Chris@101
|
1 // Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock
|
Chris@16
|
2 // Use, modification and distribution are subject to the
|
Chris@16
|
3 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5 //
|
Chris@16
|
6 // History:
|
Chris@16
|
7 // XZ wrote the original of this file as part of the Google
|
Chris@16
|
8 // Summer of Code 2006. JM modified it to fit into the
|
Chris@16
|
9 // Boost.Math conceptual framework better, and to correctly
|
Chris@16
|
10 // handle the p < 0 case.
|
Chris@101
|
11 // Updated 2015 to use Carlson's latest methods.
|
Chris@16
|
12 //
|
Chris@16
|
13
|
Chris@16
|
14 #ifndef BOOST_MATH_ELLINT_RJ_HPP
|
Chris@16
|
15 #define BOOST_MATH_ELLINT_RJ_HPP
|
Chris@16
|
16
|
Chris@16
|
17 #ifdef _MSC_VER
|
Chris@16
|
18 #pragma once
|
Chris@16
|
19 #endif
|
Chris@16
|
20
|
Chris@16
|
21 #include <boost/math/special_functions/math_fwd.hpp>
|
Chris@16
|
22 #include <boost/math/tools/config.hpp>
|
Chris@16
|
23 #include <boost/math/policies/error_handling.hpp>
|
Chris@16
|
24 #include <boost/math/special_functions/ellint_rc.hpp>
|
Chris@16
|
25 #include <boost/math/special_functions/ellint_rf.hpp>
|
Chris@101
|
26 #include <boost/math/special_functions/ellint_rd.hpp>
|
Chris@16
|
27
|
Chris@16
|
28 // Carlson's elliptic integral of the third kind
|
Chris@16
|
29 // R_J(x, y, z, p) = 1.5 * \int_{0}^{\infty} (t+p)^{-1} [(t+x)(t+y)(t+z)]^{-1/2} dt
|
Chris@16
|
30 // Carlson, Numerische Mathematik, vol 33, 1 (1979)
|
Chris@16
|
31
|
Chris@16
|
32 namespace boost { namespace math { namespace detail{
|
Chris@16
|
33
|
Chris@16
|
34 template <typename T, typename Policy>
|
Chris@101
|
35 T ellint_rc1p_imp(T y, const Policy& pol)
|
Chris@101
|
36 {
|
Chris@101
|
37 using namespace boost::math;
|
Chris@101
|
38 // Calculate RC(1, 1 + x)
|
Chris@101
|
39 BOOST_MATH_STD_USING
|
Chris@101
|
40
|
Chris@101
|
41 static const char* function = "boost::math::ellint_rc<%1%>(%1%,%1%)";
|
Chris@101
|
42
|
Chris@101
|
43 if(y == -1)
|
Chris@101
|
44 {
|
Chris@101
|
45 return policies::raise_domain_error<T>(function,
|
Chris@101
|
46 "Argument y must not be zero but got %1%", y, pol);
|
Chris@101
|
47 }
|
Chris@101
|
48
|
Chris@101
|
49 // for 1 + y < 0, the integral is singular, return Cauchy principal value
|
Chris@101
|
50 T result;
|
Chris@101
|
51 if(y < -1)
|
Chris@101
|
52 {
|
Chris@101
|
53 result = sqrt(1 / -y) * detail::ellint_rc_imp(T(-y), T(-1 - y), pol);
|
Chris@101
|
54 }
|
Chris@101
|
55 else if(y == 0)
|
Chris@101
|
56 {
|
Chris@101
|
57 result = 1;
|
Chris@101
|
58 }
|
Chris@101
|
59 else if(y > 0)
|
Chris@101
|
60 {
|
Chris@101
|
61 result = atan(sqrt(y)) / sqrt(y);
|
Chris@101
|
62 }
|
Chris@101
|
63 else
|
Chris@101
|
64 {
|
Chris@101
|
65 if(y > -0.5)
|
Chris@101
|
66 {
|
Chris@101
|
67 T arg = sqrt(-y);
|
Chris@101
|
68 result = (boost::math::log1p(arg) - boost::math::log1p(-arg)) / (2 * sqrt(-y));
|
Chris@101
|
69 }
|
Chris@101
|
70 else
|
Chris@101
|
71 {
|
Chris@101
|
72 result = log((1 + sqrt(-y)) / sqrt(1 + y)) / sqrt(-y);
|
Chris@101
|
73 }
|
Chris@101
|
74 }
|
Chris@101
|
75 return result;
|
Chris@101
|
76 }
|
Chris@101
|
77
|
Chris@101
|
78 template <typename T, typename Policy>
|
Chris@16
|
79 T ellint_rj_imp(T x, T y, T z, T p, const Policy& pol)
|
Chris@16
|
80 {
|
Chris@101
|
81 BOOST_MATH_STD_USING
|
Chris@16
|
82
|
Chris@101
|
83 static const char* function = "boost::math::ellint_rj<%1%>(%1%,%1%,%1%)";
|
Chris@16
|
84
|
Chris@101
|
85 if(x < 0)
|
Chris@101
|
86 {
|
Chris@101
|
87 return policies::raise_domain_error<T>(function,
|
Chris@101
|
88 "Argument x must be non-negative, but got x = %1%", x, pol);
|
Chris@101
|
89 }
|
Chris@101
|
90 if(y < 0)
|
Chris@101
|
91 {
|
Chris@101
|
92 return policies::raise_domain_error<T>(function,
|
Chris@101
|
93 "Argument y must be non-negative, but got y = %1%", y, pol);
|
Chris@101
|
94 }
|
Chris@101
|
95 if(z < 0)
|
Chris@101
|
96 {
|
Chris@101
|
97 return policies::raise_domain_error<T>(function,
|
Chris@101
|
98 "Argument z must be non-negative, but got z = %1%", z, pol);
|
Chris@101
|
99 }
|
Chris@101
|
100 if(p == 0)
|
Chris@101
|
101 {
|
Chris@101
|
102 return policies::raise_domain_error<T>(function,
|
Chris@101
|
103 "Argument p must not be zero, but got p = %1%", p, pol);
|
Chris@101
|
104 }
|
Chris@101
|
105 if(x + y == 0 || y + z == 0 || z + x == 0)
|
Chris@101
|
106 {
|
Chris@101
|
107 return policies::raise_domain_error<T>(function,
|
Chris@101
|
108 "At most one argument can be zero, "
|
Chris@101
|
109 "only possible result is %1%.", std::numeric_limits<T>::quiet_NaN(), pol);
|
Chris@101
|
110 }
|
Chris@16
|
111
|
Chris@101
|
112 // for p < 0, the integral is singular, return Cauchy principal value
|
Chris@101
|
113 if(p < 0)
|
Chris@101
|
114 {
|
Chris@101
|
115 //
|
Chris@101
|
116 // We must ensure that x < y < z.
|
Chris@101
|
117 // Since the integral is symmetrical in x, y and z
|
Chris@101
|
118 // we can just permute the values:
|
Chris@101
|
119 //
|
Chris@101
|
120 if(x > y)
|
Chris@101
|
121 std::swap(x, y);
|
Chris@101
|
122 if(y > z)
|
Chris@101
|
123 std::swap(y, z);
|
Chris@101
|
124 if(x > y)
|
Chris@101
|
125 std::swap(x, y);
|
Chris@16
|
126
|
Chris@101
|
127 BOOST_ASSERT(x <= y);
|
Chris@101
|
128 BOOST_ASSERT(y <= z);
|
Chris@16
|
129
|
Chris@101
|
130 T q = -p;
|
Chris@101
|
131 p = (z * (x + y + q) - x * y) / (z + q);
|
Chris@16
|
132
|
Chris@101
|
133 BOOST_ASSERT(p >= 0);
|
Chris@16
|
134
|
Chris@101
|
135 T value = (p - z) * ellint_rj_imp(x, y, z, p, pol);
|
Chris@101
|
136 value -= 3 * ellint_rf_imp(x, y, z, pol);
|
Chris@101
|
137 value += 3 * sqrt((x * y * z) / (x * y + p * q)) * ellint_rc_imp(T(x * y + p * q), T(p * q), pol);
|
Chris@101
|
138 value /= (z + q);
|
Chris@101
|
139 return value;
|
Chris@101
|
140 }
|
Chris@16
|
141
|
Chris@101
|
142 //
|
Chris@101
|
143 // Special cases from http://dlmf.nist.gov/19.20#iii
|
Chris@101
|
144 //
|
Chris@101
|
145 if(x == y)
|
Chris@101
|
146 {
|
Chris@101
|
147 if(x == z)
|
Chris@101
|
148 {
|
Chris@101
|
149 if(x == p)
|
Chris@101
|
150 {
|
Chris@101
|
151 // All values equal:
|
Chris@101
|
152 return 1 / (x * sqrt(x));
|
Chris@101
|
153 }
|
Chris@101
|
154 else
|
Chris@101
|
155 {
|
Chris@101
|
156 // x = y = z:
|
Chris@101
|
157 return 3 * (ellint_rc_imp(x, p, pol) - 1 / sqrt(x)) / (x - p);
|
Chris@101
|
158 }
|
Chris@101
|
159 }
|
Chris@101
|
160 else
|
Chris@101
|
161 {
|
Chris@101
|
162 // x = y only, permute so y = z:
|
Chris@101
|
163 using std::swap;
|
Chris@101
|
164 swap(x, z);
|
Chris@101
|
165 if(y == p)
|
Chris@101
|
166 {
|
Chris@101
|
167 return ellint_rd_imp(x, y, y, pol);
|
Chris@101
|
168 }
|
Chris@101
|
169 else if((std::max)(y, p) / (std::min)(y, p) > 1.2)
|
Chris@101
|
170 {
|
Chris@101
|
171 return 3 * (ellint_rc_imp(x, y, pol) - ellint_rc_imp(x, p, pol)) / (p - y);
|
Chris@101
|
172 }
|
Chris@101
|
173 // Otherwise fall through to normal method, special case above will suffer too much cancellation...
|
Chris@101
|
174 }
|
Chris@101
|
175 }
|
Chris@101
|
176 if(y == z)
|
Chris@101
|
177 {
|
Chris@101
|
178 if(y == p)
|
Chris@101
|
179 {
|
Chris@101
|
180 // y = z = p:
|
Chris@101
|
181 return ellint_rd_imp(x, y, y, pol);
|
Chris@101
|
182 }
|
Chris@101
|
183 else if((std::max)(y, p) / (std::min)(y, p) > 1.2)
|
Chris@101
|
184 {
|
Chris@101
|
185 // y = z:
|
Chris@101
|
186 return 3 * (ellint_rc_imp(x, y, pol) - ellint_rc_imp(x, p, pol)) / (p - y);
|
Chris@101
|
187 }
|
Chris@101
|
188 // Otherwise fall through to normal method, special case above will suffer too much cancellation...
|
Chris@101
|
189 }
|
Chris@101
|
190 if(z == p)
|
Chris@101
|
191 {
|
Chris@101
|
192 return ellint_rd_imp(x, y, z, pol);
|
Chris@101
|
193 }
|
Chris@16
|
194
|
Chris@101
|
195 T xn = x;
|
Chris@101
|
196 T yn = y;
|
Chris@101
|
197 T zn = z;
|
Chris@101
|
198 T pn = p;
|
Chris@101
|
199 T An = (x + y + z + 2 * p) / 5;
|
Chris@101
|
200 T A0 = An;
|
Chris@101
|
201 T delta = (p - x) * (p - y) * (p - z);
|
Chris@101
|
202 T Q = pow(tools::epsilon<T>() / 5, -T(1) / 8) * (std::max)((std::max)(fabs(An - x), fabs(An - y)), (std::max)(fabs(An - z), fabs(An - p)));
|
Chris@16
|
203
|
Chris@101
|
204 unsigned n;
|
Chris@101
|
205 T lambda;
|
Chris@101
|
206 T Dn;
|
Chris@101
|
207 T En;
|
Chris@101
|
208 T rx, ry, rz, rp;
|
Chris@101
|
209 T fmn = 1; // 4^-n
|
Chris@101
|
210 T RC_sum = 0;
|
Chris@16
|
211
|
Chris@101
|
212 for(n = 0; n < policies::get_max_series_iterations<Policy>(); ++n)
|
Chris@101
|
213 {
|
Chris@101
|
214 rx = sqrt(xn);
|
Chris@101
|
215 ry = sqrt(yn);
|
Chris@101
|
216 rz = sqrt(zn);
|
Chris@101
|
217 rp = sqrt(pn);
|
Chris@101
|
218 Dn = (rp + rx) * (rp + ry) * (rp + rz);
|
Chris@101
|
219 En = delta / Dn;
|
Chris@101
|
220 En /= Dn;
|
Chris@101
|
221 if((En < -0.5) && (En > -1.5))
|
Chris@101
|
222 {
|
Chris@101
|
223 //
|
Chris@101
|
224 // Occationally En ~ -1, we then have no means of calculating
|
Chris@101
|
225 // RC(1, 1+En) without terrible cancellation error, so we
|
Chris@101
|
226 // need to get to 1+En directly. By substitution we have
|
Chris@101
|
227 //
|
Chris@101
|
228 // 1+E_0 = 1 + (p-x)*(p-y)*(p-z)/((sqrt(p) + sqrt(x))*(sqrt(p)+sqrt(y))*(sqrt(p)+sqrt(z)))^2
|
Chris@101
|
229 // = 2*sqrt(p)*(p+sqrt(x) * (sqrt(y)+sqrt(z)) + sqrt(y)*sqrt(z)) / ((sqrt(p) + sqrt(x))*(sqrt(p) + sqrt(y)*(sqrt(p)+sqrt(z))))
|
Chris@101
|
230 //
|
Chris@101
|
231 // And since this is just an application of the duplication formula for RJ, the same
|
Chris@101
|
232 // expression works for 1+En if we use x,y,z,p_n etc.
|
Chris@101
|
233 // This branch is taken only once or twice at the start of iteration,
|
Chris@101
|
234 // after than En reverts to it's usual very small values.
|
Chris@101
|
235 //
|
Chris@101
|
236 T b = 2 * rp * (pn + rx * (ry + rz) + ry * rz) / Dn;
|
Chris@101
|
237 RC_sum += fmn / Dn * detail::ellint_rc_imp(T(1), b, pol);
|
Chris@101
|
238 }
|
Chris@101
|
239 else
|
Chris@101
|
240 {
|
Chris@101
|
241 RC_sum += fmn / Dn * ellint_rc1p_imp(En, pol);
|
Chris@101
|
242 }
|
Chris@101
|
243 lambda = rx * ry + rx * rz + ry * rz;
|
Chris@16
|
244
|
Chris@101
|
245 // From here on we move to n+1:
|
Chris@101
|
246 An = (An + lambda) / 4;
|
Chris@101
|
247 fmn /= 4;
|
Chris@16
|
248
|
Chris@101
|
249 if(fmn * Q < An)
|
Chris@101
|
250 break;
|
Chris@101
|
251
|
Chris@101
|
252 xn = (xn + lambda) / 4;
|
Chris@101
|
253 yn = (yn + lambda) / 4;
|
Chris@101
|
254 zn = (zn + lambda) / 4;
|
Chris@101
|
255 pn = (pn + lambda) / 4;
|
Chris@101
|
256 delta /= 64;
|
Chris@101
|
257 }
|
Chris@101
|
258
|
Chris@101
|
259 T X = fmn * (A0 - x) / An;
|
Chris@101
|
260 T Y = fmn * (A0 - y) / An;
|
Chris@101
|
261 T Z = fmn * (A0 - z) / An;
|
Chris@101
|
262 T P = (-X - Y - Z) / 2;
|
Chris@101
|
263 T E2 = X * Y + X * Z + Y * Z - 3 * P * P;
|
Chris@101
|
264 T E3 = X * Y * Z + 2 * E2 * P + 4 * P * P * P;
|
Chris@101
|
265 T E4 = (2 * X * Y * Z + E2 * P + 3 * P * P * P) * P;
|
Chris@101
|
266 T E5 = X * Y * Z * P * P;
|
Chris@101
|
267 T result = fmn * pow(An, T(-3) / 2) *
|
Chris@101
|
268 (1 - 3 * E2 / 14 + E3 / 6 + 9 * E2 * E2 / 88 - 3 * E4 / 22 - 9 * E2 * E3 / 52 + 3 * E5 / 26 - E2 * E2 * E2 / 16
|
Chris@101
|
269 + 3 * E3 * E3 / 40 + 3 * E2 * E4 / 20 + 45 * E2 * E2 * E3 / 272 - 9 * (E3 * E4 + E2 * E5) / 68);
|
Chris@101
|
270
|
Chris@101
|
271 result += 6 * RC_sum;
|
Chris@101
|
272 return result;
|
Chris@16
|
273 }
|
Chris@16
|
274
|
Chris@16
|
275 } // namespace detail
|
Chris@16
|
276
|
Chris@16
|
277 template <class T1, class T2, class T3, class T4, class Policy>
|
Chris@16
|
278 inline typename tools::promote_args<T1, T2, T3, T4>::type
|
Chris@16
|
279 ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy& pol)
|
Chris@16
|
280 {
|
Chris@16
|
281 typedef typename tools::promote_args<T1, T2, T3, T4>::type result_type;
|
Chris@16
|
282 typedef typename policies::evaluation<result_type, Policy>::type value_type;
|
Chris@16
|
283 return policies::checked_narrowing_cast<result_type, Policy>(
|
Chris@16
|
284 detail::ellint_rj_imp(
|
Chris@16
|
285 static_cast<value_type>(x),
|
Chris@16
|
286 static_cast<value_type>(y),
|
Chris@16
|
287 static_cast<value_type>(z),
|
Chris@16
|
288 static_cast<value_type>(p),
|
Chris@16
|
289 pol), "boost::math::ellint_rj<%1%>(%1%,%1%,%1%,%1%)");
|
Chris@16
|
290 }
|
Chris@16
|
291
|
Chris@16
|
292 template <class T1, class T2, class T3, class T4>
|
Chris@16
|
293 inline typename tools::promote_args<T1, T2, T3, T4>::type
|
Chris@16
|
294 ellint_rj(T1 x, T2 y, T3 z, T4 p)
|
Chris@16
|
295 {
|
Chris@16
|
296 return ellint_rj(x, y, z, p, policies::policy<>());
|
Chris@16
|
297 }
|
Chris@16
|
298
|
Chris@16
|
299 }} // namespaces
|
Chris@16
|
300
|
Chris@16
|
301 #endif // BOOST_MATH_ELLINT_RJ_HPP
|
Chris@16
|
302
|