Chris@16
|
1 // (C) Copyright John Maddock 2006.
|
Chris@16
|
2 // Use, modification and distribution are subject to the
|
Chris@16
|
3 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5
|
Chris@16
|
6 #ifndef BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
|
Chris@16
|
7 #define BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
|
Chris@16
|
8
|
Chris@16
|
9 #ifdef _MSC_VER
|
Chris@16
|
10 #pragma once
|
Chris@16
|
11 #endif
|
Chris@16
|
12
|
Chris@16
|
13 #include <boost/math/tools/big_constant.hpp>
|
Chris@16
|
14
|
Chris@16
|
15 namespace boost{ namespace math{ namespace detail{
|
Chris@16
|
16
|
Chris@16
|
17 //
|
Chris@16
|
18 // These need forward declaring to keep GCC happy:
|
Chris@16
|
19 //
|
Chris@16
|
20 template <class T, class Policy, class Lanczos>
|
Chris@16
|
21 T gamma_imp(T z, const Policy& pol, const Lanczos& l);
|
Chris@16
|
22 template <class T, class Policy>
|
Chris@16
|
23 T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos& l);
|
Chris@16
|
24
|
Chris@16
|
25 //
|
Chris@16
|
26 // lgamma for small arguments:
|
Chris@16
|
27 //
|
Chris@16
|
28 template <class T, class Policy, class Lanczos>
|
Chris@16
|
29 T lgamma_small_imp(T z, T zm1, T zm2, const mpl::int_<64>&, const Policy& /* l */, const Lanczos&)
|
Chris@16
|
30 {
|
Chris@16
|
31 // This version uses rational approximations for small
|
Chris@16
|
32 // values of z accurate enough for 64-bit mantissas
|
Chris@16
|
33 // (80-bit long doubles), works well for 53-bit doubles as well.
|
Chris@16
|
34 // Lanczos is only used to select the Lanczos function.
|
Chris@16
|
35
|
Chris@16
|
36 BOOST_MATH_STD_USING // for ADL of std names
|
Chris@16
|
37 T result = 0;
|
Chris@16
|
38 if(z < tools::epsilon<T>())
|
Chris@16
|
39 {
|
Chris@16
|
40 result = -log(z);
|
Chris@16
|
41 }
|
Chris@16
|
42 else if((zm1 == 0) || (zm2 == 0))
|
Chris@16
|
43 {
|
Chris@16
|
44 // nothing to do, result is zero....
|
Chris@16
|
45 }
|
Chris@16
|
46 else if(z > 2)
|
Chris@16
|
47 {
|
Chris@16
|
48 //
|
Chris@16
|
49 // Begin by performing argument reduction until
|
Chris@16
|
50 // z is in [2,3):
|
Chris@16
|
51 //
|
Chris@16
|
52 if(z >= 3)
|
Chris@16
|
53 {
|
Chris@16
|
54 do
|
Chris@16
|
55 {
|
Chris@16
|
56 z -= 1;
|
Chris@16
|
57 zm2 -= 1;
|
Chris@16
|
58 result += log(z);
|
Chris@16
|
59 }while(z >= 3);
|
Chris@16
|
60 // Update zm2, we need it below:
|
Chris@16
|
61 zm2 = z - 2;
|
Chris@16
|
62 }
|
Chris@16
|
63
|
Chris@16
|
64 //
|
Chris@16
|
65 // Use the following form:
|
Chris@16
|
66 //
|
Chris@16
|
67 // lgamma(z) = (z-2)(z+1)(Y + R(z-2))
|
Chris@16
|
68 //
|
Chris@16
|
69 // where R(z-2) is a rational approximation optimised for
|
Chris@16
|
70 // low absolute error - as long as it's absolute error
|
Chris@16
|
71 // is small compared to the constant Y - then any rounding
|
Chris@16
|
72 // error in it's computation will get wiped out.
|
Chris@16
|
73 //
|
Chris@16
|
74 // R(z-2) has the following properties:
|
Chris@16
|
75 //
|
Chris@16
|
76 // At double: Max error found: 4.231e-18
|
Chris@16
|
77 // At long double: Max error found: 1.987e-21
|
Chris@16
|
78 // Maximum Deviation Found (approximation error): 5.900e-24
|
Chris@16
|
79 //
|
Chris@16
|
80 static const T P[] = {
|
Chris@16
|
81 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.180355685678449379109e-1)),
|
Chris@16
|
82 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25126649619989678683e-1)),
|
Chris@16
|
83 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.494103151567532234274e-1)),
|
Chris@16
|
84 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.172491608709613993966e-1)),
|
Chris@16
|
85 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.259453563205438108893e-3)),
|
Chris@16
|
86 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.541009869215204396339e-3)),
|
Chris@16
|
87 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.324588649825948492091e-4))
|
Chris@16
|
88 };
|
Chris@16
|
89 static const T Q[] = {
|
Chris@16
|
90 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
|
Chris@16
|
91 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.196202987197795200688e1)),
|
Chris@16
|
92 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.148019669424231326694e1)),
|
Chris@16
|
93 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.541391432071720958364e0)),
|
Chris@16
|
94 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.988504251128010129477e-1)),
|
Chris@16
|
95 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.82130967464889339326e-2)),
|
Chris@16
|
96 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.224936291922115757597e-3)),
|
Chris@16
|
97 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.223352763208617092964e-6))
|
Chris@16
|
98 };
|
Chris@16
|
99
|
Chris@16
|
100 static const float Y = 0.158963680267333984375e0f;
|
Chris@16
|
101
|
Chris@16
|
102 T r = zm2 * (z + 1);
|
Chris@16
|
103 T R = tools::evaluate_polynomial(P, zm2);
|
Chris@16
|
104 R /= tools::evaluate_polynomial(Q, zm2);
|
Chris@16
|
105
|
Chris@16
|
106 result += r * Y + r * R;
|
Chris@16
|
107 }
|
Chris@16
|
108 else
|
Chris@16
|
109 {
|
Chris@16
|
110 //
|
Chris@16
|
111 // If z is less than 1 use recurrance to shift to
|
Chris@16
|
112 // z in the interval [1,2]:
|
Chris@16
|
113 //
|
Chris@16
|
114 if(z < 1)
|
Chris@16
|
115 {
|
Chris@16
|
116 result += -log(z);
|
Chris@16
|
117 zm2 = zm1;
|
Chris@16
|
118 zm1 = z;
|
Chris@16
|
119 z += 1;
|
Chris@16
|
120 }
|
Chris@16
|
121 //
|
Chris@16
|
122 // Two approximations, on for z in [1,1.5] and
|
Chris@16
|
123 // one for z in [1.5,2]:
|
Chris@16
|
124 //
|
Chris@16
|
125 if(z <= 1.5)
|
Chris@16
|
126 {
|
Chris@16
|
127 //
|
Chris@16
|
128 // Use the following form:
|
Chris@16
|
129 //
|
Chris@16
|
130 // lgamma(z) = (z-1)(z-2)(Y + R(z-1))
|
Chris@16
|
131 //
|
Chris@16
|
132 // where R(z-1) is a rational approximation optimised for
|
Chris@16
|
133 // low absolute error - as long as it's absolute error
|
Chris@16
|
134 // is small compared to the constant Y - then any rounding
|
Chris@16
|
135 // error in it's computation will get wiped out.
|
Chris@16
|
136 //
|
Chris@16
|
137 // R(z-1) has the following properties:
|
Chris@16
|
138 //
|
Chris@16
|
139 // At double precision: Max error found: 1.230011e-17
|
Chris@16
|
140 // At 80-bit long double precision: Max error found: 5.631355e-21
|
Chris@16
|
141 // Maximum Deviation Found: 3.139e-021
|
Chris@16
|
142 // Expected Error Term: 3.139e-021
|
Chris@16
|
143
|
Chris@16
|
144 //
|
Chris@16
|
145 static const float Y = 0.52815341949462890625f;
|
Chris@16
|
146
|
Chris@16
|
147 static const T P[] = {
|
Chris@16
|
148 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.490622454069039543534e-1)),
|
Chris@16
|
149 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.969117530159521214579e-1)),
|
Chris@16
|
150 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.414983358359495381969e0)),
|
Chris@16
|
151 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.406567124211938417342e0)),
|
Chris@16
|
152 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.158413586390692192217e0)),
|
Chris@16
|
153 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.240149820648571559892e-1)),
|
Chris@16
|
154 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100346687696279557415e-2))
|
Chris@16
|
155 };
|
Chris@16
|
156 static const T Q[] = {
|
Chris@16
|
157 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
|
Chris@16
|
158 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.302349829846463038743e1)),
|
Chris@16
|
159 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.348739585360723852576e1)),
|
Chris@16
|
160 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.191415588274426679201e1)),
|
Chris@16
|
161 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.507137738614363510846e0)),
|
Chris@16
|
162 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.577039722690451849648e-1)),
|
Chris@16
|
163 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.195768102601107189171e-2))
|
Chris@16
|
164 };
|
Chris@16
|
165
|
Chris@16
|
166 T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1);
|
Chris@16
|
167 T prefix = zm1 * zm2;
|
Chris@16
|
168
|
Chris@16
|
169 result += prefix * Y + prefix * r;
|
Chris@16
|
170 }
|
Chris@16
|
171 else
|
Chris@16
|
172 {
|
Chris@16
|
173 //
|
Chris@16
|
174 // Use the following form:
|
Chris@16
|
175 //
|
Chris@16
|
176 // lgamma(z) = (2-z)(1-z)(Y + R(2-z))
|
Chris@16
|
177 //
|
Chris@16
|
178 // where R(2-z) is a rational approximation optimised for
|
Chris@16
|
179 // low absolute error - as long as it's absolute error
|
Chris@16
|
180 // is small compared to the constant Y - then any rounding
|
Chris@16
|
181 // error in it's computation will get wiped out.
|
Chris@16
|
182 //
|
Chris@16
|
183 // R(2-z) has the following properties:
|
Chris@16
|
184 //
|
Chris@16
|
185 // At double precision, max error found: 1.797565e-17
|
Chris@16
|
186 // At 80-bit long double precision, max error found: 9.306419e-21
|
Chris@16
|
187 // Maximum Deviation Found: 2.151e-021
|
Chris@16
|
188 // Expected Error Term: 2.150e-021
|
Chris@16
|
189 //
|
Chris@16
|
190 static const float Y = 0.452017307281494140625f;
|
Chris@16
|
191
|
Chris@16
|
192 static const T P[] = {
|
Chris@16
|
193 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.292329721830270012337e-1)),
|
Chris@16
|
194 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.144216267757192309184e0)),
|
Chris@16
|
195 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.142440390738631274135e0)),
|
Chris@16
|
196 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.542809694055053558157e-1)),
|
Chris@16
|
197 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.850535976868336437746e-2)),
|
Chris@16
|
198 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.431171342679297331241e-3))
|
Chris@16
|
199 };
|
Chris@16
|
200 static const T Q[] = {
|
Chris@16
|
201 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
|
Chris@16
|
202 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.150169356054485044494e1)),
|
Chris@16
|
203 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.846973248876495016101e0)),
|
Chris@16
|
204 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.220095151814995745555e0)),
|
Chris@16
|
205 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25582797155975869989e-1)),
|
Chris@16
|
206 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100666795539143372762e-2)),
|
Chris@16
|
207 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.827193521891290553639e-6))
|
Chris@16
|
208 };
|
Chris@16
|
209 T r = zm2 * zm1;
|
Chris@16
|
210 T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2));
|
Chris@16
|
211
|
Chris@16
|
212 result += r * Y + r * R;
|
Chris@16
|
213 }
|
Chris@16
|
214 }
|
Chris@16
|
215 return result;
|
Chris@16
|
216 }
|
Chris@16
|
217 template <class T, class Policy, class Lanczos>
|
Chris@16
|
218 T lgamma_small_imp(T z, T zm1, T zm2, const mpl::int_<113>&, const Policy& /* l */, const Lanczos&)
|
Chris@16
|
219 {
|
Chris@16
|
220 //
|
Chris@16
|
221 // This version uses rational approximations for small
|
Chris@16
|
222 // values of z accurate enough for 113-bit mantissas
|
Chris@16
|
223 // (128-bit long doubles).
|
Chris@16
|
224 //
|
Chris@16
|
225 BOOST_MATH_STD_USING // for ADL of std names
|
Chris@16
|
226 T result = 0;
|
Chris@16
|
227 if(z < tools::epsilon<T>())
|
Chris@16
|
228 {
|
Chris@16
|
229 result = -log(z);
|
Chris@16
|
230 BOOST_MATH_INSTRUMENT_CODE(result);
|
Chris@16
|
231 }
|
Chris@16
|
232 else if((zm1 == 0) || (zm2 == 0))
|
Chris@16
|
233 {
|
Chris@16
|
234 // nothing to do, result is zero....
|
Chris@16
|
235 }
|
Chris@16
|
236 else if(z > 2)
|
Chris@16
|
237 {
|
Chris@16
|
238 //
|
Chris@16
|
239 // Begin by performing argument reduction until
|
Chris@16
|
240 // z is in [2,3):
|
Chris@16
|
241 //
|
Chris@16
|
242 if(z >= 3)
|
Chris@16
|
243 {
|
Chris@16
|
244 do
|
Chris@16
|
245 {
|
Chris@16
|
246 z -= 1;
|
Chris@16
|
247 result += log(z);
|
Chris@16
|
248 }while(z >= 3);
|
Chris@16
|
249 zm2 = z - 2;
|
Chris@16
|
250 }
|
Chris@16
|
251 BOOST_MATH_INSTRUMENT_CODE(zm2);
|
Chris@16
|
252 BOOST_MATH_INSTRUMENT_CODE(z);
|
Chris@16
|
253 BOOST_MATH_INSTRUMENT_CODE(result);
|
Chris@16
|
254
|
Chris@16
|
255 //
|
Chris@16
|
256 // Use the following form:
|
Chris@16
|
257 //
|
Chris@16
|
258 // lgamma(z) = (z-2)(z+1)(Y + R(z-2))
|
Chris@16
|
259 //
|
Chris@16
|
260 // where R(z-2) is a rational approximation optimised for
|
Chris@16
|
261 // low absolute error - as long as it's absolute error
|
Chris@16
|
262 // is small compared to the constant Y - then any rounding
|
Chris@16
|
263 // error in it's computation will get wiped out.
|
Chris@16
|
264 //
|
Chris@16
|
265 // Maximum Deviation Found (approximation error) 3.73e-37
|
Chris@16
|
266
|
Chris@16
|
267 static const T P[] = {
|
Chris@16
|
268 BOOST_MATH_BIG_CONSTANT(T, 113, -0.018035568567844937910504030027467476655),
|
Chris@16
|
269 BOOST_MATH_BIG_CONSTANT(T, 113, 0.013841458273109517271750705401202404195),
|
Chris@16
|
270 BOOST_MATH_BIG_CONSTANT(T, 113, 0.062031842739486600078866923383017722399),
|
Chris@16
|
271 BOOST_MATH_BIG_CONSTANT(T, 113, 0.052518418329052161202007865149435256093),
|
Chris@16
|
272 BOOST_MATH_BIG_CONSTANT(T, 113, 0.01881718142472784129191838493267755758),
|
Chris@16
|
273 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0025104830367021839316463675028524702846),
|
Chris@16
|
274 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00021043176101831873281848891452678568311),
|
Chris@16
|
275 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00010249622350908722793327719494037981166),
|
Chris@16
|
276 BOOST_MATH_BIG_CONSTANT(T, 113, -0.11381479670982006841716879074288176994e-4),
|
Chris@16
|
277 BOOST_MATH_BIG_CONSTANT(T, 113, -0.49999811718089980992888533630523892389e-6),
|
Chris@16
|
278 BOOST_MATH_BIG_CONSTANT(T, 113, -0.70529798686542184668416911331718963364e-8)
|
Chris@16
|
279 };
|
Chris@16
|
280 static const T Q[] = {
|
Chris@101
|
281 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
282 BOOST_MATH_BIG_CONSTANT(T, 113, 2.5877485070422317542808137697939233685),
|
Chris@16
|
283 BOOST_MATH_BIG_CONSTANT(T, 113, 2.8797959228352591788629602533153837126),
|
Chris@16
|
284 BOOST_MATH_BIG_CONSTANT(T, 113, 1.8030885955284082026405495275461180977),
|
Chris@16
|
285 BOOST_MATH_BIG_CONSTANT(T, 113, 0.69774331297747390169238306148355428436),
|
Chris@16
|
286 BOOST_MATH_BIG_CONSTANT(T, 113, 0.17261566063277623942044077039756583802),
|
Chris@16
|
287 BOOST_MATH_BIG_CONSTANT(T, 113, 0.02729301254544230229429621192443000121),
|
Chris@16
|
288 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026776425891195270663133581960016620433),
|
Chris@16
|
289 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00015244249160486584591370355730402168106),
|
Chris@16
|
290 BOOST_MATH_BIG_CONSTANT(T, 113, 0.43997034032479866020546814475414346627e-5),
|
Chris@16
|
291 BOOST_MATH_BIG_CONSTANT(T, 113, 0.46295080708455613044541885534408170934e-7),
|
Chris@16
|
292 BOOST_MATH_BIG_CONSTANT(T, 113, -0.93326638207459533682980757982834180952e-11),
|
Chris@16
|
293 BOOST_MATH_BIG_CONSTANT(T, 113, 0.42316456553164995177177407325292867513e-13)
|
Chris@16
|
294 };
|
Chris@16
|
295
|
Chris@16
|
296 T R = tools::evaluate_polynomial(P, zm2);
|
Chris@16
|
297 R /= tools::evaluate_polynomial(Q, zm2);
|
Chris@16
|
298
|
Chris@16
|
299 static const float Y = 0.158963680267333984375F;
|
Chris@16
|
300
|
Chris@16
|
301 T r = zm2 * (z + 1);
|
Chris@16
|
302
|
Chris@16
|
303 result += r * Y + r * R;
|
Chris@16
|
304 BOOST_MATH_INSTRUMENT_CODE(result);
|
Chris@16
|
305 }
|
Chris@16
|
306 else
|
Chris@16
|
307 {
|
Chris@16
|
308 //
|
Chris@16
|
309 // If z is less than 1 use recurrance to shift to
|
Chris@16
|
310 // z in the interval [1,2]:
|
Chris@16
|
311 //
|
Chris@16
|
312 if(z < 1)
|
Chris@16
|
313 {
|
Chris@16
|
314 result += -log(z);
|
Chris@16
|
315 zm2 = zm1;
|
Chris@16
|
316 zm1 = z;
|
Chris@16
|
317 z += 1;
|
Chris@16
|
318 }
|
Chris@16
|
319 BOOST_MATH_INSTRUMENT_CODE(result);
|
Chris@16
|
320 BOOST_MATH_INSTRUMENT_CODE(z);
|
Chris@16
|
321 BOOST_MATH_INSTRUMENT_CODE(zm2);
|
Chris@16
|
322 //
|
Chris@16
|
323 // Three approximations, on for z in [1,1.35], [1.35,1.625] and [1.625,1]
|
Chris@16
|
324 //
|
Chris@16
|
325 if(z <= 1.35)
|
Chris@16
|
326 {
|
Chris@16
|
327 //
|
Chris@16
|
328 // Use the following form:
|
Chris@16
|
329 //
|
Chris@16
|
330 // lgamma(z) = (z-1)(z-2)(Y + R(z-1))
|
Chris@16
|
331 //
|
Chris@16
|
332 // where R(z-1) is a rational approximation optimised for
|
Chris@16
|
333 // low absolute error - as long as it's absolute error
|
Chris@16
|
334 // is small compared to the constant Y - then any rounding
|
Chris@16
|
335 // error in it's computation will get wiped out.
|
Chris@16
|
336 //
|
Chris@16
|
337 // R(z-1) has the following properties:
|
Chris@16
|
338 //
|
Chris@16
|
339 // Maximum Deviation Found (approximation error) 1.659e-36
|
Chris@16
|
340 // Expected Error Term (theoretical error) 1.343e-36
|
Chris@16
|
341 // Max error found at 128-bit long double precision 1.007e-35
|
Chris@16
|
342 //
|
Chris@16
|
343 static const float Y = 0.54076099395751953125f;
|
Chris@16
|
344
|
Chris@16
|
345 static const T P[] = {
|
Chris@16
|
346 BOOST_MATH_BIG_CONSTANT(T, 113, 0.036454670944013329356512090082402429697),
|
Chris@16
|
347 BOOST_MATH_BIG_CONSTANT(T, 113, -0.066235835556476033710068679907798799959),
|
Chris@16
|
348 BOOST_MATH_BIG_CONSTANT(T, 113, -0.67492399795577182387312206593595565371),
|
Chris@16
|
349 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4345555263962411429855341651960000166),
|
Chris@16
|
350 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4894319559821365820516771951249649563),
|
Chris@16
|
351 BOOST_MATH_BIG_CONSTANT(T, 113, -0.87210277668067964629483299712322411566),
|
Chris@16
|
352 BOOST_MATH_BIG_CONSTANT(T, 113, -0.29602090537771744401524080430529369136),
|
Chris@16
|
353 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0561832587517836908929331992218879676),
|
Chris@16
|
354 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0053236785487328044334381502530383140443),
|
Chris@16
|
355 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00018629360291358130461736386077971890789),
|
Chris@16
|
356 BOOST_MATH_BIG_CONSTANT(T, 113, -0.10164985672213178500790406939467614498e-6),
|
Chris@16
|
357 BOOST_MATH_BIG_CONSTANT(T, 113, 0.13680157145361387405588201461036338274e-8)
|
Chris@16
|
358 };
|
Chris@16
|
359 static const T Q[] = {
|
Chris@16
|
360 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
361 BOOST_MATH_BIG_CONSTANT(T, 113, 4.9106336261005990534095838574132225599),
|
Chris@16
|
362 BOOST_MATH_BIG_CONSTANT(T, 113, 10.258804800866438510889341082793078432),
|
Chris@16
|
363 BOOST_MATH_BIG_CONSTANT(T, 113, 11.88588976846826108836629960537466889),
|
Chris@16
|
364 BOOST_MATH_BIG_CONSTANT(T, 113, 8.3455000546999704314454891036700998428),
|
Chris@16
|
365 BOOST_MATH_BIG_CONSTANT(T, 113, 3.6428823682421746343233362007194282703),
|
Chris@16
|
366 BOOST_MATH_BIG_CONSTANT(T, 113, 0.97465989807254572142266753052776132252),
|
Chris@16
|
367 BOOST_MATH_BIG_CONSTANT(T, 113, 0.15121052897097822172763084966793352524),
|
Chris@16
|
368 BOOST_MATH_BIG_CONSTANT(T, 113, 0.012017363555383555123769849654484594893),
|
Chris@16
|
369 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0003583032812720649835431669893011257277)
|
Chris@16
|
370 };
|
Chris@16
|
371
|
Chris@16
|
372 T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1);
|
Chris@16
|
373 T prefix = zm1 * zm2;
|
Chris@16
|
374
|
Chris@16
|
375 result += prefix * Y + prefix * r;
|
Chris@16
|
376 BOOST_MATH_INSTRUMENT_CODE(result);
|
Chris@16
|
377 }
|
Chris@16
|
378 else if(z <= 1.625)
|
Chris@16
|
379 {
|
Chris@16
|
380 //
|
Chris@16
|
381 // Use the following form:
|
Chris@16
|
382 //
|
Chris@16
|
383 // lgamma(z) = (2-z)(1-z)(Y + R(2-z))
|
Chris@16
|
384 //
|
Chris@16
|
385 // where R(2-z) is a rational approximation optimised for
|
Chris@16
|
386 // low absolute error - as long as it's absolute error
|
Chris@16
|
387 // is small compared to the constant Y - then any rounding
|
Chris@16
|
388 // error in it's computation will get wiped out.
|
Chris@16
|
389 //
|
Chris@16
|
390 // R(2-z) has the following properties:
|
Chris@16
|
391 //
|
Chris@16
|
392 // Max error found at 128-bit long double precision 9.634e-36
|
Chris@16
|
393 // Maximum Deviation Found (approximation error) 1.538e-37
|
Chris@16
|
394 // Expected Error Term (theoretical error) 2.350e-38
|
Chris@16
|
395 //
|
Chris@16
|
396 static const float Y = 0.483787059783935546875f;
|
Chris@16
|
397
|
Chris@16
|
398 static const T P[] = {
|
Chris@16
|
399 BOOST_MATH_BIG_CONSTANT(T, 113, -0.017977422421608624353488126610933005432),
|
Chris@16
|
400 BOOST_MATH_BIG_CONSTANT(T, 113, 0.18484528905298309555089509029244135703),
|
Chris@16
|
401 BOOST_MATH_BIG_CONSTANT(T, 113, -0.40401251514859546989565001431430884082),
|
Chris@16
|
402 BOOST_MATH_BIG_CONSTANT(T, 113, 0.40277179799147356461954182877921388182),
|
Chris@16
|
403 BOOST_MATH_BIG_CONSTANT(T, 113, -0.21993421441282936476709677700477598816),
|
Chris@16
|
404 BOOST_MATH_BIG_CONSTANT(T, 113, 0.069595742223850248095697771331107571011),
|
Chris@16
|
405 BOOST_MATH_BIG_CONSTANT(T, 113, -0.012681481427699686635516772923547347328),
|
Chris@16
|
406 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0012489322866834830413292771335113136034),
|
Chris@16
|
407 BOOST_MATH_BIG_CONSTANT(T, 113, -0.57058739515423112045108068834668269608e-4),
|
Chris@16
|
408 BOOST_MATH_BIG_CONSTANT(T, 113, 0.8207548771933585614380644961342925976e-6)
|
Chris@16
|
409 };
|
Chris@16
|
410 static const T Q[] = {
|
Chris@16
|
411 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
412 BOOST_MATH_BIG_CONSTANT(T, 113, -2.9629552288944259229543137757200262073),
|
Chris@16
|
413 BOOST_MATH_BIG_CONSTANT(T, 113, 3.7118380799042118987185957298964772755),
|
Chris@16
|
414 BOOST_MATH_BIG_CONSTANT(T, 113, -2.5569815272165399297600586376727357187),
|
Chris@16
|
415 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0546764918220835097855665680632153367),
|
Chris@16
|
416 BOOST_MATH_BIG_CONSTANT(T, 113, -0.26574021300894401276478730940980810831),
|
Chris@16
|
417 BOOST_MATH_BIG_CONSTANT(T, 113, 0.03996289731752081380552901986471233462),
|
Chris@16
|
418 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033398680924544836817826046380586480873),
|
Chris@16
|
419 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00013288854760548251757651556792598235735),
|
Chris@16
|
420 BOOST_MATH_BIG_CONSTANT(T, 113, -0.17194794958274081373243161848194745111e-5)
|
Chris@16
|
421 };
|
Chris@16
|
422 T r = zm2 * zm1;
|
Chris@16
|
423 T R = tools::evaluate_polynomial(P, T(0.625 - zm1)) / tools::evaluate_polynomial(Q, T(0.625 - zm1));
|
Chris@16
|
424
|
Chris@16
|
425 result += r * Y + r * R;
|
Chris@16
|
426 BOOST_MATH_INSTRUMENT_CODE(result);
|
Chris@16
|
427 }
|
Chris@16
|
428 else
|
Chris@16
|
429 {
|
Chris@16
|
430 //
|
Chris@16
|
431 // Same form as above.
|
Chris@16
|
432 //
|
Chris@16
|
433 // Max error found (at 128-bit long double precision) 1.831e-35
|
Chris@16
|
434 // Maximum Deviation Found (approximation error) 8.588e-36
|
Chris@16
|
435 // Expected Error Term (theoretical error) 1.458e-36
|
Chris@16
|
436 //
|
Chris@16
|
437 static const float Y = 0.443811893463134765625f;
|
Chris@16
|
438
|
Chris@16
|
439 static const T P[] = {
|
Chris@16
|
440 BOOST_MATH_BIG_CONSTANT(T, 113, -0.021027558364667626231512090082402429494),
|
Chris@16
|
441 BOOST_MATH_BIG_CONSTANT(T, 113, 0.15128811104498736604523586803722368377),
|
Chris@16
|
442 BOOST_MATH_BIG_CONSTANT(T, 113, -0.26249631480066246699388544451126410278),
|
Chris@16
|
443 BOOST_MATH_BIG_CONSTANT(T, 113, 0.21148748610533489823742352180628489742),
|
Chris@16
|
444 BOOST_MATH_BIG_CONSTANT(T, 113, -0.093964130697489071999873506148104370633),
|
Chris@16
|
445 BOOST_MATH_BIG_CONSTANT(T, 113, 0.024292059227009051652542804957550866827),
|
Chris@16
|
446 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0036284453226534839926304745756906117066),
|
Chris@16
|
447 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0002939230129315195346843036254392485984),
|
Chris@16
|
448 BOOST_MATH_BIG_CONSTANT(T, 113, -0.11088589183158123733132268042570710338e-4),
|
Chris@16
|
449 BOOST_MATH_BIG_CONSTANT(T, 113, 0.13240510580220763969511741896361984162e-6)
|
Chris@16
|
450 };
|
Chris@16
|
451 static const T Q[] = {
|
Chris@16
|
452 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
|
Chris@16
|
453 BOOST_MATH_BIG_CONSTANT(T, 113, -2.4240003754444040525462170802796471996),
|
Chris@16
|
454 BOOST_MATH_BIG_CONSTANT(T, 113, 2.4868383476933178722203278602342786002),
|
Chris@16
|
455 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4047068395206343375520721509193698547),
|
Chris@16
|
456 BOOST_MATH_BIG_CONSTANT(T, 113, 0.47583809087867443858344765659065773369),
|
Chris@16
|
457 BOOST_MATH_BIG_CONSTANT(T, 113, -0.09865724264554556400463655444270700132),
|
Chris@16
|
458 BOOST_MATH_BIG_CONSTANT(T, 113, 0.012238223514176587501074150988445109735),
|
Chris@16
|
459 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00084625068418239194670614419707491797097),
|
Chris@16
|
460 BOOST_MATH_BIG_CONSTANT(T, 113, 0.2796574430456237061420839429225710602e-4),
|
Chris@16
|
461 BOOST_MATH_BIG_CONSTANT(T, 113, -0.30202973883316730694433702165188835331e-6)
|
Chris@16
|
462 };
|
Chris@16
|
463 // (2 - x) * (1 - x) * (c + R(2 - x))
|
Chris@16
|
464 T r = zm2 * zm1;
|
Chris@16
|
465 T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2));
|
Chris@16
|
466
|
Chris@16
|
467 result += r * Y + r * R;
|
Chris@16
|
468 BOOST_MATH_INSTRUMENT_CODE(result);
|
Chris@16
|
469 }
|
Chris@16
|
470 }
|
Chris@16
|
471 BOOST_MATH_INSTRUMENT_CODE(result);
|
Chris@16
|
472 return result;
|
Chris@16
|
473 }
|
Chris@16
|
474 template <class T, class Policy, class Lanczos>
|
Chris@16
|
475 T lgamma_small_imp(T z, T zm1, T zm2, const mpl::int_<0>&, const Policy& pol, const Lanczos&)
|
Chris@16
|
476 {
|
Chris@16
|
477 //
|
Chris@16
|
478 // No rational approximations are available because either
|
Chris@16
|
479 // T has no numeric_limits support (so we can't tell how
|
Chris@16
|
480 // many digits it has), or T has more digits than we know
|
Chris@16
|
481 // what to do with.... we do have a Lanczos approximation
|
Chris@16
|
482 // though, and that can be used to keep errors under control.
|
Chris@16
|
483 //
|
Chris@16
|
484 BOOST_MATH_STD_USING // for ADL of std names
|
Chris@16
|
485 T result = 0;
|
Chris@16
|
486 if(z < tools::epsilon<T>())
|
Chris@16
|
487 {
|
Chris@16
|
488 result = -log(z);
|
Chris@16
|
489 }
|
Chris@16
|
490 else if(z < 0.5)
|
Chris@16
|
491 {
|
Chris@16
|
492 // taking the log of tgamma reduces the error, no danger of overflow here:
|
Chris@16
|
493 result = log(gamma_imp(z, pol, Lanczos()));
|
Chris@16
|
494 }
|
Chris@16
|
495 else if(z >= 3)
|
Chris@16
|
496 {
|
Chris@16
|
497 // taking the log of tgamma reduces the error, no danger of overflow here:
|
Chris@16
|
498 result = log(gamma_imp(z, pol, Lanczos()));
|
Chris@16
|
499 }
|
Chris@16
|
500 else if(z >= 1.5)
|
Chris@16
|
501 {
|
Chris@16
|
502 // special case near 2:
|
Chris@16
|
503 T dz = zm2;
|
Chris@16
|
504 result = dz * log((z + Lanczos::g() - T(0.5)) / boost::math::constants::e<T>());
|
Chris@16
|
505 result += boost::math::log1p(dz / (Lanczos::g() + T(1.5)), pol) * T(1.5);
|
Chris@16
|
506 result += boost::math::log1p(Lanczos::lanczos_sum_near_2(dz), pol);
|
Chris@16
|
507 }
|
Chris@16
|
508 else
|
Chris@16
|
509 {
|
Chris@16
|
510 // special case near 1:
|
Chris@16
|
511 T dz = zm1;
|
Chris@16
|
512 result = dz * log((z + Lanczos::g() - T(0.5)) / boost::math::constants::e<T>());
|
Chris@16
|
513 result += boost::math::log1p(dz / (Lanczos::g() + T(0.5)), pol) / 2;
|
Chris@16
|
514 result += boost::math::log1p(Lanczos::lanczos_sum_near_1(dz), pol);
|
Chris@16
|
515 }
|
Chris@16
|
516 return result;
|
Chris@16
|
517 }
|
Chris@16
|
518
|
Chris@16
|
519 }}} // namespaces
|
Chris@16
|
520
|
Chris@16
|
521 #endif // BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
|
Chris@16
|
522
|