annotate DEPENDENCIES/generic/include/boost/math/special_functions/detail/polygamma.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents f46d142149f5
children
rev   line source
Chris@102 1
Chris@102 2 ///////////////////////////////////////////////////////////////////////////////
Chris@102 3 // Copyright 2013 Nikhar Agrawal
Chris@102 4 // Copyright 2013 Christopher Kormanyos
Chris@102 5 // Copyright 2014 John Maddock
Chris@102 6 // Copyright 2013 Paul Bristow
Chris@102 7 // Distributed under the Boost
Chris@102 8 // Software License, Version 1.0. (See accompanying file
Chris@102 9 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@102 10
Chris@102 11 #ifndef _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
Chris@102 12 #define _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
Chris@102 13
Chris@102 14 #include <cmath>
Chris@102 15 #include <limits>
Chris@102 16 #include <boost/cstdint.hpp>
Chris@102 17 #include <boost/math/policies/policy.hpp>
Chris@102 18 #include <boost/math/special_functions/bernoulli.hpp>
Chris@102 19 #include <boost/math/special_functions/trunc.hpp>
Chris@102 20 #include <boost/math/special_functions/zeta.hpp>
Chris@102 21 #include <boost/math/special_functions/digamma.hpp>
Chris@102 22 #include <boost/math/special_functions/sin_pi.hpp>
Chris@102 23 #include <boost/math/special_functions/cos_pi.hpp>
Chris@102 24 #include <boost/math/special_functions/pow.hpp>
Chris@102 25 #include <boost/mpl/if.hpp>
Chris@102 26 #include <boost/mpl/int.hpp>
Chris@102 27 #include <boost/static_assert.hpp>
Chris@102 28 #include <boost/type_traits/is_convertible.hpp>
Chris@102 29
Chris@102 30 namespace boost { namespace math { namespace detail{
Chris@102 31
Chris@102 32 template<class T, class Policy>
Chris@102 33 T polygamma_atinfinityplus(const int n, const T& x, const Policy& pol, const char* function) // for large values of x such as for x> 400
Chris@102 34 {
Chris@102 35 // See http://functions.wolfram.com/GammaBetaErf/PolyGamma2/06/02/0001/
Chris@102 36 BOOST_MATH_STD_USING
Chris@102 37 //
Chris@102 38 // sum == current value of accumulated sum.
Chris@102 39 // term == value of current term to be added to sum.
Chris@102 40 // part_term == value of current term excluding the Bernoulli number part
Chris@102 41 //
Chris@102 42 if(n + x == x)
Chris@102 43 {
Chris@102 44 // x is crazy large, just concentrate on the first part of the expression and use logs:
Chris@102 45 if(n == 1) return 1 / x;
Chris@102 46 T nlx = n * log(x);
Chris@102 47 if((nlx < tools::log_max_value<T>()) && (n < max_factorial<T>::value))
Chris@102 48 return ((n & 1) ? 1 : -1) * boost::math::factorial<T>(n - 1) * pow(x, -n);
Chris@102 49 else
Chris@102 50 return ((n & 1) ? 1 : -1) * exp(boost::math::lgamma(T(n), pol) - n * log(x));
Chris@102 51 }
Chris@102 52 T term, sum, part_term;
Chris@102 53 T x_squared = x * x;
Chris@102 54 //
Chris@102 55 // Start by setting part_term to:
Chris@102 56 //
Chris@102 57 // (n-1)! / x^(n+1)
Chris@102 58 //
Chris@102 59 // which is common to both the first term of the series (with k = 1)
Chris@102 60 // and to the leading part.
Chris@102 61 // We can then get to the leading term by:
Chris@102 62 //
Chris@102 63 // part_term * (n + 2 * x) / 2
Chris@102 64 //
Chris@102 65 // and to the first term in the series
Chris@102 66 // (excluding the Bernoulli number) by:
Chris@102 67 //
Chris@102 68 // part_term n * (n + 1) / (2x)
Chris@102 69 //
Chris@102 70 // If either the factorial would overflow,
Chris@102 71 // or the power term underflows, this just gets set to 0 and then we
Chris@102 72 // know that we have to use logs for the initial terms:
Chris@102 73 //
Chris@102 74 part_term = ((n > boost::math::max_factorial<T>::value) && (T(n) * n > tools::log_max_value<T>()))
Chris@102 75 ? T(0) : static_cast<T>(boost::math::factorial<T>(n - 1, pol) * pow(x, -n - 1));
Chris@102 76 if(part_term == 0)
Chris@102 77 {
Chris@102 78 // Either n is very large, or the power term underflows,
Chris@102 79 // set the initial values of part_term, term and sum via logs:
Chris@102 80 part_term = boost::math::lgamma(n, pol) - (n + 1) * log(x);
Chris@102 81 sum = exp(part_term + log(n + 2 * x) - boost::math::constants::ln_two<T>());
Chris@102 82 part_term += log(T(n) * (n + 1)) - boost::math::constants::ln_two<T>() - log(x);
Chris@102 83 part_term = exp(part_term);
Chris@102 84 }
Chris@102 85 else
Chris@102 86 {
Chris@102 87 sum = part_term * (n + 2 * x) / 2;
Chris@102 88 part_term *= (T(n) * (n + 1)) / 2;
Chris@102 89 part_term /= x;
Chris@102 90 }
Chris@102 91 //
Chris@102 92 // If the leading term is 0, so is the result:
Chris@102 93 //
Chris@102 94 if(sum == 0)
Chris@102 95 return sum;
Chris@102 96
Chris@102 97 for(unsigned k = 1;;)
Chris@102 98 {
Chris@102 99 term = part_term * boost::math::bernoulli_b2n<T>(k, pol);
Chris@102 100 sum += term;
Chris@102 101 //
Chris@102 102 // Normal termination condition:
Chris@102 103 //
Chris@102 104 if(fabs(term / sum) < tools::epsilon<T>())
Chris@102 105 break;
Chris@102 106 //
Chris@102 107 // Increment our counter, and move part_term on to the next value:
Chris@102 108 //
Chris@102 109 ++k;
Chris@102 110 part_term *= T(n + 2 * k - 2) * (n - 1 + 2 * k);
Chris@102 111 part_term /= (2 * k - 1) * 2 * k;
Chris@102 112 part_term /= x_squared;
Chris@102 113 //
Chris@102 114 // Emergency get out termination condition:
Chris@102 115 //
Chris@102 116 if(k > policies::get_max_series_iterations<Policy>())
Chris@102 117 {
Chris@102 118 return policies::raise_evaluation_error(function, "Series did not converge, closest value was %1%", sum, pol);
Chris@102 119 }
Chris@102 120 }
Chris@102 121
Chris@102 122 if((n - 1) & 1)
Chris@102 123 sum = -sum;
Chris@102 124
Chris@102 125 return sum;
Chris@102 126 }
Chris@102 127
Chris@102 128 template<class T, class Policy>
Chris@102 129 T polygamma_attransitionplus(const int n, const T& x, const Policy& pol, const char* function)
Chris@102 130 {
Chris@102 131 // See: http://functions.wolfram.com/GammaBetaErf/PolyGamma2/16/01/01/0017/
Chris@102 132
Chris@102 133 // Use N = (0.4 * digits) + (4 * n) for target value for x:
Chris@102 134 BOOST_MATH_STD_USING
Chris@102 135 const int d4d = static_cast<int>(0.4F * policies::digits_base10<T, Policy>());
Chris@102 136 const int N = d4d + (4 * n);
Chris@102 137 const int m = n;
Chris@102 138 const int iter = N - itrunc(x);
Chris@102 139
Chris@102 140 if(iter > (int)policies::get_max_series_iterations<Policy>())
Chris@102 141 return policies::raise_evaluation_error<T>(function, ("Exceeded maximum series evaluations evaluating at n = " + boost::lexical_cast<std::string>(n) + " and x = %1%").c_str(), x, pol);
Chris@102 142
Chris@102 143 const int minus_m_minus_one = -m - 1;
Chris@102 144
Chris@102 145 T z(x);
Chris@102 146 T sum0(0);
Chris@102 147 T z_plus_k_pow_minus_m_minus_one(0);
Chris@102 148
Chris@102 149 // Forward recursion to larger x, need to check for overflow first though:
Chris@102 150 if(log(z + iter) * minus_m_minus_one > -tools::log_max_value<T>())
Chris@102 151 {
Chris@102 152 for(int k = 1; k <= iter; ++k)
Chris@102 153 {
Chris@102 154 z_plus_k_pow_minus_m_minus_one = pow(z, minus_m_minus_one);
Chris@102 155 sum0 += z_plus_k_pow_minus_m_minus_one;
Chris@102 156 z += 1;
Chris@102 157 }
Chris@102 158 sum0 *= boost::math::factorial<T>(n);
Chris@102 159 }
Chris@102 160 else
Chris@102 161 {
Chris@102 162 for(int k = 1; k <= iter; ++k)
Chris@102 163 {
Chris@102 164 T log_term = log(z) * minus_m_minus_one + boost::math::lgamma(T(n + 1), pol);
Chris@102 165 sum0 += exp(log_term);
Chris@102 166 z += 1;
Chris@102 167 }
Chris@102 168 }
Chris@102 169 if((n - 1) & 1)
Chris@102 170 sum0 = -sum0;
Chris@102 171
Chris@102 172 return sum0 + polygamma_atinfinityplus(n, z, pol, function);
Chris@102 173 }
Chris@102 174
Chris@102 175 template <class T, class Policy>
Chris@102 176 T polygamma_nearzero(int n, T x, const Policy& pol, const char* function)
Chris@102 177 {
Chris@102 178 BOOST_MATH_STD_USING
Chris@102 179 //
Chris@102 180 // If we take this expansion for polygamma: http://functions.wolfram.com/06.15.06.0003.02
Chris@102 181 // and substitute in this expression for polygamma(n, 1): http://functions.wolfram.com/06.15.03.0009.01
Chris@102 182 // we get an alternating series for polygamma when x is small in terms of zeta functions of
Chris@102 183 // integer arguments (which are easy to evaluate, at least when the integer is even).
Chris@102 184 //
Chris@102 185 // In order to avoid spurious overflow, save the n! term for later, and rescale at the end:
Chris@102 186 //
Chris@102 187 T scale = boost::math::factorial<T>(n, pol);
Chris@102 188 //
Chris@102 189 // "factorial_part" contains everything except the zeta function
Chris@102 190 // evaluations in each term:
Chris@102 191 //
Chris@102 192 T factorial_part = 1;
Chris@102 193 //
Chris@102 194 // "prefix" is what we'll be adding the accumulated sum to, it will
Chris@102 195 // be n! / z^(n+1), but since we're scaling by n! it's just
Chris@102 196 // 1 / z^(n+1) for now:
Chris@102 197 //
Chris@102 198 T prefix = pow(x, n + 1);
Chris@102 199 if(prefix == 0)
Chris@102 200 return boost::math::policies::raise_overflow_error<T>(function, 0, pol);
Chris@102 201 prefix = 1 / prefix;
Chris@102 202 //
Chris@102 203 // First term in the series is necessarily < zeta(2) < 2, so
Chris@102 204 // ignore the sum if it will have no effect on the result anyway:
Chris@102 205 //
Chris@102 206 if(prefix > 2 / policies::get_epsilon<T, Policy>())
Chris@102 207 return ((n & 1) ? 1 : -1) *
Chris@102 208 (tools::max_value<T>() / prefix < scale ? policies::raise_overflow_error<T>(function, 0, pol) : prefix * scale);
Chris@102 209 //
Chris@102 210 // As this is an alternating series we could accelerate it using
Chris@102 211 // "Convergence Acceleration of Alternating Series",
Chris@102 212 // Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier, Experimental Mathematics, 1999.
Chris@102 213 // In practice however, it appears not to make any difference to the number of terms
Chris@102 214 // required except in some edge cases which are filtered out anyway before we get here.
Chris@102 215 //
Chris@102 216 T sum = prefix;
Chris@102 217 for(unsigned k = 0;;)
Chris@102 218 {
Chris@102 219 // Get the k'th term:
Chris@102 220 T term = factorial_part * boost::math::zeta(T(k + n + 1), pol);
Chris@102 221 sum += term;
Chris@102 222 // Termination condition:
Chris@102 223 if(fabs(term) < fabs(sum * boost::math::policies::get_epsilon<T, Policy>()))
Chris@102 224 break;
Chris@102 225 //
Chris@102 226 // Move on k and factorial_part:
Chris@102 227 //
Chris@102 228 ++k;
Chris@102 229 factorial_part *= (-x * (n + k)) / k;
Chris@102 230 //
Chris@102 231 // Last chance exit:
Chris@102 232 //
Chris@102 233 if(k > policies::get_max_series_iterations<Policy>())
Chris@102 234 return policies::raise_evaluation_error<T>(function, "Series did not converge, best value is %1%", sum, pol);
Chris@102 235 }
Chris@102 236 //
Chris@102 237 // We need to multiply by the scale, at each stage checking for oveflow:
Chris@102 238 //
Chris@102 239 if(boost::math::tools::max_value<T>() / scale < sum)
Chris@102 240 return boost::math::policies::raise_overflow_error<T>(function, 0, pol);
Chris@102 241 sum *= scale;
Chris@102 242 return n & 1 ? sum : -sum;
Chris@102 243 }
Chris@102 244
Chris@102 245 //
Chris@102 246 // Helper function which figures out which slot our coefficient is in
Chris@102 247 // given an angle multiplier for the cosine term of power:
Chris@102 248 //
Chris@102 249 template <class Table>
Chris@102 250 typename Table::value_type::reference dereference_table(Table& table, unsigned row, unsigned power)
Chris@102 251 {
Chris@102 252 return table[row][power / 2];
Chris@102 253 }
Chris@102 254
Chris@102 255
Chris@102 256
Chris@102 257 template <class T, class Policy>
Chris@102 258 T poly_cot_pi(int n, T x, T xc, const Policy& pol, const char* function)
Chris@102 259 {
Chris@102 260 BOOST_MATH_STD_USING
Chris@102 261 // Return n'th derivative of cot(pi*x) at x, these are simply
Chris@102 262 // tabulated for up to n = 9, beyond that it is possible to
Chris@102 263 // calculate coefficients as follows:
Chris@102 264 //
Chris@102 265 // The general form of each derivative is:
Chris@102 266 //
Chris@102 267 // pi^n * SUM{k=0, n} C[k,n] * cos^k(pi * x) * csc^(n+1)(pi * x)
Chris@102 268 //
Chris@102 269 // With constant C[0,1] = -1 and all other C[k,n] = 0;
Chris@102 270 // Then for each k < n+1:
Chris@102 271 // C[k-1, n+1] -= k * C[k, n];
Chris@102 272 // C[k+1, n+1] += (k-n-1) * C[k, n];
Chris@102 273 //
Chris@102 274 // Note that there are many different ways of representing this derivative thanks to
Chris@102 275 // the many trigomonetric identies available. In particular, the sum of powers of
Chris@102 276 // cosines could be replaced by a sum of cosine multiple angles, and indeed if you
Chris@102 277 // plug the derivative into Mathematica this is the form it will give. The two
Chris@102 278 // forms are related via the Chebeshev polynomials of the first kind and
Chris@102 279 // T_n(cos(x)) = cos(n x). The polynomial form has the great advantage that
Chris@102 280 // all the cosine terms are zero at half integer arguments - right where this
Chris@102 281 // function has it's minumum - thus avoiding cancellation error in this region.
Chris@102 282 //
Chris@102 283 // And finally, since every other term in the polynomials is zero, we can save
Chris@102 284 // space by only storing the non-zero terms. This greatly complexifies
Chris@102 285 // subscripting the tables in the calculation, but halves the storage space
Chris@102 286 // (and complexity for that matter).
Chris@102 287 //
Chris@102 288 T s = fabs(x) < fabs(xc) ? boost::math::sin_pi(x, pol) : boost::math::sin_pi(xc, pol);
Chris@102 289 T c = boost::math::cos_pi(x, pol);
Chris@102 290 switch(n)
Chris@102 291 {
Chris@102 292 case 1:
Chris@102 293 return -constants::pi<T, Policy>() / (s * s);
Chris@102 294 case 2:
Chris@102 295 {
Chris@102 296 return 2 * constants::pi<T, Policy>() * constants::pi<T, Policy>() * c / boost::math::pow<3>(s, pol);
Chris@102 297 }
Chris@102 298 case 3:
Chris@102 299 {
Chris@102 300 int P[] = { -2, -4 };
Chris@102 301 return boost::math::pow<3>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<4>(s, pol);
Chris@102 302 }
Chris@102 303 case 4:
Chris@102 304 {
Chris@102 305 int P[] = { 16, 8 };
Chris@102 306 return boost::math::pow<4>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<5>(s, pol);
Chris@102 307 }
Chris@102 308 case 5:
Chris@102 309 {
Chris@102 310 int P[] = { -16, -88, -16 };
Chris@102 311 return boost::math::pow<5>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<6>(s, pol);
Chris@102 312 }
Chris@102 313 case 6:
Chris@102 314 {
Chris@102 315 int P[] = { 272, 416, 32 };
Chris@102 316 return boost::math::pow<6>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<7>(s, pol);
Chris@102 317 }
Chris@102 318 case 7:
Chris@102 319 {
Chris@102 320 int P[] = { -272, -2880, -1824, -64 };
Chris@102 321 return boost::math::pow<7>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<8>(s, pol);
Chris@102 322 }
Chris@102 323 case 8:
Chris@102 324 {
Chris@102 325 int P[] = { 7936, 24576, 7680, 128 };
Chris@102 326 return boost::math::pow<8>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<9>(s, pol);
Chris@102 327 }
Chris@102 328 case 9:
Chris@102 329 {
Chris@102 330 int P[] = { -7936, -137216, -185856, -31616, -256 };
Chris@102 331 return boost::math::pow<9>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<10>(s, pol);
Chris@102 332 }
Chris@102 333 case 10:
Chris@102 334 {
Chris@102 335 int P[] = { 353792, 1841152, 1304832, 128512, 512 };
Chris@102 336 return boost::math::pow<10>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<11>(s, pol);
Chris@102 337 }
Chris@102 338 case 11:
Chris@102 339 {
Chris@102 340 int P[] = { -353792, -9061376, -21253376, -8728576, -518656, -1024};
Chris@102 341 return boost::math::pow<11>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<12>(s, pol);
Chris@102 342 }
Chris@102 343 case 12:
Chris@102 344 {
Chris@102 345 int P[] = { 22368256, 175627264, 222398464, 56520704, 2084864, 2048 };
Chris@102 346 return boost::math::pow<12>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<13>(s, pol);
Chris@102 347 }
Chris@102 348 #ifndef BOOST_NO_LONG_LONG
Chris@102 349 case 13:
Chris@102 350 {
Chris@102 351 long long P[] = { -22368256LL, -795300864LL, -2868264960LL, -2174832640LL, -357888000LL, -8361984LL, -4096 };
Chris@102 352 return boost::math::pow<13>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<14>(s, pol);
Chris@102 353 }
Chris@102 354 case 14:
Chris@102 355 {
Chris@102 356 long long P[] = { 1903757312LL, 21016670208LL, 41731645440LL, 20261765120LL, 2230947840LL, 33497088LL, 8192 };
Chris@102 357 return boost::math::pow<14>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<15>(s, pol);
Chris@102 358 }
Chris@102 359 case 15:
Chris@102 360 {
Chris@102 361 long long P[] = { -1903757312LL, -89702612992LL, -460858269696LL, -559148810240LL, -182172651520LL, -13754155008LL, -134094848LL, -16384 };
Chris@102 362 return boost::math::pow<15>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<16>(s, pol);
Chris@102 363 }
Chris@102 364 case 16:
Chris@102 365 {
Chris@102 366 long long P[] = { 209865342976LL, 3099269660672LL, 8885192097792LL, 7048869314560LL, 1594922762240LL, 84134068224LL, 536608768LL, 32768 };
Chris@102 367 return boost::math::pow<16>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<17>(s, pol);
Chris@102 368 }
Chris@102 369 case 17:
Chris@102 370 {
Chris@102 371 long long P[] = { -209865342976LL, -12655654469632LL, -87815735738368LL, -155964390375424LL, -84842998005760LL, -13684856848384LL, -511780323328LL, -2146926592LL, -65536 };
Chris@102 372 return boost::math::pow<17>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<18>(s, pol);
Chris@102 373 }
Chris@102 374 case 18:
Chris@102 375 {
Chris@102 376 long long P[] = { 29088885112832LL, 553753414467584LL, 2165206642589696LL, 2550316668551168LL, 985278548541440LL, 115620218667008LL, 3100738912256LL, 8588754944LL, 131072 };
Chris@102 377 return boost::math::pow<18>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<19>(s, pol);
Chris@102 378 }
Chris@102 379 case 19:
Chris@102 380 {
Chris@102 381 long long P[] = { -29088885112832LL, -2184860175433728LL, -19686087844429824LL, -48165109676113920LL, -39471306959486976LL, -11124607890751488LL, -965271355195392LL, -18733264797696LL, -34357248000LL, -262144 };
Chris@102 382 return boost::math::pow<19>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<20>(s, pol);
Chris@102 383 }
Chris@102 384 case 20:
Chris@102 385 {
Chris@102 386 long long P[] = { 4951498053124096LL, 118071834535526400LL, 603968063567560704LL, 990081991141490688LL, 584901762421358592LL, 122829335169859584LL, 7984436548730880LL, 112949304754176LL, 137433710592LL, 524288 };
Chris@102 387 return boost::math::pow<20>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<21>(s, pol);
Chris@102 388 }
Chris@102 389 #endif
Chris@102 390 }
Chris@102 391
Chris@102 392 //
Chris@102 393 // We'll have to compute the coefficients up to n,
Chris@102 394 // complexity is O(n^2) which we don't worry about for now
Chris@102 395 // as the values are computed once and then cached.
Chris@102 396 // However, if the final evaluation would have too many
Chris@102 397 // terms just bail out right away:
Chris@102 398 //
Chris@102 399 if((unsigned)n / 2u > policies::get_max_series_iterations<Policy>())
Chris@102 400 return policies::raise_evaluation_error<T>(function, "The value of n is so large that we're unable to compute the result in reasonable time, best guess is %1%", 0, pol);
Chris@102 401 #ifdef BOOST_HAS_THREADS
Chris@102 402 static boost::detail::lightweight_mutex m;
Chris@102 403 boost::detail::lightweight_mutex::scoped_lock l(m);
Chris@102 404 #endif
Chris@102 405 static std::vector<std::vector<T> > table(1, std::vector<T>(1, T(-1)));
Chris@102 406
Chris@102 407 int index = n - 1;
Chris@102 408
Chris@102 409 if(index >= (int)table.size())
Chris@102 410 {
Chris@102 411 for(int i = (int)table.size() - 1; i < index; ++i)
Chris@102 412 {
Chris@102 413 int offset = i & 1; // 1 if the first cos power is 0, otherwise 0.
Chris@102 414 int sin_order = i + 2; // order of the sin term
Chris@102 415 int max_cos_order = sin_order - 1; // largest order of the polynomial of cos terms
Chris@102 416 int max_columns = (max_cos_order - offset) / 2; // How many entries there are in the current row.
Chris@102 417 int next_offset = offset ? 0 : 1;
Chris@102 418 int next_max_columns = (max_cos_order + 1 - next_offset) / 2; // How many entries there will be in the next row
Chris@102 419 table.push_back(std::vector<T>(next_max_columns + 1, T(0)));
Chris@102 420
Chris@102 421 for(int column = 0; column <= max_columns; ++column)
Chris@102 422 {
Chris@102 423 int cos_order = 2 * column + offset; // order of the cosine term in entry "column"
Chris@102 424 BOOST_ASSERT(column < (int)table[i].size());
Chris@102 425 BOOST_ASSERT((cos_order + 1) / 2 < (int)table[i + 1].size());
Chris@102 426 table[i + 1][(cos_order + 1) / 2] += ((cos_order - sin_order) * table[i][column]) / (sin_order - 1);
Chris@102 427 if(cos_order)
Chris@102 428 table[i + 1][(cos_order - 1) / 2] += (-cos_order * table[i][column]) / (sin_order - 1);
Chris@102 429 }
Chris@102 430 }
Chris@102 431
Chris@102 432 }
Chris@102 433 T sum = boost::math::tools::evaluate_even_polynomial(&table[index][0], c, table[index].size());
Chris@102 434 if(index & 1)
Chris@102 435 sum *= c; // First coeffient is order 1, and really an odd polynomial.
Chris@102 436 if(sum == 0)
Chris@102 437 return sum;
Chris@102 438 //
Chris@102 439 // The remaining terms are computed using logs since the powers and factorials
Chris@102 440 // get real large real quick:
Chris@102 441 //
Chris@102 442 T power_terms = n * log(boost::math::constants::pi<T>());
Chris@102 443 if(s == 0)
Chris@102 444 return sum * boost::math::policies::raise_overflow_error<T>(function, 0, pol);
Chris@102 445 power_terms -= log(fabs(s)) * (n + 1);
Chris@102 446 power_terms += boost::math::lgamma(T(n));
Chris@102 447 power_terms += log(fabs(sum));
Chris@102 448
Chris@102 449 if(power_terms > boost::math::tools::log_max_value<T>())
Chris@102 450 return sum * boost::math::policies::raise_overflow_error<T>(function, 0, pol);
Chris@102 451
Chris@102 452 return exp(power_terms) * ((s < 0) && ((n + 1) & 1) ? -1 : 1) * boost::math::sign(sum);
Chris@102 453 }
Chris@102 454
Chris@102 455 template <class T, class Policy>
Chris@102 456 struct polygamma_initializer
Chris@102 457 {
Chris@102 458 struct init
Chris@102 459 {
Chris@102 460 init()
Chris@102 461 {
Chris@102 462 // Forces initialization of our table of coefficients and mutex:
Chris@102 463 boost::math::polygamma(30, T(-2.5f), Policy());
Chris@102 464 }
Chris@102 465 void force_instantiate()const{}
Chris@102 466 };
Chris@102 467 static const init initializer;
Chris@102 468 static void force_instantiate()
Chris@102 469 {
Chris@102 470 initializer.force_instantiate();
Chris@102 471 }
Chris@102 472 };
Chris@102 473
Chris@102 474 template <class T, class Policy>
Chris@102 475 const typename polygamma_initializer<T, Policy>::init polygamma_initializer<T, Policy>::initializer;
Chris@102 476
Chris@102 477 template<class T, class Policy>
Chris@102 478 inline T polygamma_imp(const int n, T x, const Policy &pol)
Chris@102 479 {
Chris@102 480 BOOST_MATH_STD_USING
Chris@102 481 static const char* function = "boost::math::polygamma<%1%>(int, %1%)";
Chris@102 482 polygamma_initializer<T, Policy>::initializer.force_instantiate();
Chris@102 483 if(n < 0)
Chris@102 484 return policies::raise_domain_error<T>(function, "Order must be >= 0, but got %1%", static_cast<T>(n), pol);
Chris@102 485 if(x < 0)
Chris@102 486 {
Chris@102 487 if(floor(x) == x)
Chris@102 488 {
Chris@102 489 //
Chris@102 490 // Result is infinity if x is odd, and a pole error if x is even.
Chris@102 491 //
Chris@102 492 if(lltrunc(x) & 1)
Chris@102 493 return policies::raise_overflow_error<T>(function, 0, pol);
Chris@102 494 else
Chris@102 495 return policies::raise_pole_error<T>(function, "Evaluation at negative integer %1%", x, pol);
Chris@102 496 }
Chris@102 497 T z = 1 - x;
Chris@102 498 T result = polygamma_imp(n, z, pol) + constants::pi<T, Policy>() * poly_cot_pi(n, z, x, pol, function);
Chris@102 499 return n & 1 ? T(-result) : result;
Chris@102 500 }
Chris@102 501 //
Chris@102 502 // Limit for use of small-x-series is chosen
Chris@102 503 // so that the series doesn't go too divergent
Chris@102 504 // in the first few terms. Ordinarily this
Chris@102 505 // would mean setting the limit to ~ 1 / n,
Chris@102 506 // but we can tolerate a small amount of divergence:
Chris@102 507 //
Chris@102 508 T small_x_limit = std::min(T(T(5) / n), T(0.25f));
Chris@102 509 if(x < small_x_limit)
Chris@102 510 {
Chris@102 511 return polygamma_nearzero(n, x, pol, function);
Chris@102 512 }
Chris@102 513 else if(x > 0.4F * policies::digits_base10<T, Policy>() + 4.0f * n)
Chris@102 514 {
Chris@102 515 return polygamma_atinfinityplus(n, x, pol, function);
Chris@102 516 }
Chris@102 517 else if(x == 1)
Chris@102 518 {
Chris@102 519 return (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
Chris@102 520 }
Chris@102 521 else if(x == 0.5f)
Chris@102 522 {
Chris@102 523 T result = (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
Chris@102 524 if(fabs(result) >= ldexp(tools::max_value<T>(), -n - 1))
Chris@102 525 return boost::math::sign(result) * policies::raise_overflow_error<T>(function, 0, pol);
Chris@102 526 result *= ldexp(T(1), n + 1) - 1;
Chris@102 527 return result;
Chris@102 528 }
Chris@102 529 else
Chris@102 530 {
Chris@102 531 return polygamma_attransitionplus(n, x, pol, function);
Chris@102 532 }
Chris@102 533 }
Chris@102 534
Chris@102 535 } } } // namespace boost::math::detail
Chris@102 536
Chris@102 537 #endif // _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
Chris@102 538