302 BOOST_MATH_BIG_CONSTANT(T, 113, -21237496819711.1011661104761906067131),
|
Chris@16
|
303 BOOST_MATH_BIG_CONSTANT(T, 113, -14695899122092.5161620333466757812848),
|
Chris@16
|
304 BOOST_MATH_BIG_CONSTANT(T, 113, -5737221535080.30569711574295785864903),
|
Chris@16
|
305 BOOST_MATH_BIG_CONSTANT(T, 113, -1077042281708.42654526404581272546244),
|
Chris@16
|
306 BOOST_MATH_BIG_CONSTANT(T, 113, -68028222642.1941480871395695677675137)
|
Chris@16
|
307 };
|
Chris@16
|
308 static const T Q[20] = {
|
Chris@101
|
309 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
310 BOOST_MATH_BIG_CONSTANT(T, 113, 168.542326331163836642960118190147311),
|
Chris@16
|
311 BOOST_MATH_BIG_CONSTANT(T, 113, 12535.7237814586576783518249115343619),
|
Chris@16
|
312 BOOST_MATH_BIG_CONSTANT(T, 113, 544891.263372016404143120911148640627),
|
Chris@16
|
313 BOOST_MATH_BIG_CONSTANT(T, 113, 15454474.7241010258634446523045237762),
|
Chris@16
|
314 BOOST_MATH_BIG_CONSTANT(T, 113, 302495899.896629522673410325891717381),
|
Chris@16
|
315 BOOST_MATH_BIG_CONSTANT(T, 113, 4215565948.38886507646911672693270307),
|
Chris@16
|
316 BOOST_MATH_BIG_CONSTANT(T, 113, 42552409471.7951815668506556705733344),
|
Chris@16
|
317 BOOST_MATH_BIG_CONSTANT(T, 113, 313592377066.753173979584098301610186),
|
Chris@16
|
318 BOOST_MATH_BIG_CONSTANT(T, 113, 1688763640223.4541980740597514904542),
|
Chris@16
|
319 BOOST_MATH_BIG_CONSTANT(T, 113, 6610992294901.59589748057620192145704),
|
Chris@16
|
320 BOOST_MATH_BIG_CONSTANT(T, 113, 18601637235659.6059890851321772682606),
|
Chris@16
|
321 BOOST_MATH_BIG_CONSTANT(T, 113, 36944278231087.2571020964163402941583),
|
Chris@16
|
322 BOOST_MATH_BIG_CONSTANT(T, 113, 50425858518481.7497071917028793820058),
|
Chris@16
|
323 BOOST_MATH_BIG_CONSTANT(T, 113, 45508060902865.0899967797848815980644),
|
Chris@16
|
324 BOOST_MATH_BIG_CONSTANT(T, 113, 25649955002765.3817331501988304758142),
|
Chris@16
|
325 BOOST_MATH_BIG_CONSTANT(T, 113, 8259575619094.6518520988612711292331),
|
Chris@16
|
326 BOOST_MATH_BIG_CONSTANT(T, 113, 1299981487496.12607474362723586264515),
|
Chris@16
|
327 BOOST_MATH_BIG_CONSTANT(T, 113, 70242279152.8241187845178443118302693),
|
Chris@16
|
328 BOOST_MATH_BIG_CONSTANT(T, 113, -37633302.9409263839042721539363416685)
|
Chris@16
|
329 };
|
Chris@16
|
330 T recip = 1 / z;
|
Chris@16
|
331 result = 1 + tools::evaluate_polynomial(P, recip)
|
Chris@16
|
332 / tools::evaluate_polynomial(Q, recip);
|
Chris@16
|
333 result *= exp(-z) * recip;
|
Chris@16
|
334 }
|
Chris@16
|
335 else
|
Chris@16
|
336 {
|
Chris@16
|
337 result = 0;
|
Chris@16
|
338 }
|
Chris@16
|
339 return result;
|
Chris@16
|
340 }
|
Chris@16
|
341
|
Chris@16
|
342 template <class T>
|
Chris@16
|
343 struct expint_fraction
|
Chris@16
|
344 {
|
Chris@16
|
345 typedef std::pair<T,T> result_type;
|
Chris@16
|
346 expint_fraction(unsigned n_, T z_) : b(n_ + z_), i(-1), n(n_){}
|
Chris@16
|
347 std::pair<T,T> operator()()
|
Chris@16
|
348 {
|
Chris@16
|
349 std::pair<T,T> result = std::make_pair(-static_cast<T>((i+1) * (n+i)), b);
|
Chris@16
|
350 b += 2;
|
Chris@16
|
351 ++i;
|
Chris@16
|
352 return result;
|
Chris@16
|
353 }
|
Chris@16
|
354 private:
|
Chris@16
|
355 T b;
|
Chris@16
|
356 int i;
|
Chris@16
|
357 unsigned n;
|
Chris@16
|
358 };
|
Chris@16
|
359
|
Chris@16
|
360 template <class T, class Policy>
|
Chris@16
|
361 inline T expint_as_fraction(unsigned n, T z, const Policy& pol)
|
Chris@16
|
362 {
|
Chris@16
|
363 BOOST_MATH_STD_USING
|
Chris@16
|
364 BOOST_MATH_INSTRUMENT_VARIABLE(z)
|
Chris@16
|
365 boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
|
Chris@16
|
366 expint_fraction<T> f(n, z);
|
Chris@16
|
367 T result = tools::continued_fraction_b(
|
Chris@16
|
368 f,
|
Chris@16
|
369 boost::math::policies::get_epsilon<T, Policy>(),
|
Chris@16
|
370 max_iter);
|
Chris@16
|
371 policies::check_series_iterations<T>("boost::math::expint_continued_fraction<%1%>(unsigned,%1%)", max_iter, pol);
|
Chris@16
|
372 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
373 BOOST_MATH_INSTRUMENT_VARIABLE(max_iter)
|
Chris@16
|
374 result = exp(-z) / result;
|
Chris@16
|
375 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
376 return result;
|
Chris@16
|
377 }
|
Chris@16
|
378
|
Chris@16
|
379 template <class T>
|
Chris@16
|
380 struct expint_series
|
Chris@16
|
381 {
|
Chris@16
|
382 typedef T result_type;
|
Chris@16
|
383 expint_series(unsigned k_, T z_, T x_k_, T denom_, T fact_)
|
Chris@16
|
384 : k(k_), z(z_), x_k(x_k_), denom(denom_), fact(fact_){}
|
Chris@16
|
385 T operator()()
|
Chris@16
|
386 {
|
Chris@16
|
387 x_k *= -z;
|
Chris@16
|
388 denom += 1;
|
Chris@16
|
389 fact *= ++k;
|
Chris@16
|
390 return x_k / (denom * fact);
|
Chris@16
|
391 }
|
Chris@16
|
392 private:
|
Chris@16
|
393 unsigned k;
|
Chris@16
|
394 T z;
|
Chris@16
|
395 T x_k;
|
Chris@16
|
396 T denom;
|
Chris@16
|
397 T fact;
|
Chris@16
|
398 };
|
Chris@16
|
399
|
Chris@16
|
400 template <class T, class Policy>
|
Chris@16
|
401 inline T expint_as_series(unsigned n, T z, const Policy& pol)
|
Chris@16
|
402 {
|
Chris@16
|
403 BOOST_MATH_STD_USING
|
Chris@16
|
404 boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
|
Chris@16
|
405
|
Chris@16
|
406 BOOST_MATH_INSTRUMENT_VARIABLE(z)
|
Chris@16
|
407
|
Chris@16
|
408 T result = 0;
|
Chris@16
|
409 T x_k = -1;
|
Chris@16
|
410 T denom = T(1) - n;
|
Chris@16
|
411 T fact = 1;
|
Chris@16
|
412 unsigned k = 0;
|
Chris@16
|
413 for(; k < n - 1;)
|
Chris@16
|
414 {
|
Chris@16
|
415 result += x_k / (denom * fact);
|
Chris@16
|
416 denom += 1;
|
Chris@16
|
417 x_k *= -z;
|
Chris@16
|
418 fact *= ++k;
|
Chris@16
|
419 }
|
Chris@16
|
420 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
421 result += pow(-z, static_cast<T>(n - 1))
|
Chris@16
|
422 * (boost::math::digamma(static_cast<T>(n)) - log(z)) / fact;
|
Chris@16
|
423 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
424
|
Chris@16
|
425 expint_series<T> s(k, z, x_k, denom, fact);
|
Chris@16
|
426 result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, result);
|
Chris@16
|
427 policies::check_series_iterations<T>("boost::math::expint_series<%1%>(unsigned,%1%)", max_iter, pol);
|
Chris@16
|
428 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
429 BOOST_MATH_INSTRUMENT_VARIABLE(max_iter)
|
Chris@16
|
430 return result;
|
Chris@16
|
431 }
|
Chris@16
|
432
|
Chris@16
|
433 template <class T, class Policy, class Tag>
|
Chris@16
|
434 T expint_imp(unsigned n, T z, const Policy& pol, const Tag& tag)
|
Chris@16
|
435 {
|
Chris@16
|
436 BOOST_MATH_STD_USING
|
Chris@16
|
437 static const char* function = "boost::math::expint<%1%>(unsigned, %1%)";
|
Chris@16
|
438 if(z < 0)
|
Chris@16
|
439 return policies::raise_domain_error<T>(function, "Function requires z >= 0 but got %1%.", z, pol);
|
Chris@16
|
440 if(z == 0)
|
Chris@16
|
441 return n == 1 ? policies::raise_overflow_error<T>(function, 0, pol) : T(1 / (static_cast<T>(n - 1)));
|
Chris@16
|
442
|
Chris@16
|
443 T result;
|
Chris@16
|
444
|
Chris@16
|
445 bool f;
|
Chris@16
|
446 if(n < 3)
|
Chris@16
|
447 {
|
Chris@16
|
448 f = z < 0.5;
|
Chris@16
|
449 }
|
Chris@16
|
450 else
|
Chris@16
|
451 {
|
Chris@16
|
452 f = z < (static_cast<T>(n - 2) / static_cast<T>(n - 1));
|
Chris@16
|
453 }
|
Chris@16
|
454 #ifdef BOOST_MSVC
|
Chris@16
|
455 # pragma warning(push)
|
Chris@16
|
456 # pragma warning(disable:4127) // conditional expression is constant
|
Chris@16
|
457 #endif
|
Chris@16
|
458 if(n == 0)
|
Chris@16
|
459 result = exp(-z) / z;
|
Chris@16
|
460 else if((n == 1) && (Tag::value))
|
Chris@16
|
461 {
|
Chris@16
|
462 result = expint_1_rational(z, tag);
|
Chris@16
|
463 }
|
Chris@16
|
464 else if(f)
|
Chris@16
|
465 result = expint_as_series(n, z, pol);
|
Chris@16
|
466 else
|
Chris@16
|
467 result = expint_as_fraction(n, z, pol);
|
Chris@16
|
468 #ifdef BOOST_MSVC
|
Chris@16
|
469 # pragma warning(pop)
|
Chris@16
|
470 #endif
|
Chris@16
|
471
|
Chris@16
|
472 return result;
|
Chris@16
|
473 }
|
Chris@16
|
474
|
Chris@16
|
475 template <class T>
|
Chris@16
|
476 struct expint_i_series
|
Chris@16
|
477 {
|
Chris@16
|
478 typedef T result_type;
|
Chris@16
|
479 expint_i_series(T z_) : k(0), z_k(1), z(z_){}
|
Chris@16
|
480 T operator()()
|
Chris@16
|
481 {
|
Chris@16
|
482 z_k *= z / ++k;
|
Chris@16
|
483 return z_k / k;
|
Chris@16
|
484 }
|
Chris@16
|
485 private:
|
Chris@16
|
486 unsigned k;
|
Chris@16
|
487 T z_k;
|
Chris@16
|
488 T z;
|
Chris@16
|
489 };
|
Chris@16
|
490
|
Chris@16
|
491 template <class T, class Policy>
|
Chris@16
|
492 T expint_i_as_series(T z, const Policy& pol)
|
Chris@16
|
493 {
|
Chris@16
|
494 BOOST_MATH_STD_USING
|
Chris@16
|
495 T result = log(z); // (log(z) - log(1 / z)) / 2;
|
Chris@16
|
496 result += constants::euler<T>();
|
Chris@16
|
497 expint_i_series<T> s(z);
|
Chris@16
|
498 boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
|
Chris@16
|
499 result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, result);
|
Chris@16
|
500 policies::check_series_iterations<T>("boost::math::expint_i_series<%1%>(%1%)", max_iter, pol);
|
Chris@16
|
501 return result;
|
Chris@16
|
502 }
|
Chris@16
|
503
|
Chris@16
|
504 template <class T, class Policy, class Tag>
|
Chris@16
|
505 T expint_i_imp(T z, const Policy& pol, const Tag& tag)
|
Chris@16
|
506 {
|
Chris@16
|
507 static const char* function = "boost::math::expint<%1%>(%1%)";
|
Chris@16
|
508 if(z < 0)
|
Chris@16
|
509 return -expint_imp(1, T(-z), pol, tag);
|
Chris@16
|
510 if(z == 0)
|
Chris@16
|
511 return -policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
512 return expint_i_as_series(z, pol);
|
Chris@16
|
513 }
|
Chris@16
|
514
|
Chris@16
|
515 template <class T, class Policy>
|
Chris@16
|
516 T expint_i_imp(T z, const Policy& pol, const mpl::int_<53>& tag)
|
Chris@16
|
517 {
|
Chris@16
|
518 BOOST_MATH_STD_USING
|
Chris@16
|
519 static const char* function = "boost::math::expint<%1%>(%1%)";
|
Chris@16
|
520 if(z < 0)
|
Chris@16
|
521 return -expint_imp(1, T(-z), pol, tag);
|
Chris@16
|
522 if(z == 0)
|
Chris@16
|
523 return -policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
524
|
Chris@16
|
525 T result;
|
Chris@16
|
526
|
Chris@16
|
527 if(z <= 6)
|
Chris@16
|
528 {
|
Chris@16
|
529 // Maximum Deviation Found: 2.852e-18
|
Chris@16
|
530 // Expected Error Term: 2.852e-18
|
Chris@16
|
531 // Max Error found at double precision = Poly: 2.636335e-16 Cheb: 4.187027e-16
|
Chris@16
|
532 static const T P[10] = {
|
Chris@16
|
533 BOOST_MATH_BIG_CONSTANT(T, 53, 2.98677224343598593013),
|
Chris@16
|
534 BOOST_MATH_BIG_CONSTANT(T, 53, 0.356343618769377415068),
|
Chris@16
|
535 BOOST_MATH_BIG_CONSTANT(T, 53, 0.780836076283730801839),
|
Chris@16
|
536 BOOST_MATH_BIG_CONSTANT(T, 53, 0.114670926327032002811),
|
Chris@16
|
537 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0499434773576515260534),
|
Chris@16
|
538 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00726224593341228159561),
|
Chris@16
|
539 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00115478237227804306827),
|
Chris@16
|
540 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000116419523609765200999),
|
Chris@16
|
541 BOOST_MATH_BIG_CONSTANT(T, 53, 0.798296365679269702435e-5),
|
Chris@16
|
542 BOOST_MATH_BIG_CONSTANT(T, 53, 0.2777056254402008721e-6)
|
Chris@16
|
543 };
|
Chris@16
|
544 static const T Q[8] = {
|
Chris@101
|
545 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
|
Chris@16
|
546 BOOST_MATH_BIG_CONSTANT(T, 53, -1.17090412365413911947),
|
Chris@16
|
547 BOOST_MATH_BIG_CONSTANT(T, 53, 0.62215109846016746276),
|
Chris@16
|
548 BOOST_MATH_BIG_CONSTANT(T, 53, -0.195114782069495403315),
|
Chris@16
|
549 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0391523431392967238166),
|
Chris@16
|
550 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00504800158663705747345),
|
Chris@16
|
551 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000389034007436065401822),
|
Chris@16
|
552 BOOST_MATH_BIG_CONSTANT(T, 53, -0.138972589601781706598e-4)
|
Chris@16
|
553 };
|
Chris@16
|
554
|
Chris@16
|
555 static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 53, 1677624236387711.0);
|
Chris@16
|
556 static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 53, 4503599627370496.0);
|
Chris@16
|
557 static const T r1 = static_cast<T>(c1 / c2);
|
Chris@16
|
558 static const T r2 = BOOST_MATH_BIG_CONSTANT(T, 53, 0.131401834143860282009280387409357165515556574352422001206362e-16);
|
Chris@16
|
559 static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 53, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
|
Chris@16
|
560 T t = (z / 3) - 1;
|
Chris@16
|
561 result = tools::evaluate_polynomial(P, t)
|
Chris@16
|
562 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
563 t = (z - r1) - r2;
|
Chris@16
|
564 result *= t;
|
Chris@16
|
565 if(fabs(t) < 0.1)
|
Chris@16
|
566 {
|
Chris@101
|
567 result += boost::math::log1p(t / r, pol);
|
Chris@16
|
568 }
|
Chris@16
|
569 else
|
Chris@16
|
570 {
|
Chris@16
|
571 result += log(z / r);
|
Chris@16
|
572 }
|
Chris@16
|
573 }
|
Chris@16
|
574 else if (z <= 10)
|
Chris@16
|
575 {
|
Chris@16
|
576 // Maximum Deviation Found: 6.546e-17
|
Chris@16
|
577 // Expected Error Term: 6.546e-17
|
Chris@16
|
578 // Max Error found at double precision = Poly: 6.890169e-17 Cheb: 6.772128e-17
|
Chris@16
|
579 static const T Y = 1.158985137939453125F;
|
Chris@16
|
580 static const T P[8] = {
|
Chris@16
|
581 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00139324086199402804173),
|
Chris@16
|
582 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0349921221823888744966),
|
Chris@16
|
583 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0264095520754134848538),
|
Chris@16
|
584 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00761224003005476438412),
|
Chris@16
|
585 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00247496209592143627977),
|
Chris@16
|
586 BOOST_MATH_BIG_CONSTANT(T, 53, -0.000374885917942100256775),
|
Chris@16
|
587 BOOST_MATH_BIG_CONSTANT(T, 53, -0.554086272024881826253e-4),
|
Chris@16
|
588 BOOST_MATH_BIG_CONSTANT(T, 53, -0.396487648924804510056e-5)
|
Chris@16
|
589 };
|
Chris@16
|
590 static const T Q[8] = {
|
Chris@101
|
591 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
|
Chris@16
|
592 BOOST_MATH_BIG_CONSTANT(T, 53, 0.744625566823272107711),
|
Chris@16
|
593 BOOST_MATH_BIG_CONSTANT(T, 53, 0.329061095011767059236),
|
Chris@16
|
594 BOOST_MATH_BIG_CONSTANT(T, 53, 0.100128624977313872323),
|
Chris@16
|
595 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0223851099128506347278),
|
Chris@16
|
596 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00365334190742316650106),
|
Chris@16
|
597 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000402453408512476836472),
|
Chris@16
|
598 BOOST_MATH_BIG_CONSTANT(T, 53, 0.263649630720255691787e-4)
|
Chris@16
|
599 };
|
Chris@16
|
600 T t = z / 2 - 4;
|
Chris@16
|
601 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
602 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
603 result *= exp(z) / z;
|
Chris@16
|
604 result += z;
|
Chris@16
|
605 }
|
Chris@16
|
606 else if(z <= 20)
|
Chris@16
|
607 {
|
Chris@16
|
608 // Maximum Deviation Found: 1.843e-17
|
Chris@16
|
609 // Expected Error Term: -1.842e-17
|
Chris@16
|
610 // Max Error found at double precision = Poly: 4.375868e-17 Cheb: 5.860967e-17
|
Chris@16
|
611
|
Chris@16
|
612 static const T Y = 1.0869731903076171875F;
|
Chris@16
|
613 static const T P[9] = {
|
Chris@16
|
614 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00893891094356945667451),
|
Chris@16
|
615 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0484607730127134045806),
|
Chris@16
|
616 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0652810444222236895772),
|
Chris@16
|
617 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0478447572647309671455),
|
Chris@16
|
618 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0226059218923777094596),
|
Chris@16
|
619 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00720603636917482065907),
|
Chris@16
|
620 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00155941947035972031334),
|
Chris@16
|
621 BOOST_MATH_BIG_CONSTANT(T, 53, -0.000209750022660200888349),
|
Chris@16
|
622 BOOST_MATH_BIG_CONSTANT(T, 53, -0.138652200349182596186e-4)
|
Chris@16
|
623 };
|
Chris@16
|
624 static const T Q[9] = {
|
Chris@101
|
625 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
|
Chris@16
|
626 BOOST_MATH_BIG_CONSTANT(T, 53, 1.97017214039061194971),
|
Chris@16
|
627 BOOST_MATH_BIG_CONSTANT(T, 53, 1.86232465043073157508),
|
Chris@16
|
628 BOOST_MATH_BIG_CONSTANT(T, 53, 1.09601437090337519977),
|
Chris@16
|
629 BOOST_MATH_BIG_CONSTANT(T, 53, 0.438873285773088870812),
|
Chris@16
|
630 BOOST_MATH_BIG_CONSTANT(T, 53, 0.122537731979686102756),
|
Chris@16
|
631 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0233458478275769288159),
|
Chris@16
|
632 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00278170769163303669021),
|
Chris@16
|
633 BOOST_MATH_BIG_CONSTANT(T, 53, 0.000159150281166108755531)
|
Chris@16
|
634 };
|
Chris@16
|
635 T t = z / 5 - 3;
|
Chris@16
|
636 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
637 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
638 result *= exp(z) / z;
|
Chris@16
|
639 result += z;
|
Chris@16
|
640 }
|
Chris@16
|
641 else if(z <= 40)
|
Chris@16
|
642 {
|
Chris@16
|
643 // Maximum Deviation Found: 5.102e-18
|
Chris@16
|
644 // Expected Error Term: 5.101e-18
|
Chris@16
|
645 // Max Error found at double precision = Poly: 1.441088e-16 Cheb: 1.864792e-16
|
Chris@16
|
646
|
Chris@16
|
647
|
Chris@16
|
648 static const T Y = 1.03937530517578125F;
|
Chris@16
|
649 static const T P[9] = {
|
Chris@16
|
650 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00356165148914447597995),
|
Chris@16
|
651 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0229930320357982333406),
|
Chris@16
|
652 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0449814350482277917716),
|
Chris@16
|
653 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0453759383048193402336),
|
Chris@16
|
654 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0272050837209380717069),
|
Chris@16
|
655 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00994403059883350813295),
|
Chris@16
|
656 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00207592267812291726961),
|
Chris@16
|
657 BOOST_MATH_BIG_CONSTANT(T, 53, -0.000192178045857733706044),
|
Chris@16
|
658 BOOST_MATH_BIG_CONSTANT(T, 53, -0.113161784705911400295e-9)
|
Chris@16
|
659 };
|
Chris@16
|
660 static const T Q[9] = {
|
Chris@101
|
661 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
|
Chris@16
|
662 BOOST_MATH_BIG_CONSTANT(T, 53, 2.84354408840148561131),
|
Chris@16
|
663 BOOST_MATH_BIG_CONSTANT(T, 53, 3.6599610090072393012),
|
Chris@16
|
664 BOOST_MATH_BIG_CONSTANT(T, 53, 2.75088464344293083595),
|
Chris@16
|
665 BOOST_MATH_BIG_CONSTANT(T, 53, 1.2985244073998398643),
|
Chris@16
|
666 BOOST_MATH_BIG_CONSTANT(T, 53, 0.383213198510794507409),
|
Chris@16
|
667 BOOST_MATH_BIG_CONSTANT(T, 53, 0.0651165455496281337831),
|
Chris@16
|
668 BOOST_MATH_BIG_CONSTANT(T, 53, 0.00488071077519227853585)
|
Chris@16
|
669 };
|
Chris@16
|
670 T t = z / 10 - 3;
|
Chris@16
|
671 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
672 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
673 result *= exp(z) / z;
|
Chris@16
|
674 result += z;
|
Chris@16
|
675 }
|
Chris@16
|
676 else
|
Chris@16
|
677 {
|
Chris@16
|
678 // Max Error found at double precision = 3.381886e-17
|
Chris@16
|
679 static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 53, 2.35385266837019985407899910749034804508871617254555467236651e17));
|
Chris@16
|
680 static const T Y= 1.013065338134765625F;
|
Chris@16
|
681 static const T P[6] = {
|
Chris@16
|
682 BOOST_MATH_BIG_CONSTANT(T, 53, -0.0130653381347656243849),
|
Chris@16
|
683 BOOST_MATH_BIG_CONSTANT(T, 53, 0.19029710559486576682),
|
Chris@16
|
684 BOOST_MATH_BIG_CONSTANT(T, 53, 94.7365094537197236011),
|
Chris@16
|
685 BOOST_MATH_BIG_CONSTANT(T, 53, -2516.35323679844256203),
|
Chris@16
|
686 BOOST_MATH_BIG_CONSTANT(T, 53, 18932.0850014925993025),
|
Chris@16
|
687 BOOST_MATH_BIG_CONSTANT(T, 53, -38703.1431362056714134)
|
Chris@16
|
688 };
|
Chris@16
|
689 static const T Q[7] = {
|
Chris@101
|
690 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
|
Chris@16
|
691 BOOST_MATH_BIG_CONSTANT(T, 53, 61.9733592849439884145),
|
Chris@16
|
692 BOOST_MATH_BIG_CONSTANT(T, 53, -2354.56211323420194283),
|
Chris@16
|
693 BOOST_MATH_BIG_CONSTANT(T, 53, 22329.1459489893079041),
|
Chris@16
|
694 BOOST_MATH_BIG_CONSTANT(T, 53, -70126.245140396567133),
|
Chris@16
|
695 BOOST_MATH_BIG_CONSTANT(T, 53, 54738.2833147775537106),
|
Chris@16
|
696 BOOST_MATH_BIG_CONSTANT(T, 53, 8297.16296356518409347)
|
Chris@16
|
697 };
|
Chris@16
|
698 T t = 1 / z;
|
Chris@16
|
699 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
700 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
701 if(z < 41)
|
Chris@16
|
702 result *= exp(z) / z;
|
Chris@16
|
703 else
|
Chris@16
|
704 {
|
Chris@16
|
705 // Avoid premature overflow if we can:
|
Chris@16
|
706 t = z - 40;
|
Chris@16
|
707 if(t > tools::log_max_value<T>())
|
Chris@16
|
708 {
|
Chris@16
|
709 result = policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
710 }
|
Chris@16
|
711 else
|
Chris@16
|
712 {
|
Chris@16
|
713 result *= exp(z - 40) / z;
|
Chris@16
|
714 if(result > tools::max_value<T>() / exp40)
|
Chris@16
|
715 {
|
Chris@16
|
716 result = policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
717 }
|
Chris@16
|
718 else
|
Chris@16
|
719 {
|
Chris@16
|
720 result *= exp40;
|
Chris@16
|
721 }
|
Chris@16
|
722 }
|
Chris@16
|
723 }
|
Chris@16
|
724 result += z;
|
Chris@16
|
725 }
|
Chris@16
|
726 return result;
|
Chris@16
|
727 }
|
Chris@16
|
728
|
Chris@16
|
729 template <class T, class Policy>
|
Chris@16
|
730 T expint_i_imp(T z, const Policy& pol, const mpl::int_<64>& tag)
|
Chris@16
|
731 {
|
Chris@16
|
732 BOOST_MATH_STD_USING
|
Chris@16
|
733 static const char* function = "boost::math::expint<%1%>(%1%)";
|
Chris@16
|
734 if(z < 0)
|
Chris@16
|
735 return -expint_imp(1, T(-z), pol, tag);
|
Chris@16
|
736 if(z == 0)
|
Chris@16
|
737 return -policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
738
|
Chris@16
|
739 T result;
|
Chris@16
|
740
|
Chris@16
|
741 if(z <= 6)
|
Chris@16
|
742 {
|
Chris@16
|
743 // Maximum Deviation Found: 3.883e-21
|
Chris@16
|
744 // Expected Error Term: 3.883e-21
|
Chris@16
|
745 // Max Error found at long double precision = Poly: 3.344801e-19 Cheb: 4.989937e-19
|
Chris@16
|
746
|
Chris@16
|
747 static const T P[11] = {
|
Chris@16
|
748 BOOST_MATH_BIG_CONSTANT(T, 64, 2.98677224343598593764),
|
Chris@16
|
749 BOOST_MATH_BIG_CONSTANT(T, 64, 0.25891613550886736592),
|
Chris@16
|
750 BOOST_MATH_BIG_CONSTANT(T, 64, 0.789323584998672832285),
|
Chris@16
|
751 BOOST_MATH_BIG_CONSTANT(T, 64, 0.092432587824602399339),
|
Chris@16
|
752 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0514236978728625906656),
|
Chris@16
|
753 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00658477469745132977921),
|
Chris@16
|
754 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00124914538197086254233),
|
Chris@16
|
755 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000131429679565472408551),
|
Chris@16
|
756 BOOST_MATH_BIG_CONSTANT(T, 64, 0.11293331317982763165e-4),
|
Chris@16
|
757 BOOST_MATH_BIG_CONSTANT(T, 64, 0.629499283139417444244e-6),
|
Chris@16
|
758 BOOST_MATH_BIG_CONSTANT(T, 64, 0.177833045143692498221e-7)
|
Chris@16
|
759 };
|
Chris@16
|
760 static const T Q[9] = {
|
Chris@101
|
761 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
|
Chris@16
|
762 BOOST_MATH_BIG_CONSTANT(T, 64, -1.20352377969742325748),
|
Chris@16
|
763 BOOST_MATH_BIG_CONSTANT(T, 64, 0.66707904942606479811),
|
Chris@16
|
764 BOOST_MATH_BIG_CONSTANT(T, 64, -0.223014531629140771914),
|
Chris@16
|
765 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0493340022262908008636),
|
Chris@16
|
766 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00741934273050807310677),
|
Chris@16
|
767 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00074353567782087939294),
|
Chris@16
|
768 BOOST_MATH_BIG_CONSTANT(T, 64, -0.455861727069603367656e-4),
|
Chris@16
|
769 BOOST_MATH_BIG_CONSTANT(T, 64, 0.131515429329812837701e-5)
|
Chris@16
|
770 };
|
Chris@16
|
771
|
Chris@16
|
772 static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 64, 1677624236387711.0);
|
Chris@16
|
773 static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 64, 4503599627370496.0);
|
Chris@16
|
774 static const T r1 = c1 / c2;
|
Chris@16
|
775 static const T r2 = BOOST_MATH_BIG_CONSTANT(T, 64, 0.131401834143860282009280387409357165515556574352422001206362e-16);
|
Chris@16
|
776 static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
|
Chris@16
|
777 T t = (z / 3) - 1;
|
Chris@16
|
778 result = tools::evaluate_polynomial(P, t)
|
Chris@16
|
779 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
780 t = (z - r1) - r2;
|
Chris@16
|
781 result *= t;
|
Chris@16
|
782 if(fabs(t) < 0.1)
|
Chris@16
|
783 {
|
Chris@101
|
784 result += boost::math::log1p(t / r, pol);
|
Chris@16
|
785 }
|
Chris@16
|
786 else
|
Chris@16
|
787 {
|
Chris@16
|
788 result += log(z / r);
|
Chris@16
|
789 }
|
Chris@16
|
790 }
|
Chris@16
|
791 else if (z <= 10)
|
Chris@16
|
792 {
|
Chris@16
|
793 // Maximum Deviation Found: 2.622e-21
|
Chris@16
|
794 // Expected Error Term: -2.622e-21
|
Chris@16
|
795 // Max Error found at long double precision = Poly: 1.208328e-20 Cheb: 1.073723e-20
|
Chris@16
|
796
|
Chris@16
|
797 static const T Y = 1.158985137939453125F;
|
Chris@16
|
798 static const T P[9] = {
|
Chris@16
|
799 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00139324086199409049399),
|
Chris@16
|
800 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0345238388952337563247),
|
Chris@16
|
801 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0382065278072592940767),
|
Chris@16
|
802 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0156117003070560727392),
|
Chris@16
|
803 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00383276012430495387102),
|
Chris@16
|
804 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000697070540945496497992),
|
Chris@16
|
805 BOOST_MATH_BIG_CONSTANT(T, 64, -0.877310384591205930343e-4),
|
Chris@16
|
806 BOOST_MATH_BIG_CONSTANT(T, 64, -0.623067256376494930067e-5),
|
Chris@16
|
807 BOOST_MATH_BIG_CONSTANT(T, 64, -0.377246883283337141444e-6)
|
Chris@16
|
808 };
|
Chris@16
|
809 static const T Q[10] = {
|
Chris@101
|
810 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
|
Chris@16
|
811 BOOST_MATH_BIG_CONSTANT(T, 64, 1.08073635708902053767),
|
Chris@16
|
812 BOOST_MATH_BIG_CONSTANT(T, 64, 0.553681133533942532909),
|
Chris@16
|
813 BOOST_MATH_BIG_CONSTANT(T, 64, 0.176763647137553797451),
|
Chris@16
|
814 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0387891748253869928121),
|
Chris@16
|
815 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0060603004848394727017),
|
Chris@16
|
816 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000670519492939992806051),
|
Chris@16
|
817 BOOST_MATH_BIG_CONSTANT(T, 64, 0.4947357050100855646e-4),
|
Chris@16
|
818 BOOST_MATH_BIG_CONSTANT(T, 64, 0.204339282037446434827e-5),
|
Chris@16
|
819 BOOST_MATH_BIG_CONSTANT(T, 64, 0.146951181174930425744e-7)
|
Chris@16
|
820 };
|
Chris@16
|
821 T t = z / 2 - 4;
|
Chris@16
|
822 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
823 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
824 result *= exp(z) / z;
|
Chris@16
|
825 result += z;
|
Chris@16
|
826 }
|
Chris@16
|
827 else if(z <= 20)
|
Chris@16
|
828 {
|
Chris@16
|
829 // Maximum Deviation Found: 3.220e-20
|
Chris@16
|
830 // Expected Error Term: 3.220e-20
|
Chris@16
|
831 // Max Error found at long double precision = Poly: 7.696841e-20 Cheb: 6.205163e-20
|
Chris@16
|
832
|
Chris@16
|
833
|
Chris@16
|
834 static const T Y = 1.0869731903076171875F;
|
Chris@16
|
835 static const T P[10] = {
|
Chris@16
|
836 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00893891094356946995368),
|
Chris@16
|
837 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0487562980088748775943),
|
Chris@16
|
838 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0670568657950041926085),
|
Chris@16
|
839 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509577352851442932713),
|
Chris@16
|
840 BOOST_MATH_BIG_CONSTANT(T, 64, -0.02551800927409034206),
|
Chris@16
|
841 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00892913759760086687083),
|
Chris@16
|
842 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00224469630207344379888),
|
Chris@16
|
843 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000392477245911296982776),
|
Chris@16
|
844 BOOST_MATH_BIG_CONSTANT(T, 64, -0.44424044184395578775e-4),
|
Chris@16
|
845 BOOST_MATH_BIG_CONSTANT(T, 64, -0.252788029251437017959e-5)
|
Chris@16
|
846 };
|
Chris@16
|
847 static const T Q[10] = {
|
Chris@101
|
848 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
|
Chris@16
|
849 BOOST_MATH_BIG_CONSTANT(T, 64, 2.00323265503572414261),
|
Chris@16
|
850 BOOST_MATH_BIG_CONSTANT(T, 64, 1.94688958187256383178),
|
Chris@16
|
851 BOOST_MATH_BIG_CONSTANT(T, 64, 1.19733638134417472296),
|
Chris@16
|
852 BOOST_MATH_BIG_CONSTANT(T, 64, 0.513137726038353385661),
|
Chris@16
|
853 BOOST_MATH_BIG_CONSTANT(T, 64, 0.159135395578007264547),
|
Chris@16
|
854 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0358233587351620919881),
|
Chris@16
|
855 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0056716655597009417875),
|
Chris@16
|
856 BOOST_MATH_BIG_CONSTANT(T, 64, 0.000577048986213535829925),
|
Chris@16
|
857 BOOST_MATH_BIG_CONSTANT(T, 64, 0.290976943033493216793e-4)
|
Chris@16
|
858 };
|
Chris@16
|
859 T t = z / 5 - 3;
|
Chris@16
|
860 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
861 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
862 result *= exp(z) / z;
|
Chris@16
|
863 result += z;
|
Chris@16
|
864 }
|
Chris@16
|
865 else if(z <= 40)
|
Chris@16
|
866 {
|
Chris@16
|
867 // Maximum Deviation Found: 2.940e-21
|
Chris@16
|
868 // Expected Error Term: -2.938e-21
|
Chris@16
|
869 // Max Error found at long double precision = Poly: 3.419893e-19 Cheb: 3.359874e-19
|
Chris@16
|
870
|
Chris@16
|
871 static const T Y = 1.03937530517578125F;
|
Chris@16
|
872 static const T P[12] = {
|
Chris@16
|
873 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00356165148914447278177),
|
Chris@16
|
874 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0240235006148610849678),
|
Chris@16
|
875 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0516699967278057976119),
|
Chris@16
|
876 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0586603078706856245674),
|
Chris@16
|
877 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0409960120868776180825),
|
Chris@16
|
878 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0185485073689590665153),
|
Chris@16
|
879 BOOST_MATH_BIG_CONSTANT(T, 64, -0.00537842101034123222417),
|
Chris@16
|
880 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000920988084778273760609),
|
Chris@16
|
881 BOOST_MATH_BIG_CONSTANT(T, 64, -0.716742618812210980263e-4),
|
Chris@16
|
882 BOOST_MATH_BIG_CONSTANT(T, 64, -0.504623302166487346677e-9),
|
Chris@16
|
883 BOOST_MATH_BIG_CONSTANT(T, 64, 0.712662196671896837736e-10),
|
Chris@16
|
884 BOOST_MATH_BIG_CONSTANT(T, 64, -0.533769629702262072175e-11)
|
Chris@16
|
885 };
|
Chris@16
|
886 static const T Q[9] = {
|
Chris@101
|
887 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
|
Chris@16
|
888 BOOST_MATH_BIG_CONSTANT(T, 64, 3.13286733695729715455),
|
Chris@16
|
889 BOOST_MATH_BIG_CONSTANT(T, 64, 4.49281223045653491929),
|
Chris@16
|
890 BOOST_MATH_BIG_CONSTANT(T, 64, 3.84900294427622911374),
|
Chris@16
|
891 BOOST_MATH_BIG_CONSTANT(T, 64, 2.15205199043580378211),
|
Chris@16
|
892 BOOST_MATH_BIG_CONSTANT(T, 64, 0.802912186540269232424),
|
Chris@16
|
893 BOOST_MATH_BIG_CONSTANT(T, 64, 0.194793170017818925388),
|
Chris@16
|
894 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280128013584653182994),
|
Chris@16
|
895 BOOST_MATH_BIG_CONSTANT(T, 64, 0.00182034930799902922549)
|
Chris@16
|
896 };
|
Chris@16
|
897 T t = z / 10 - 3;
|
Chris@16
|
898 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
899 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
900 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
901 result *= exp(z) / z;
|
Chris@16
|
902 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
903 result += z;
|
Chris@16
|
904 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
905 }
|
Chris@16
|
906 else
|
Chris@16
|
907 {
|
Chris@16
|
908 // Maximum Deviation Found: 3.536e-20
|
Chris@16
|
909 // Max Error found at long double precision = Poly: 1.310671e-19 Cheb: 8.630943e-11
|
Chris@16
|
910
|
Chris@16
|
911 static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.35385266837019985407899910749034804508871617254555467236651e17));
|
Chris@16
|
912 static const T Y= 1.013065338134765625F;
|
Chris@16
|
913 static const T P[9] = {
|
Chris@16
|
914 BOOST_MATH_BIG_CONSTANT(T, 64, -0.0130653381347656250004),
|
Chris@16
|
915 BOOST_MATH_BIG_CONSTANT(T, 64, 0.644487780349757303739),
|
Chris@16
|
916 BOOST_MATH_BIG_CONSTANT(T, 64, 143.995670348227433964),
|
Chris@16
|
917 BOOST_MATH_BIG_CONSTANT(T, 64, -13918.9322758014173709),
|
Chris@16
|
918 BOOST_MATH_BIG_CONSTANT(T, 64, 476260.975133624194484),
|
Chris@16
|
919 BOOST_MATH_BIG_CONSTANT(T, 64, -7437102.15135982802122),
|
Chris@16
|
920 BOOST_MATH_BIG_CONSTANT(T, 64, 53732298.8764767916542),
|
Chris@16
|
921 BOOST_MATH_BIG_CONSTANT(T, 64, -160695051.957997452509),
|
Chris@16
|
922 BOOST_MATH_BIG_CONSTANT(T, 64, 137839271.592778020028)
|
Chris@16
|
923 };
|
Chris@16
|
924 static const T Q[9] = {
|
Chris@101
|
925 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
|
Chris@16
|
926 BOOST_MATH_BIG_CONSTANT(T, 64, 27.2103343964943718802),
|
Chris@16
|
927 BOOST_MATH_BIG_CONSTANT(T, 64, -8785.48528692879413676),
|
Chris@16
|
928 BOOST_MATH_BIG_CONSTANT(T, 64, 397530.290000322626766),
|
Chris@16
|
929 BOOST_MATH_BIG_CONSTANT(T, 64, -7356441.34957799368252),
|
Chris@16
|
930 BOOST_MATH_BIG_CONSTANT(T, 64, 63050914.5343400957524),
|
Chris@16
|
931 BOOST_MATH_BIG_CONSTANT(T, 64, -246143779.638307701369),
|
Chris@16
|
932 BOOST_MATH_BIG_CONSTANT(T, 64, 384647824.678554961174),
|
Chris@16
|
933 BOOST_MATH_BIG_CONSTANT(T, 64, -166288297.874583961493)
|
Chris@16
|
934 };
|
Chris@16
|
935 T t = 1 / z;
|
Chris@16
|
936 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
937 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
938 if(z < 41)
|
Chris@16
|
939 result *= exp(z) / z;
|
Chris@16
|
940 else
|
Chris@16
|
941 {
|
Chris@16
|
942 // Avoid premature overflow if we can:
|
Chris@16
|
943 t = z - 40;
|
Chris@16
|
944 if(t > tools::log_max_value<T>())
|
Chris@16
|
945 {
|
Chris@16
|
946 result = policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
947 }
|
Chris@16
|
948 else
|
Chris@16
|
949 {
|
Chris@16
|
950 result *= exp(z - 40) / z;
|
Chris@16
|
951 if(result > tools::max_value<T>() / exp40)
|
Chris@16
|
952 {
|
Chris@16
|
953 result = policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
954 }
|
Chris@16
|
955 else
|
Chris@16
|
956 {
|
Chris@16
|
957 result *= exp40;
|
Chris@16
|
958 }
|
Chris@16
|
959 }
|
Chris@16
|
960 }
|
Chris@16
|
961 result += z;
|
Chris@16
|
962 }
|
Chris@16
|
963 return result;
|
Chris@16
|
964 }
|
Chris@16
|
965
|
Chris@101
|
966 template <class T, class Policy>
|
Chris@101
|
967 void expint_i_imp_113a(T& result, const T& z, const Policy& pol)
|
Chris@16
|
968 {
|
Chris@16
|
969 BOOST_MATH_STD_USING
|
Chris@16
|
970 // Maximum Deviation Found: 1.230e-36
|
Chris@16
|
971 // Expected Error Term: -1.230e-36
|
Chris@16
|
972 // Max Error found at long double precision = Poly: 4.355299e-34 Cheb: 7.512581e-34
|
Chris@16
|
973
|
Chris@16
|
974
|
Chris@16
|
975 static const T P[15] = {
|
Chris@16
|
976 BOOST_MATH_BIG_CONSTANT(T, 113, 2.98677224343598593765287235997328555),
|
Chris@16
|
977 BOOST_MATH_BIG_CONSTANT(T, 113, -0.333256034674702967028780537349334037),
|
Chris@16
|
978 BOOST_MATH_BIG_CONSTANT(T, 113, 0.851831522798101228384971644036708463),
|
Chris@16
|
979 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0657854833494646206186773614110374948),
|
Chris@16
|
980 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0630065662557284456000060708977935073),
|
Chris@16
|
981 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00311759191425309373327784154659649232),
|
Chris@16
|
982 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00176213568201493949664478471656026771),
|
Chris@16
|
983 BOOST_MATH_BIG_CONSTANT(T, 113, -0.491548660404172089488535218163952295e-4),
|
Chris@16
|
984 BOOST_MATH_BIG_CONSTANT(T, 113, 0.207764227621061706075562107748176592e-4),
|
Chris@16
|
985 BOOST_MATH_BIG_CONSTANT(T, 113, -0.225445398156913584846374273379402765e-6),
|
Chris@16
|
986 BOOST_MATH_BIG_CONSTANT(T, 113, 0.996939977231410319761273881672601592e-7),
|
Chris@16
|
987 BOOST_MATH_BIG_CONSTANT(T, 113, 0.212546902052178643330520878928100847e-9),
|
Chris@16
|
988 BOOST_MATH_BIG_CONSTANT(T, 113, 0.154646053060262871360159325115980023e-9),
|
Chris@16
|
989 BOOST_MATH_BIG_CONSTANT(T, 113, 0.143971277122049197323415503594302307e-11),
|
Chris@16
|
990 BOOST_MATH_BIG_CONSTANT(T, 113, 0.306243138978114692252817805327426657e-13)
|
Chris@16
|
991 };
|
Chris@16
|
992 static const T Q[15] = {
|
Chris@101
|
993 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
994 BOOST_MATH_BIG_CONSTANT(T, 113, -1.40178870313943798705491944989231793),
|
Chris@16
|
995 BOOST_MATH_BIG_CONSTANT(T, 113, 0.943810968269701047641218856758605284),
|
Chris@16
|
996 BOOST_MATH_BIG_CONSTANT(T, 113, -0.405026631534345064600850391026113165),
|
Chris@16
|
997 BOOST_MATH_BIG_CONSTANT(T, 113, 0.123924153524614086482627660399122762),
|
Chris@16
|
998 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0286364505373369439591132549624317707),
|
Chris@16
|
999 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00516148845910606985396596845494015963),
|
Chris@16
|
1000 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000738330799456364820380739850924783649),
|
Chris@16
|
1001 BOOST_MATH_BIG_CONSTANT(T, 113, 0.843737760991856114061953265870882637e-4),
|
Chris@16
|
1002 BOOST_MATH_BIG_CONSTANT(T, 113, -0.767957673431982543213661388914587589e-5),
|
Chris@16
|
1003 BOOST_MATH_BIG_CONSTANT(T, 113, 0.549136847313854595809952100614840031e-6),
|
Chris@16
|
1004 BOOST_MATH_BIG_CONSTANT(T, 113, -0.299801381513743676764008325949325404e-7),
|
Chris@16
|
1005 BOOST_MATH_BIG_CONSTANT(T, 113, 0.118419479055346106118129130945423483e-8),
|
Chris@16
|
1006 BOOST_MATH_BIG_CONSTANT(T, 113, -0.30372295663095470359211949045344607e-10),
|
Chris@16
|
1007 BOOST_MATH_BIG_CONSTANT(T, 113, 0.382742953753485333207877784720070523e-12)
|
Chris@16
|
1008 };
|
Chris@16
|
1009
|
Chris@16
|
1010 static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 113, 1677624236387711.0);
|
Chris@16
|
1011 static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
|
Chris@16
|
1012 static const T c3 = BOOST_MATH_BIG_CONSTANT(T, 113, 266514582277687.0);
|
Chris@16
|
1013 static const T c4 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
|
Chris@16
|
1014 static const T c5 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
|
Chris@16
|
1015 static const T r1 = c1 / c2;
|
Chris@16
|
1016 static const T r2 = c3 / c4 / c5;
|
Chris@16
|
1017 static const T r3 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 0.283806480836357377069325311780969887585024578164571984232357e-31));
|
Chris@16
|
1018 static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
|
Chris@16
|
1019 T t = (z / 3) - 1;
|
Chris@16
|
1020 result = tools::evaluate_polynomial(P, t)
|
Chris@16
|
1021 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
1022 t = ((z - r1) - r2) - r3;
|
Chris@16
|
1023 result *= t;
|
Chris@16
|
1024 if(fabs(t) < 0.1)
|
Chris@16
|
1025 {
|
Chris@101
|
1026 result += boost::math::log1p(t / r, pol);
|
Chris@16
|
1027 }
|
Chris@16
|
1028 else
|
Chris@16
|
1029 {
|
Chris@16
|
1030 result += log(z / r);
|
Chris@16
|
1031 }
|
Chris@16
|
1032 }
|
Chris@16
|
1033
|
Chris@16
|
1034 template <class T>
|
Chris@16
|
1035 void expint_i_113b(T& result, const T& z)
|
Chris@16
|
1036 {
|
Chris@16
|
1037 BOOST_MATH_STD_USING
|
Chris@16
|
1038 // Maximum Deviation Found: 7.779e-36
|
Chris@16
|
1039 // Expected Error Term: -7.779e-36
|
Chris@16
|
1040 // Max Error found at long double precision = Poly: 2.576723e-35 Cheb: 1.236001e-34
|
Chris@16
|
1041
|
Chris@16
|
1042 static const T Y = 1.158985137939453125F;
|
Chris@16
|
1043 static const T P[15] = {
|
Chris@16
|
1044 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139324086199409049282472239613554817),
|
Chris@16
|
1045 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0338173111691991289178779840307998955),
|
Chris@16
|
1046 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0555972290794371306259684845277620556),
|
Chris@16
|
1047 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0378677976003456171563136909186202177),
|
Chris@16
|
1048 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0152221583517528358782902783914356667),
|
Chris@16
|
1049 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00428283334203873035104248217403126905),
|
Chris@16
|
1050 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000922782631491644846511553601323435286),
|
Chris@16
|
1051 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000155513428088853161562660696055496696),
|
Chris@16
|
1052 BOOST_MATH_BIG_CONSTANT(T, 113, -0.205756580255359882813545261519317096e-4),
|
Chris@16
|
1053 BOOST_MATH_BIG_CONSTANT(T, 113, -0.220327406578552089820753181821115181e-5),
|
Chris@16
|
1054 BOOST_MATH_BIG_CONSTANT(T, 113, -0.189483157545587592043421445645377439e-6),
|
Chris@16
|
1055 BOOST_MATH_BIG_CONSTANT(T, 113, -0.122426571518570587750898968123803867e-7),
|
Chris@16
|
1056 BOOST_MATH_BIG_CONSTANT(T, 113, -0.635187358949437991465353268374523944e-9),
|
Chris@16
|
1057 BOOST_MATH_BIG_CONSTANT(T, 113, -0.203015132965870311935118337194860863e-10),
|
Chris@16
|
1058 BOOST_MATH_BIG_CONSTANT(T, 113, -0.384276705503357655108096065452950822e-12)
|
Chris@16
|
1059 };
|
Chris@16
|
1060 static const T Q[15] = {
|
Chris@101
|
1061 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
1062 BOOST_MATH_BIG_CONSTANT(T, 113, 1.58784732785354597996617046880946257),
|
Chris@16
|
1063 BOOST_MATH_BIG_CONSTANT(T, 113, 1.18550755302279446339364262338114098),
|
Chris@16
|
1064 BOOST_MATH_BIG_CONSTANT(T, 113, 0.55598993549661368604527040349702836),
|
Chris@16
|
1065 BOOST_MATH_BIG_CONSTANT(T, 113, 0.184290888380564236919107835030984453),
|
Chris@16
|
1066 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0459658051803613282360464632326866113),
|
Chris@16
|
1067 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0089505064268613225167835599456014705),
|
Chris@16
|
1068 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139042673882987693424772855926289077),
|
Chris@16
|
1069 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000174210708041584097450805790176479012),
|
Chris@16
|
1070 BOOST_MATH_BIG_CONSTANT(T, 113, 0.176324034009707558089086875136647376e-4),
|
Chris@16
|
1071 BOOST_MATH_BIG_CONSTANT(T, 113, 0.142935845999505649273084545313710581e-5),
|
Chris@16
|
1072 BOOST_MATH_BIG_CONSTANT(T, 113, 0.907502324487057260675816233312747784e-7),
|
Chris@16
|
1073 BOOST_MATH_BIG_CONSTANT(T, 113, 0.431044337808893270797934621235918418e-8),
|
Chris@16
|
1074 BOOST_MATH_BIG_CONSTANT(T, 113, 0.139007266881450521776529705677086902e-9),
|
Chris@16
|
1075 BOOST_MATH_BIG_CONSTANT(T, 113, 0.234715286125516430792452741830364672e-11)
|
Chris@16
|
1076 };
|
Chris@16
|
1077 T t = z / 2 - 4;
|
Chris@16
|
1078 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
1079 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
1080 result *= exp(z) / z;
|
Chris@16
|
1081 result += z;
|
Chris@16
|
1082 }
|
Chris@16
|
1083
|
Chris@16
|
1084 template <class T>
|
Chris@16
|
1085 void expint_i_113c(T& result, const T& z)
|
Chris@16
|
1086 {
|
Chris@16
|
1087 BOOST_MATH_STD_USING
|
Chris@16
|
1088 // Maximum Deviation Found: 1.082e-34
|
Chris@16
|
1089 // Expected Error Term: 1.080e-34
|
Chris@16
|
1090 // Max Error found at long double precision = Poly: 1.958294e-34 Cheb: 2.472261e-34
|
Chris@16
|
1091
|
Chris@16
|
1092
|
Chris@16
|
1093 static const T Y = 1.091579437255859375F;
|
Chris@16
|
1094 static const T P[17] = {
|
Chris@16
|
1095 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00685089599550151282724924894258520532),
|
Chris@16
|
1096 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0443313550253580053324487059748497467),
|
Chris@16
|
1097 BOOST_MATH_BIG_CONSTANT(T, 113, -0.071538561252424027443296958795814874),
|
Chris@16
|
1098 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0622923153354102682285444067843300583),
|
Chris@16
|
1099 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0361631270264607478205393775461208794),
|
Chris@16
|
1100 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0153192826839624850298106509601033261),
|
Chris@16
|
1101 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00496967904961260031539602977748408242),
|
Chris@16
|
1102 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126989079663425780800919171538920589),
|
Chris@16
|
1103 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000258933143097125199914724875206326698),
|
Chris@16
|
1104 BOOST_MATH_BIG_CONSTANT(T, 113, -0.422110326689204794443002330541441956e-4),
|
Chris@16
|
1105 BOOST_MATH_BIG_CONSTANT(T, 113, -0.546004547590412661451073996127115221e-5),
|
Chris@16
|
1106 BOOST_MATH_BIG_CONSTANT(T, 113, -0.546775260262202177131068692199272241e-6),
|
Chris@16
|
1107 BOOST_MATH_BIG_CONSTANT(T, 113, -0.404157632825805803833379568956559215e-7),
|
Chris@16
|
1108 BOOST_MATH_BIG_CONSTANT(T, 113, -0.200612596196561323832327013027419284e-8),
|
Chris@16
|
1109 BOOST_MATH_BIG_CONSTANT(T, 113, -0.502538501472133913417609379765434153e-10),
|
Chris@16
|
1110 BOOST_MATH_BIG_CONSTANT(T, 113, -0.326283053716799774936661568391296584e-13),
|
Chris@16
|
1111 BOOST_MATH_BIG_CONSTANT(T, 113, 0.869226483473172853557775877908693647e-15)
|
Chris@16
|
1112 };
|
Chris@16
|
1113 static const T Q[15] = {
|
Chris@101
|
1114 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
1115 BOOST_MATH_BIG_CONSTANT(T, 113, 2.23227220874479061894038229141871087),
|
Chris@16
|
1116 BOOST_MATH_BIG_CONSTANT(T, 113, 2.40221000361027971895657505660959863),
|
Chris@16
|
1117 BOOST_MATH_BIG_CONSTANT(T, 113, 1.65476320985936174728238416007084214),
|
Chris@16
|
1118 BOOST_MATH_BIG_CONSTANT(T, 113, 0.816828602963895720369875535001248227),
|
Chris@16
|
1119 BOOST_MATH_BIG_CONSTANT(T, 113, 0.306337922909446903672123418670921066),
|
Chris@16
|
1120 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0902400121654409267774593230720600752),
|
Chris@16
|
1121 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0212708882169429206498765100993228086),
|
Chris@16
|
1122 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00404442626252467471957713495828165491),
|
Chris@16
|
1123 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0006195601618842253612635241404054589),
|
Chris@16
|
1124 BOOST_MATH_BIG_CONSTANT(T, 113, 0.755930932686543009521454653994321843e-4),
|
Chris@16
|
1125 BOOST_MATH_BIG_CONSTANT(T, 113, 0.716004532773778954193609582677482803e-5),
|
Chris@16
|
1126 BOOST_MATH_BIG_CONSTANT(T, 113, 0.500881663076471627699290821742924233e-6),
|
Chris@16
|
1127 BOOST_MATH_BIG_CONSTANT(T, 113, 0.233593219218823384508105943657387644e-7),
|
Chris@16
|
1128 BOOST_MATH_BIG_CONSTANT(T, 113, 0.554900353169148897444104962034267682e-9)
|
Chris@16
|
1129 };
|
Chris@16
|
1130 T t = z / 4 - 3.5;
|
Chris@16
|
1131 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
1132 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
1133 result *= exp(z) / z;
|
Chris@16
|
1134 result += z;
|
Chris@16
|
1135 }
|
Chris@16
|
1136
|
Chris@16
|
1137 template <class T>
|
Chris@16
|
1138 void expint_i_113d(T& result, const T& z)
|
Chris@16
|
1139 {
|
Chris@16
|
1140 BOOST_MATH_STD_USING
|
Chris@16
|
1141 // Maximum Deviation Found: 3.163e-35
|
Chris@16
|
1142 // Expected Error Term: 3.163e-35
|
Chris@16
|
1143 // Max Error found at long double precision = Poly: 4.158110e-35 Cheb: 5.385532e-35
|
Chris@16
|
1144
|
Chris@16
|
1145 static const T Y = 1.051731109619140625F;
|
Chris@16
|
1146 static const T P[14] = {
|
Chris@16
|
1147 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00144552494420652573815404828020593565),
|
Chris@16
|
1148 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0126747451594545338365684731262912741),
|
Chris@16
|
1149 BOOST_MATH_BIG_CONSTANT(T, 113, -0.01757394877502366717526779263438073),
|
Chris@16
|
1150 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0126838952395506921945756139424722588),
|
Chris@16
|
1151 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0060045057928894974954756789352443522),
|
Chris@16
|
1152 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00205349237147226126653803455793107903),
|
Chris@16
|
1153 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000532606040579654887676082220195624207),
|
Chris@16
|
1154 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000107344687098019891474772069139014662),
|
Chris@16
|
1155 BOOST_MATH_BIG_CONSTANT(T, 113, -0.169536802705805811859089949943435152e-4),
|
Chris@16
|
1156 BOOST_MATH_BIG_CONSTANT(T, 113, -0.20863311729206543881826553010120078e-5),
|
Chris@16
|
1157 BOOST_MATH_BIG_CONSTANT(T, 113, -0.195670358542116256713560296776654385e-6),
|
Chris@16
|
1158 BOOST_MATH_BIG_CONSTANT(T, 113, -0.133291168587253145439184028259772437e-7),
|
Chris@16
|
1159 BOOST_MATH_BIG_CONSTANT(T, 113, -0.595500337089495614285777067722823397e-9),
|
Chris@16
|
1160 BOOST_MATH_BIG_CONSTANT(T, 113, -0.133141358866324100955927979606981328e-10)
|
Chris@16
|
1161 };
|
Chris@16
|
1162 static const T Q[14] = {
|
Chris@101
|
1163 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
1164 BOOST_MATH_BIG_CONSTANT(T, 113, 1.72490783907582654629537013560044682),
|
Chris@16
|
1165 BOOST_MATH_BIG_CONSTANT(T, 113, 1.44524329516800613088375685659759765),
|
Chris@16
|
1166 BOOST_MATH_BIG_CONSTANT(T, 113, 0.778241785539308257585068744978050181),
|
Chris@16
|
1167 BOOST_MATH_BIG_CONSTANT(T, 113, 0.300520486589206605184097270225725584),
|
Chris@16
|
1168 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0879346899691339661394537806057953957),
|
Chris@16
|
1169 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0200802415843802892793583043470125006),
|
Chris@16
|
1170 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00362842049172586254520256100538273214),
|
Chris@16
|
1171 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000519731362862955132062751246769469957),
|
Chris@16
|
1172 BOOST_MATH_BIG_CONSTANT(T, 113, 0.584092147914050999895178697392282665e-4),
|
Chris@16
|
1173 BOOST_MATH_BIG_CONSTANT(T, 113, 0.501851497707855358002773398333542337e-5),
|
Chris@16
|
1174 BOOST_MATH_BIG_CONSTANT(T, 113, 0.313085677467921096644895738538865537e-6),
|
Chris@16
|
1175 BOOST_MATH_BIG_CONSTANT(T, 113, 0.127552010539733113371132321521204458e-7),
|
Chris@16
|
1176 BOOST_MATH_BIG_CONSTANT(T, 113, 0.25737310826983451144405899970774587e-9)
|
Chris@16
|
1177 };
|
Chris@16
|
1178 T t = z / 4 - 5.5;
|
Chris@16
|
1179 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
1180 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
1181 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1182 result *= exp(z) / z;
|
Chris@16
|
1183 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1184 result += z;
|
Chris@16
|
1185 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1186 }
|
Chris@16
|
1187
|
Chris@16
|
1188 template <class T>
|
Chris@16
|
1189 void expint_i_113e(T& result, const T& z)
|
Chris@16
|
1190 {
|
Chris@16
|
1191 BOOST_MATH_STD_USING
|
Chris@16
|
1192 // Maximum Deviation Found: 7.972e-36
|
Chris@16
|
1193 // Expected Error Term: 7.962e-36
|
Chris@16
|
1194 // Max Error found at long double precision = Poly: 1.711721e-34 Cheb: 3.100018e-34
|
Chris@16
|
1195
|
Chris@16
|
1196 static const T Y = 1.032726287841796875F;
|
Chris@16
|
1197 static const T P[15] = {
|
Chris@16
|
1198 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00141056919297307534690895009969373233),
|
Chris@16
|
1199 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0123384175302540291339020257071411437),
|
Chris@16
|
1200 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0298127270706864057791526083667396115),
|
Chris@16
|
1201 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0390686759471630584626293670260768098),
|
Chris@16
|
1202 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0338226792912607409822059922949035589),
|
Chris@16
|
1203 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0211659736179834946452561197559654582),
|
Chris@16
|
1204 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0100428887460879377373158821400070313),
|
Chris@16
|
1205 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00370717396015165148484022792801682932),
|
Chris@16
|
1206 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0010768667551001624764329000496561659),
|
Chris@16
|
1207 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000246127328761027039347584096573123531),
|
Chris@16
|
1208 BOOST_MATH_BIG_CONSTANT(T, 113, -0.437318110527818613580613051861991198e-4),
|
Chris@16
|
1209 BOOST_MATH_BIG_CONSTANT(T, 113, -0.587532682329299591501065482317771497e-5),
|
Chris@16
|
1210 BOOST_MATH_BIG_CONSTANT(T, 113, -0.565697065670893984610852937110819467e-6),
|
Chris@16
|
1211 BOOST_MATH_BIG_CONSTANT(T, 113, -0.350233957364028523971768887437839573e-7),
|
Chris@16
|
1212 BOOST_MATH_BIG_CONSTANT(T, 113, -0.105428907085424234504608142258423505e-8)
|
Chris@16
|
1213 };
|
Chris@16
|
1214 static const T Q[16] = {
|
Chris@101
|
1215 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
1216 BOOST_MATH_BIG_CONSTANT(T, 113, 3.17261315255467581204685605414005525),
|
Chris@16
|
1217 BOOST_MATH_BIG_CONSTANT(T, 113, 4.85267952971640525245338392887217426),
|
Chris@16
|
1218 BOOST_MATH_BIG_CONSTANT(T, 113, 4.74341914912439861451492872946725151),
|
Chris@16
|
1219 BOOST_MATH_BIG_CONSTANT(T, 113, 3.31108463283559911602405970817931801),
|
Chris@16
|
1220 BOOST_MATH_BIG_CONSTANT(T, 113, 1.74657006336994649386607925179848899),
|
Chris@16
|
1221 BOOST_MATH_BIG_CONSTANT(T, 113, 0.718255607416072737965933040353653244),
|
Chris@16
|
1222 BOOST_MATH_BIG_CONSTANT(T, 113, 0.234037553177354542791975767960643864),
|
Chris@16
|
1223 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0607470145906491602476833515412605389),
|
Chris@16
|
1224 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0125048143774226921434854172947548724),
|
Chris@16
|
1225 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00201034366420433762935768458656609163),
|
Chris@16
|
1226 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000244823338417452367656368849303165721),
|
Chris@16
|
1227 BOOST_MATH_BIG_CONSTANT(T, 113, 0.213511655166983177960471085462540807e-4),
|
Chris@16
|
1228 BOOST_MATH_BIG_CONSTANT(T, 113, 0.119323998465870686327170541547982932e-5),
|
Chris@16
|
1229 BOOST_MATH_BIG_CONSTANT(T, 113, 0.322153582559488797803027773591727565e-7),
|
Chris@16
|
1230 BOOST_MATH_BIG_CONSTANT(T, 113, -0.161635525318683508633792845159942312e-16)
|
Chris@16
|
1231 };
|
Chris@16
|
1232 T t = z / 8 - 4.25;
|
Chris@16
|
1233 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
1234 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
1235 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1236 result *= exp(z) / z;
|
Chris@16
|
1237 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1238 result += z;
|
Chris@16
|
1239 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1240 }
|
Chris@16
|
1241
|
Chris@16
|
1242 template <class T>
|
Chris@16
|
1243 void expint_i_113f(T& result, const T& z)
|
Chris@16
|
1244 {
|
Chris@16
|
1245 BOOST_MATH_STD_USING
|
Chris@16
|
1246 // Maximum Deviation Found: 4.469e-36
|
Chris@16
|
1247 // Expected Error Term: 4.468e-36
|
Chris@16
|
1248 // Max Error found at long double precision = Poly: 1.288958e-35 Cheb: 2.304586e-35
|
Chris@16
|
1249
|
Chris@16
|
1250 static const T Y = 1.0216197967529296875F;
|
Chris@16
|
1251 static const T P[12] = {
|
Chris@16
|
1252 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000322999116096627043476023926572650045),
|
Chris@16
|
1253 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00385606067447365187909164609294113346),
|
Chris@16
|
1254 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00686514524727568176735949971985244415),
|
Chris@16
|
1255 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00606260649593050194602676772589601799),
|
Chris@16
|
1256 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00334382362017147544335054575436194357),
|
Chris@16
|
1257 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126108534260253075708625583630318043),
|
Chris@16
|
1258 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000337881489347846058951220431209276776),
|
Chris@16
|
1259 BOOST_MATH_BIG_CONSTANT(T, 113, -0.648480902304640018785370650254018022e-4),
|
Chris@16
|
1260 BOOST_MATH_BIG_CONSTANT(T, 113, -0.87652644082970492211455290209092766e-5),
|
Chris@16
|
1261 BOOST_MATH_BIG_CONSTANT(T, 113, -0.794712243338068631557849449519994144e-6),
|
Chris@16
|
1262 BOOST_MATH_BIG_CONSTANT(T, 113, -0.434084023639508143975983454830954835e-7),
|
Chris@16
|
1263 BOOST_MATH_BIG_CONSTANT(T, 113, -0.107839681938752337160494412638656696e-8)
|
Chris@16
|
1264 };
|
Chris@16
|
1265 static const T Q[12] = {
|
Chris@101
|
1266 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
1267 BOOST_MATH_BIG_CONSTANT(T, 113, 2.09913805456661084097134805151524958),
|
Chris@16
|
1268 BOOST_MATH_BIG_CONSTANT(T, 113, 2.07041755535439919593503171320431849),
|
Chris@16
|
1269 BOOST_MATH_BIG_CONSTANT(T, 113, 1.26406517226052371320416108604874734),
|
Chris@16
|
1270 BOOST_MATH_BIG_CONSTANT(T, 113, 0.529689923703770353961553223973435569),
|
Chris@16
|
1271 BOOST_MATH_BIG_CONSTANT(T, 113, 0.159578150879536711042269658656115746),
|
Chris@16
|
1272 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0351720877642000691155202082629857131),
|
Chris@16
|
1273 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00565313621289648752407123620997063122),
|
Chris@16
|
1274 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000646920278540515480093843570291218295),
|
Chris@16
|
1275 BOOST_MATH_BIG_CONSTANT(T, 113, 0.499904084850091676776993523323213591e-4),
|
Chris@16
|
1276 BOOST_MATH_BIG_CONSTANT(T, 113, 0.233740058688179614344680531486267142e-5),
|
Chris@16
|
1277 BOOST_MATH_BIG_CONSTANT(T, 113, 0.498800627828842754845418576305379469e-7)
|
Chris@16
|
1278 };
|
Chris@16
|
1279 T t = z / 7 - 7;
|
Chris@16
|
1280 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
1281 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
1282 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1283 result *= exp(z) / z;
|
Chris@16
|
1284 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1285 result += z;
|
Chris@16
|
1286 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1287 }
|
Chris@16
|
1288
|
Chris@16
|
1289 template <class T>
|
Chris@16
|
1290 void expint_i_113g(T& result, const T& z)
|
Chris@16
|
1291 {
|
Chris@16
|
1292 BOOST_MATH_STD_USING
|
Chris@16
|
1293 // Maximum Deviation Found: 5.588e-35
|
Chris@16
|
1294 // Expected Error Term: -5.566e-35
|
Chris@16
|
1295 // Max Error found at long double precision = Poly: 9.976345e-35 Cheb: 8.358865e-35
|
Chris@16
|
1296
|
Chris@16
|
1297 static const T Y = 1.015148162841796875F;
|
Chris@16
|
1298 static const T P[11] = {
|
Chris@16
|
1299 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000435714784725086961464589957142615216),
|
Chris@16
|
1300 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00432114324353830636009453048419094314),
|
Chris@16
|
1301 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0100740363285526177522819204820582424),
|
Chris@16
|
1302 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0116744115827059174392383504427640362),
|
Chris@16
|
1303 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00816145387784261141360062395898644652),
|
Chris@16
|
1304 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00371380272673500791322744465394211508),
|
Chris@16
|
1305 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00112958263488611536502153195005736563),
|
Chris@16
|
1306 BOOST_MATH_BIG_CONSTANT(T, 113, -0.000228316462389404645183269923754256664),
|
Chris@16
|
1307 BOOST_MATH_BIG_CONSTANT(T, 113, -0.29462181955852860250359064291292577e-4),
|
Chris@16
|
1308 BOOST_MATH_BIG_CONSTANT(T, 113, -0.21972450610957417963227028788460299e-5),
|
Chris@16
|
1309 BOOST_MATH_BIG_CONSTANT(T, 113, -0.720558173805289167524715527536874694e-7)
|
Chris@16
|
1310 };
|
Chris@16
|
1311 static const T Q[11] = {
|
Chris@101
|
1312 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
1313 BOOST_MATH_BIG_CONSTANT(T, 113, 2.95918362458402597039366979529287095),
|
Chris@16
|
1314 BOOST_MATH_BIG_CONSTANT(T, 113, 3.96472247520659077944638411856748924),
|
Chris@16
|
1315 BOOST_MATH_BIG_CONSTANT(T, 113, 3.15563251550528513747923714884142131),
|
Chris@16
|
1316 BOOST_MATH_BIG_CONSTANT(T, 113, 1.64674612007093983894215359287448334),
|
Chris@16
|
1317 BOOST_MATH_BIG_CONSTANT(T, 113, 0.58695020129846594405856226787156424),
|
Chris@16
|
1318 BOOST_MATH_BIG_CONSTANT(T, 113, 0.144358385319329396231755457772362793),
|
Chris@16
|
1319 BOOST_MATH_BIG_CONSTANT(T, 113, 0.024146911506411684815134916238348063),
|
Chris@16
|
1320 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026257132337460784266874572001650153),
|
Chris@16
|
1321 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000167479843750859222348869769094711093),
|
Chris@16
|
1322 BOOST_MATH_BIG_CONSTANT(T, 113, 0.475673638665358075556452220192497036e-5)
|
Chris@16
|
1323 };
|
Chris@16
|
1324 T t = z / 14 - 5;
|
Chris@16
|
1325 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
1326 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
1327 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1328 result *= exp(z) / z;
|
Chris@16
|
1329 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1330 result += z;
|
Chris@16
|
1331 BOOST_MATH_INSTRUMENT_VARIABLE(result)
|
Chris@16
|
1332 }
|
Chris@16
|
1333
|
Chris@16
|
1334 template <class T>
|
Chris@16
|
1335 void expint_i_113h(T& result, const T& z)
|
Chris@16
|
1336 {
|
Chris@16
|
1337 BOOST_MATH_STD_USING
|
Chris@16
|
1338 // Maximum Deviation Found: 4.448e-36
|
Chris@16
|
1339 // Expected Error Term: 4.445e-36
|
Chris@16
|
1340 // Max Error found at long double precision = Poly: 2.058532e-35 Cheb: 2.165465e-27
|
Chris@16
|
1341
|
Chris@16
|
1342 static const T Y= 1.00849151611328125F;
|
Chris@16
|
1343 static const T P[9] = {
|
Chris@16
|
1344 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0084915161132812500000001440233607358),
|
Chris@16
|
1345 BOOST_MATH_BIG_CONSTANT(T, 113, 1.84479378737716028341394223076147872),
|
Chris@16
|
1346 BOOST_MATH_BIG_CONSTANT(T, 113, -130.431146923726715674081563022115568),
|
Chris@16
|
1347 BOOST_MATH_BIG_CONSTANT(T, 113, 4336.26945491571504885214176203512015),
|
Chris@16
|
1348 BOOST_MATH_BIG_CONSTANT(T, 113, -76279.0031974974730095170437591004177),
|
Chris@16
|
1349 BOOST_MATH_BIG_CONSTANT(T, 113, 729577.956271997673695191455111727774),
|
Chris@16
|
1350 BOOST_MATH_BIG_CONSTANT(T, 113, -3661928.69330208734947103004900349266),
|
Chris@16
|
1351 BOOST_MATH_BIG_CONSTANT(T, 113, 8570600.041606912735872059184527855),
|
Chris@16
|
1352 BOOST_MATH_BIG_CONSTANT(T, 113, -6758379.93672362080947905580906028645)
|
Chris@16
|
1353 };
|
Chris@16
|
1354 static const T Q[10] = {
|
Chris@101
|
1355 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
1356 BOOST_MATH_BIG_CONSTANT(T, 113, -99.4868026047611434569541483506091713),
|
Chris@16
|
1357 BOOST_MATH_BIG_CONSTANT(T, 113, 3879.67753690517114249705089803055473),
|
Chris@16
|
1358 BOOST_MATH_BIG_CONSTANT(T, 113, -76495.82413252517165830203774900806),
|
Chris@16
|
1359 BOOST_MATH_BIG_CONSTANT(T, 113, 820773.726408311894342553758526282667),
|
Chris@16
|
1360 BOOST_MATH_BIG_CONSTANT(T, 113, -4803087.64956923577571031564909646579),
|
Chris@16
|
1361 BOOST_MATH_BIG_CONSTANT(T, 113, 14521246.227703545012713173740895477),
|
Chris@16
|
1362 BOOST_MATH_BIG_CONSTANT(T, 113, -19762752.0196769712258527849159393044),
|
Chris@16
|
1363 BOOST_MATH_BIG_CONSTANT(T, 113, 8354144.67882768405803322344185185517),
|
Chris@16
|
1364 BOOST_MATH_BIG_CONSTANT(T, 113, 355076.853106511136734454134915432571)
|
Chris@16
|
1365 };
|
Chris@16
|
1366 T t = 1 / z;
|
Chris@16
|
1367 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
1368 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
1369 result *= exp(z) / z;
|
Chris@16
|
1370 result += z;
|
Chris@16
|
1371 }
|
Chris@16
|
1372
|
Chris@16
|
1373 template <class T, class Policy>
|
Chris@16
|
1374 T expint_i_imp(T z, const Policy& pol, const mpl::int_<113>& tag)
|
Chris@16
|
1375 {
|
Chris@16
|
1376 BOOST_MATH_STD_USING
|
Chris@16
|
1377 static const char* function = "boost::math::expint<%1%>(%1%)";
|
Chris@16
|
1378 if(z < 0)
|
Chris@16
|
1379 return -expint_imp(1, T(-z), pol, tag);
|
Chris@16
|
1380 if(z == 0)
|
Chris@16
|
1381 return -policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
1382
|
Chris@16
|
1383 T result;
|
Chris@16
|
1384
|
Chris@16
|
1385 if(z <= 6)
|
Chris@16
|
1386 {
|
Chris@101
|
1387 expint_i_imp_113a(result, z, pol);
|
Chris@16
|
1388 }
|
Chris@16
|
1389 else if (z <= 10)
|
Chris@16
|
1390 {
|
Chris@16
|
1391 expint_i_113b(result, z);
|
Chris@16
|
1392 }
|
Chris@16
|
1393 else if(z <= 18)
|
Chris@16
|
1394 {
|
Chris@16
|
1395 expint_i_113c(result, z);
|
Chris@16
|
1396 }
|
Chris@16
|
1397 else if(z <= 26)
|
Chris@16
|
1398 {
|
Chris@16
|
1399 expint_i_113d(result, z);
|
Chris@16
|
1400 }
|
Chris@16
|
1401 else if(z <= 42)
|
Chris@16
|
1402 {
|
Chris@16
|
1403 expint_i_113e(result, z);
|
Chris@16
|
1404 }
|
Chris@16
|
1405 else if(z <= 56)
|
Chris@16
|
1406 {
|
Chris@16
|
1407 expint_i_113f(result, z);
|
Chris@16
|
1408 }
|
Chris@16
|
1409 else if(z <= 84)
|
Chris@16
|
1410 {
|
Chris@16
|
1411 expint_i_113g(result, z);
|
Chris@16
|
1412 }
|
Chris@16
|
1413 else if(z <= 210)
|
Chris@16
|
1414 {
|
Chris@16
|
1415 expint_i_113h(result, z);
|
Chris@16
|
1416 }
|
Chris@16
|
1417 else // z > 210
|
Chris@16
|
1418 {
|
Chris@16
|
1419 // Maximum Deviation Found: 3.963e-37
|
Chris@16
|
1420 // Expected Error Term: 3.963e-37
|
Chris@16
|
1421 // Max Error found at long double precision = Poly: 1.248049e-36 Cheb: 2.843486e-29
|
Chris@16
|
1422
|
Chris@16
|
1423 static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 2.35385266837019985407899910749034804508871617254555467236651e17));
|
Chris@16
|
1424 static const T Y= 1.00252532958984375F;
|
Chris@16
|
1425 static const T P[8] = {
|
Chris@16
|
1426 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00252532958984375000000000000000000085),
|
Chris@16
|
1427 BOOST_MATH_BIG_CONSTANT(T, 113, 1.16591386866059087390621952073890359),
|
Chris@16
|
1428 BOOST_MATH_BIG_CONSTANT(T, 113, -67.8483431314018462417456828499277579),
|
Chris@16
|
1429 BOOST_MATH_BIG_CONSTANT(T, 113, 1567.68688154683822956359536287575892),
|
Chris@16
|
1430 BOOST_MATH_BIG_CONSTANT(T, 113, -17335.4683325819116482498725687644986),
|
Chris@16
|
1431 BOOST_MATH_BIG_CONSTANT(T, 113, 93632.6567462673524739954389166550069),
|
Chris@16
|
1432 BOOST_MATH_BIG_CONSTANT(T, 113, -225025.189335919133214440347510936787),
|
Chris@16
|
1433 BOOST_MATH_BIG_CONSTANT(T, 113, 175864.614717440010942804684741336853)
|
Chris@16
|
1434 };
|
Chris@16
|
1435 static const T Q[9] = {
|
Chris@101
|
1436 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
1437 BOOST_MATH_BIG_CONSTANT(T, 113, -65.6998869881600212224652719706425129),
|
Chris@16
|
1438 BOOST_MATH_BIG_CONSTANT(T, 113, 1642.73850032324014781607859416890077),
|
Chris@16
|
1439 BOOST_MATH_BIG_CONSTANT(T, 113, -19937.2610222467322481947237312818575),
|
Chris@16
|
1440 BOOST_MATH_BIG_CONSTANT(T, 113, 124136.267326632742667972126625064538),
|
Chris@16
|
1441 BOOST_MATH_BIG_CONSTANT(T, 113, -384614.251466704550678760562965502293),
|
Chris@16
|
1442 BOOST_MATH_BIG_CONSTANT(T, 113, 523355.035910385688578278384032026998),
|
Chris@16
|
1443 BOOST_MATH_BIG_CONSTANT(T, 113, -217809.552260834025885677791936351294),
|
Chris@16
|
1444 BOOST_MATH_BIG_CONSTANT(T, 113, -8555.81719551123640677261226549550872)
|
Chris@16
|
1445 };
|
Chris@16
|
1446 T t = 1 / z;
|
Chris@16
|
1447 result = Y + tools::evaluate_polynomial(P, t)
|
Chris@16
|
1448 / tools::evaluate_polynomial(Q, t);
|
Chris@16
|
1449 if(z < 41)
|
Chris@16
|
1450 result *= exp(z) / z;
|
Chris@16
|
1451 else
|
Chris@16
|
1452 {
|
Chris@16
|
1453 // Avoid premature overflow if we can:
|
Chris@16
|
1454 t = z - 40;
|
Chris@16
|
1455 if(t > tools::log_max_value<T>())
|
Chris@16
|
1456 {
|
Chris@16
|
1457 result = policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
1458 }
|
Chris@16
|
1459 else
|
Chris@16
|
1460 {
|
Chris@16
|
1461 result *= exp(z - 40) / z;
|
Chris@16
|
1462 if(result > tools::max_value<T>() / exp40)
|
Chris@16
|
1463 {
|
Chris@16
|
1464 result = policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
1465 }
|
Chris@16
|
1466 else
|
Chris@16
|
1467 {
|
Chris@16
|
1468 result *= exp40;
|
Chris@16
|
1469 }
|
Chris@16
|
1470 }
|
Chris@16
|
1471 }
|
Chris@16
|
1472 result += z;
|
Chris@16
|
1473 }
|
Chris@16
|
1474 return result;
|
Chris@16
|
1475 }
|
Chris@16
|
1476
|
Chris@16
|
1477 template <class T, class Policy, class tag>
|
Chris@16
|
1478 struct expint_i_initializer
|
Chris@16
|
1479 {
|
Chris@16
|
1480 struct init
|
Chris@16
|
1481 {
|
Chris@16
|
1482 init()
|
Chris@16
|
1483 {
|
Chris@16
|
1484 do_init(tag());
|
Chris@16
|
1485 }
|
Chris@16
|
1486 static void do_init(const mpl::int_<0>&){}
|
Chris@16
|
1487 static void do_init(const mpl::int_<53>&)
|
Chris@16
|
1488 {
|
Chris@16
|
1489 boost::math::expint(T(5));
|
Chris@16
|
1490 boost::math::expint(T(7));
|
Chris@16
|
1491 boost::math::expint(T(18));
|
Chris@16
|
1492 boost::math::expint(T(38));
|
Chris@16
|
1493 boost::math::expint(T(45));
|
Chris@16
|
1494 }
|
Chris@16
|
1495 static void do_init(const mpl::int_<64>&)
|
Chris@16
|
1496 {
|
Chris@16
|
1497 boost::math::expint(T(5));
|
Chris@16
|
1498 boost::math::expint(T(7));
|
Chris@16
|
1499 boost::math::expint(T(18));
|
Chris@16
|
1500 boost::math::expint(T(38));
|
Chris@16
|
1501 boost::math::expint(T(45));
|
Chris@16
|
1502 }
|
Chris@16
|
1503 static void do_init(const mpl::int_<113>&)
|
Chris@16
|
1504 {
|
Chris@16
|
1505 boost::math::expint(T(5));
|
Chris@16
|
1506 boost::math::expint(T(7));
|
Chris@16
|
1507 boost::math::expint(T(17));
|
Chris@16
|
1508 boost::math::expint(T(25));
|
Chris@16
|
1509 boost::math::expint(T(40));
|
Chris@16
|
1510 boost::math::expint(T(50));
|
Chris@16
|
1511 boost::math::expint(T(80));
|
Chris@16
|
1512 boost::math::expint(T(200));
|
Chris@16
|
1513 boost::math::expint(T(220));
|
Chris@16
|
1514 }
|
Chris@16
|
1515 void force_instantiate()const{}
|
Chris@16
|
1516 };
|
Chris@16
|
1517 static const init initializer;
|
Chris@16
|
1518 static void force_instantiate()
|
Chris@16
|
1519 {
|
Chris@16
|
1520 initializer.force_instantiate();
|
Chris@16
|
1521 }
|
Chris@16
|
1522 };
|
Chris@16
|
1523
|
Chris@16
|
1524 template <class T, class Policy, class tag>
|
Chris@16
|
1525 const typename expint_i_initializer<T, Policy, tag>::init expint_i_initializer<T, Policy, tag>::initializer;
|
Chris@16
|
1526
|
Chris@16
|
1527 template <class T, class Policy, class tag>
|
Chris@16
|
1528 struct expint_1_initializer
|
Chris@16
|
1529 {
|
Chris@16
|
1530 struct init
|
Chris@16
|
1531 {
|
Chris@16
|
1532 init()
|
Chris@16
|
1533 {
|
Chris@16
|
1534 do_init(tag());
|
Chris@16
|
1535 }
|
Chris@16
|
1536 static void do_init(const mpl::int_<0>&){}
|
Chris@16
|
1537 static void do_init(const mpl::int_<53>&)
|
Chris@16
|
1538 {
|
Chris@16
|
1539 boost::math::expint(1, T(0.5));
|
Chris@16
|
1540 boost::math::expint(1, T(2));
|
Chris@16
|
1541 }
|
Chris@16
|
1542 static void do_init(const mpl::int_<64>&)
|
Chris@16
|
1543 {
|
Chris@16
|
1544 boost::math::expint(1, T(0.5));
|
Chris@16
|
1545 boost::math::expint(1, T(2));
|
Chris@16
|
1546 }
|
Chris@16
|
1547 static void do_init(const mpl::int_<113>&)
|
Chris@16
|
1548 {
|
Chris@16
|
1549 boost::math::expint(1, T(0.5));
|
Chris@16
|
1550 boost::math::expint(1, T(2));
|
Chris@16
|
1551 boost::math::expint(1, T(6));
|
Chris@16
|
1552 }
|
Chris@16
|
1553 void force_instantiate()const{}
|
Chris@16
|
1554 };
|
Chris@16
|
1555 static const init initializer;
|
Chris@16
|
1556 static void force_instantiate()
|
Chris@16
|
1557 {
|
Chris@16
|
1558 initializer.force_instantiate();
|
Chris@16
|
1559 }
|
Chris@16
|
1560 };
|
Chris@16
|
1561
|
Chris@16
|
1562 template <class T, class Policy, class tag>
|
Chris@16
|
1563 const typename expint_1_initializer<T, Policy, tag>::init expint_1_initializer<T, Policy, tag>::initializer;
|
Chris@16
|
1564
|
Chris@16
|
1565 template <class T, class Policy>
|
Chris@16
|
1566 inline typename tools::promote_args<T>::type
|
Chris@16
|
1567 expint_forwarder(T z, const Policy& /*pol*/, mpl::true_ const&)
|
Chris@16
|
1568 {
|
Chris@16
|
1569 typedef typename tools::promote_args<T>::type result_type;
|
Chris@16
|
1570 typedef typename policies::evaluation<result_type, Policy>::type value_type;
|
Chris@16
|
1571 typedef typename policies::precision<result_type, Policy>::type precision_type;
|
Chris@16
|
1572 typedef typename policies::normalise<
|
Chris@16
|
1573 Policy,
|
Chris@16
|
1574 policies::promote_float<false>,
|
Chris@16
|
1575 policies::promote_double<false>,
|
Chris@16
|
1576 policies::discrete_quantile<>,
|
Chris@16
|
1577 policies::assert_undefined<> >::type forwarding_policy;
|
Chris@16
|
1578 typedef typename mpl::if_<
|
Chris@16
|
1579 mpl::less_equal<precision_type, mpl::int_<0> >,
|
Chris@16
|
1580 mpl::int_<0>,
|
Chris@16
|
1581 typename mpl::if_<
|
Chris@16
|
1582 mpl::less_equal<precision_type, mpl::int_<53> >,
|
Chris@16
|
1583 mpl::int_<53>, // double
|
Chris@16
|
1584 typename mpl::if_<
|
Chris@16
|
1585 mpl::less_equal<precision_type, mpl::int_<64> >,
|
Chris@16
|
1586 mpl::int_<64>, // 80-bit long double
|
Chris@16
|
1587 typename mpl::if_<
|
Chris@16
|
1588 mpl::less_equal<precision_type, mpl::int_<113> >,
|
Chris@16
|
1589 mpl::int_<113>, // 128-bit long double
|
Chris@16
|
1590 mpl::int_<0> // too many bits, use generic version.
|
Chris@16
|
1591 >::type
|
Chris@16
|
1592 >::type
|
Chris@16
|
1593 >::type
|
Chris@16
|
1594 >::type tag_type;
|
Chris@16
|
1595
|
Chris@16
|
1596 expint_i_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
|
Chris@16
|
1597
|
Chris@16
|
1598 return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expint_i_imp(
|
Chris@16
|
1599 static_cast<value_type>(z),
|
Chris@16
|
1600 forwarding_policy(),
|
Chris@16
|
1601 tag_type()), "boost::math::expint<%1%>(%1%)");
|
Chris@16
|
1602 }
|
Chris@16
|
1603
|
Chris@16
|
1604 template <class T>
|
Chris@16
|
1605 inline typename tools::promote_args<T>::type
|
Chris@16
|
1606 expint_forwarder(unsigned n, T z, const mpl::false_&)
|
Chris@16
|
1607 {
|
Chris@16
|
1608 return boost::math::expint(n, z, policies::policy<>());
|
Chris@16
|
1609 }
|
Chris@16
|
1610
|
Chris@16
|
1611 } // namespace detail
|
Chris@16
|
1612
|
Chris@16
|
1613 template <class T, class Policy>
|
Chris@16
|
1614 inline typename tools::promote_args<T>::type
|
Chris@16
|
1615 expint(unsigned n, T z, const Policy& /*pol*/)
|
Chris@16
|
1616 {
|
Chris@16
|
1617 typedef typename tools::promote_args<T>::type result_type;
|
Chris@16
|
1618 typedef typename policies::evaluation<result_type, Policy>::type value_type;
|
Chris@16
|
1619 typedef typename policies::precision<result_type, Policy>::type precision_type;
|
Chris@16
|
1620 typedef typename policies::normalise<
|
Chris@16
|
1621 Policy,
|
Chris@16
|
1622 policies::promote_float<false>,
|
Chris@16
|
1623 policies::promote_double<false>,
|
Chris@16
|
1624 policies::discrete_quantile<>,
|
Chris@16
|
1625 policies::assert_undefined<> >::type forwarding_policy;
|
Chris@16
|
1626 typedef typename mpl::if_<
|
Chris@16
|
1627 mpl::less_equal<precision_type, mpl::int_<0> >,
|
Chris@16
|
1628 mpl::int_<0>,
|
Chris@16
|
1629 typename mpl::if_<
|
Chris@16
|
1630 mpl::less_equal<precision_type, mpl::int_<53> >,
|
Chris@16
|
1631 mpl::int_<53>, // double
|
Chris@16
|
1632 typename mpl::if_<
|
Chris@16
|
1633 mpl::less_equal<precision_type, mpl::int_<64> >,
|
Chris@16
|
1634 mpl::int_<64>, // 80-bit long double
|
Chris@16
|
1635 typename mpl::if_<
|
Chris@16
|
1636 mpl::less_equal<precision_type, mpl::int_<113> >,
|
Chris@16
|
1637 mpl::int_<113>, // 128-bit long double
|
Chris@16
|
1638 mpl::int_<0> // too many bits, use generic version.
|
Chris@16
|
1639 >::type
|
Chris@16
|
1640 >::type
|
Chris@16
|
1641 >::type
|
Chris@16
|
1642 >::type tag_type;
|
Chris@16
|
1643
|
Chris@16
|
1644 detail::expint_1_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
|
Chris@16
|
1645
|
Chris@16
|
1646 return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expint_imp(
|
Chris@16
|
1647 n,
|
Chris@16
|
1648 static_cast<value_type>(z),
|
Chris@16
|
1649 forwarding_policy(),
|
Chris@16
|
1650 tag_type()), "boost::math::expint<%1%>(unsigned, %1%)");
|
Chris@16
|
1651 }
|
Chris@16
|
1652
|
Chris@16
|
1653 template <class T, class U>
|
Chris@16
|
1654 inline typename detail::expint_result<T, U>::type
|
Chris@16
|
1655 expint(T const z, U const u)
|
Chris@16
|
1656 {
|
Chris@16
|
1657 typedef typename policies::is_policy<U>::type tag_type;
|
Chris@16
|
1658 return detail::expint_forwarder(z, u, tag_type());
|
Chris@16
|
1659 }
|
Chris@16
|
1660
|
Chris@16
|
1661 template <class T>
|
Chris@16
|
1662 inline typename tools::promote_args<T>::type
|
Chris@16
|
1663 expint(T z)
|
Chris@16
|
1664 {
|
Chris@16
|
1665 return expint(z, policies::policy<>());
|
Chris@16
|
1666 }
|
Chris@16
|
1667
|
Chris@16
|
1668 }} // namespaces
|
Chris@16
|
1669
|
Chris@16
|
1670 #endif // BOOST_MATH_EXPINT_HPP
|
Chris@16
|
1671
|
Chris@16
|
1672
|