Chris@16
|
1 // Copyright (c) 2006 Xiaogang Zhang
|
Chris@16
|
2 // Use, modification and distribution are subject to the
|
Chris@16
|
3 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5
|
Chris@16
|
6 #ifndef BOOST_MATH_BESSEL_I1_HPP
|
Chris@16
|
7 #define BOOST_MATH_BESSEL_I1_HPP
|
Chris@16
|
8
|
Chris@16
|
9 #ifdef _MSC_VER
|
Chris@16
|
10 #pragma once
|
Chris@16
|
11 #endif
|
Chris@16
|
12
|
Chris@16
|
13 #include <boost/math/tools/rational.hpp>
|
Chris@16
|
14 #include <boost/math/tools/big_constant.hpp>
|
Chris@16
|
15 #include <boost/assert.hpp>
|
Chris@16
|
16
|
Chris@16
|
17 // Modified Bessel function of the first kind of order one
|
Chris@16
|
18 // minimax rational approximations on intervals, see
|
Chris@16
|
19 // Blair and Edwards, Chalk River Report AECL-4928, 1974
|
Chris@16
|
20
|
Chris@16
|
21 namespace boost { namespace math { namespace detail{
|
Chris@16
|
22
|
Chris@16
|
23 template <typename T>
|
Chris@16
|
24 T bessel_i1(T x);
|
Chris@16
|
25
|
Chris@16
|
26 template <class T>
|
Chris@16
|
27 struct bessel_i1_initializer
|
Chris@16
|
28 {
|
Chris@16
|
29 struct init
|
Chris@16
|
30 {
|
Chris@16
|
31 init()
|
Chris@16
|
32 {
|
Chris@16
|
33 do_init();
|
Chris@16
|
34 }
|
Chris@16
|
35 static void do_init()
|
Chris@16
|
36 {
|
Chris@16
|
37 bessel_i1(T(1));
|
Chris@16
|
38 }
|
Chris@16
|
39 void force_instantiate()const{}
|
Chris@16
|
40 };
|
Chris@16
|
41 static const init initializer;
|
Chris@16
|
42 static void force_instantiate()
|
Chris@16
|
43 {
|
Chris@16
|
44 initializer.force_instantiate();
|
Chris@16
|
45 }
|
Chris@16
|
46 };
|
Chris@16
|
47
|
Chris@16
|
48 template <class T>
|
Chris@16
|
49 const typename bessel_i1_initializer<T>::init bessel_i1_initializer<T>::initializer;
|
Chris@16
|
50
|
Chris@16
|
51 template <typename T>
|
Chris@16
|
52 T bessel_i1(T x)
|
Chris@16
|
53 {
|
Chris@16
|
54
|
Chris@16
|
55 bessel_i1_initializer<T>::force_instantiate();
|
Chris@16
|
56
|
Chris@16
|
57 static const T P1[] = {
|
Chris@16
|
58 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4577180278143463643e+15)),
|
Chris@16
|
59 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7732037840791591320e+14)),
|
Chris@16
|
60 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9876779648010090070e+12)),
|
Chris@16
|
61 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3357437682275493024e+11)),
|
Chris@16
|
62 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4828267606612366099e+09)),
|
Chris@16
|
63 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0588550724769347106e+07)),
|
Chris@16
|
64 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1894091982308017540e+04)),
|
Chris@16
|
65 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8225946631657315931e+02)),
|
Chris@16
|
66 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.7207090827310162436e-01)),
|
Chris@16
|
67 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.1746443287817501309e-04)),
|
Chris@16
|
68 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.3466829827635152875e-06)),
|
Chris@16
|
69 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4831904935994647675e-09)),
|
Chris@16
|
70 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1928788903603238754e-12)),
|
Chris@16
|
71 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5245515583151902910e-16)),
|
Chris@16
|
72 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9705291802535139930e-19)),
|
Chris@16
|
73 };
|
Chris@16
|
74 static const T Q1[] = {
|
Chris@16
|
75 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9154360556286927285e+15)),
|
Chris@16
|
76 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.7887501377547640438e+12)),
|
Chris@16
|
77 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4386907088588283434e+10)),
|
Chris@16
|
78 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1594225856856884006e+07)),
|
Chris@16
|
79 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.1326864679904189920e+03)),
|
Chris@16
|
80 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
|
Chris@16
|
81 };
|
Chris@16
|
82 static const T P2[] = {
|
Chris@16
|
83 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4582087408985668208e-05)),
|
Chris@16
|
84 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9359825138577646443e-04)),
|
Chris@16
|
85 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9204895411257790122e-02)),
|
Chris@16
|
86 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.4198728018058047439e-01)),
|
Chris@16
|
87 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960118277609544334e+00)),
|
Chris@16
|
88 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9746376087200685843e+00)),
|
Chris@16
|
89 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5591872901933459000e-01)),
|
Chris@16
|
90 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0437159056137599999e-02)),
|
Chris@16
|
91 };
|
Chris@16
|
92 static const T Q2[] = {
|
Chris@16
|
93 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7510433111922824643e-05)),
|
Chris@16
|
94 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2835624489492512649e-03)),
|
Chris@16
|
95 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4212010813186530069e-02)),
|
Chris@16
|
96 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.5017476463217924408e-01)),
|
Chris@16
|
97 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2593714889036996297e+00)),
|
Chris@16
|
98 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8806586721556593450e+00)),
|
Chris@16
|
99 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
|
Chris@16
|
100 };
|
Chris@16
|
101 T value, factor, r, w;
|
Chris@16
|
102
|
Chris@16
|
103 BOOST_MATH_STD_USING
|
Chris@16
|
104 using namespace boost::math::tools;
|
Chris@16
|
105
|
Chris@101
|
106 BOOST_ASSERT(x >= 0); // negative x is handled before we get here
|
Chris@16
|
107 w = abs(x);
|
Chris@16
|
108 if (x == 0)
|
Chris@16
|
109 {
|
Chris@16
|
110 return static_cast<T>(0);
|
Chris@16
|
111 }
|
Chris@16
|
112 if (w <= 15) // w in (0, 15]
|
Chris@16
|
113 {
|
Chris@16
|
114 T y = x * x;
|
Chris@16
|
115 r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
|
Chris@16
|
116 factor = w;
|
Chris@16
|
117 value = factor * r;
|
Chris@16
|
118 }
|
Chris@16
|
119 else // w in (15, \infty)
|
Chris@16
|
120 {
|
Chris@16
|
121 T y = 1 / w - T(1) / 15;
|
Chris@16
|
122 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
|
Chris@16
|
123 factor = exp(w) / sqrt(w);
|
Chris@16
|
124 value = factor * r;
|
Chris@16
|
125 }
|
Chris@16
|
126
|
Chris@16
|
127 return value;
|
Chris@16
|
128 }
|
Chris@16
|
129
|
Chris@16
|
130 }}} // namespaces
|
Chris@16
|
131
|
Chris@16
|
132 #endif // BOOST_MATH_BESSEL_I1_HPP
|
Chris@16
|
133
|