Chris@16
|
1 // Copyright (c) 2006 Xiaogang Zhang
|
Chris@16
|
2 // Use, modification and distribution are subject to the
|
Chris@16
|
3 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5
|
Chris@16
|
6 #ifndef BOOST_MATH_BESSEL_I0_HPP
|
Chris@16
|
7 #define BOOST_MATH_BESSEL_I0_HPP
|
Chris@16
|
8
|
Chris@16
|
9 #ifdef _MSC_VER
|
Chris@16
|
10 #pragma once
|
Chris@16
|
11 #endif
|
Chris@16
|
12
|
Chris@16
|
13 #include <boost/math/tools/rational.hpp>
|
Chris@16
|
14 #include <boost/math/tools/big_constant.hpp>
|
Chris@16
|
15 #include <boost/assert.hpp>
|
Chris@16
|
16
|
Chris@16
|
17 // Modified Bessel function of the first kind of order zero
|
Chris@16
|
18 // minimax rational approximations on intervals, see
|
Chris@16
|
19 // Blair and Edwards, Chalk River Report AECL-4928, 1974
|
Chris@16
|
20
|
Chris@16
|
21 namespace boost { namespace math { namespace detail{
|
Chris@16
|
22
|
Chris@16
|
23 template <typename T>
|
Chris@16
|
24 T bessel_i0(T x);
|
Chris@16
|
25
|
Chris@16
|
26 template <class T>
|
Chris@16
|
27 struct bessel_i0_initializer
|
Chris@16
|
28 {
|
Chris@16
|
29 struct init
|
Chris@16
|
30 {
|
Chris@16
|
31 init()
|
Chris@16
|
32 {
|
Chris@16
|
33 do_init();
|
Chris@16
|
34 }
|
Chris@16
|
35 static void do_init()
|
Chris@16
|
36 {
|
Chris@16
|
37 bessel_i0(T(1));
|
Chris@16
|
38 }
|
Chris@16
|
39 void force_instantiate()const{}
|
Chris@16
|
40 };
|
Chris@16
|
41 static const init initializer;
|
Chris@16
|
42 static void force_instantiate()
|
Chris@16
|
43 {
|
Chris@16
|
44 initializer.force_instantiate();
|
Chris@16
|
45 }
|
Chris@16
|
46 };
|
Chris@16
|
47
|
Chris@16
|
48 template <class T>
|
Chris@16
|
49 const typename bessel_i0_initializer<T>::init bessel_i0_initializer<T>::initializer;
|
Chris@16
|
50
|
Chris@16
|
51 template <typename T>
|
Chris@16
|
52 T bessel_i0(T x)
|
Chris@16
|
53 {
|
Chris@16
|
54 bessel_i0_initializer<T>::force_instantiate();
|
Chris@16
|
55
|
Chris@16
|
56 static const T P1[] = {
|
Chris@16
|
57 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2335582639474375249e+15)),
|
Chris@16
|
58 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5050369673018427753e+14)),
|
Chris@16
|
59 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2940087627407749166e+13)),
|
Chris@16
|
60 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4925101247114157499e+11)),
|
Chris@16
|
61 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1912746104985237192e+10)),
|
Chris@16
|
62 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0313066708737980747e+08)),
|
Chris@16
|
63 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9545626019847898221e+05)),
|
Chris@16
|
64 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.4125195876041896775e+03)),
|
Chris@16
|
65 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.0935347449210549190e+00)),
|
Chris@16
|
66 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5453977791786851041e-02)),
|
Chris@16
|
67 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5172644670688975051e-05)),
|
Chris@16
|
68 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.0517226450451067446e-08)),
|
Chris@16
|
69 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.6843448573468483278e-11)),
|
Chris@16
|
70 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5982226675653184646e-14)),
|
Chris@16
|
71 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.2487866627945699800e-18)),
|
Chris@16
|
72 };
|
Chris@16
|
73 static const T Q1[] = {
|
Chris@16
|
74 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2335582639474375245e+15)),
|
Chris@16
|
75 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.8858692566751002988e+12)),
|
Chris@16
|
76 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2207067397808979846e+10)),
|
Chris@16
|
77 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0377081058062166144e+07)),
|
Chris@16
|
78 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.8527560179962773045e+03)),
|
Chris@16
|
79 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
|
Chris@16
|
80 };
|
Chris@16
|
81 static const T P2[] = {
|
Chris@16
|
82 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2210262233306573296e-04)),
|
Chris@16
|
83 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3067392038106924055e-02)),
|
Chris@16
|
84 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4700805721174453923e-01)),
|
Chris@16
|
85 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5674518371240761397e+00)),
|
Chris@16
|
86 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3517945679239481621e+01)),
|
Chris@16
|
87 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.1611322818701131207e+01)),
|
Chris@16
|
88 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.6090021968656180000e+00)),
|
Chris@16
|
89 };
|
Chris@16
|
90 static const T Q2[] = {
|
Chris@16
|
91 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5194330231005480228e-04)),
|
Chris@16
|
92 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.2547697594819615062e-02)),
|
Chris@16
|
93 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1151759188741312645e+00)),
|
Chris@16
|
94 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3982595353892851542e+01)),
|
Chris@16
|
95 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.0228002066743340583e+01)),
|
Chris@16
|
96 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5539563258012929600e+01)),
|
Chris@16
|
97 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1446690275135491500e+01)),
|
Chris@16
|
98 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
|
Chris@16
|
99 };
|
Chris@16
|
100 T value, factor, r;
|
Chris@16
|
101
|
Chris@16
|
102 BOOST_MATH_STD_USING
|
Chris@16
|
103 using namespace boost::math::tools;
|
Chris@16
|
104
|
Chris@101
|
105 BOOST_ASSERT(x >= 0); // negative x is handled before we get here
|
Chris@16
|
106 if (x == 0)
|
Chris@16
|
107 {
|
Chris@16
|
108 return static_cast<T>(1);
|
Chris@16
|
109 }
|
Chris@16
|
110 if (x <= 15) // x in (0, 15]
|
Chris@16
|
111 {
|
Chris@16
|
112 T y = x * x;
|
Chris@16
|
113 value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
|
Chris@16
|
114 }
|
Chris@16
|
115 else // x in (15, \infty)
|
Chris@16
|
116 {
|
Chris@16
|
117 T y = 1 / x - T(1) / 15;
|
Chris@16
|
118 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
|
Chris@16
|
119 factor = exp(x) / sqrt(x);
|
Chris@16
|
120 value = factor * r;
|
Chris@16
|
121 }
|
Chris@16
|
122
|
Chris@16
|
123 return value;
|
Chris@16
|
124 }
|
Chris@16
|
125
|
Chris@16
|
126 }}} // namespaces
|
Chris@16
|
127
|
Chris@16
|
128 #endif // BOOST_MATH_BESSEL_I0_HPP
|
Chris@16
|
129
|