annotate DEPENDENCIES/generic/include/boost/math/distributions/inverse_gaussian.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 // Copyright John Maddock 2010.
Chris@16 2 // Copyright Paul A. Bristow 2010.
Chris@16 3
Chris@16 4 // Use, modification and distribution are subject to the
Chris@16 5 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 6 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 7
Chris@16 8 #ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP
Chris@16 9 #define BOOST_STATS_INVERSE_GAUSSIAN_HPP
Chris@16 10
Chris@16 11 #ifdef _MSC_VER
Chris@16 12 #pragma warning(disable: 4512) // assignment operator could not be generated
Chris@16 13 #endif
Chris@16 14
Chris@16 15 // http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution
Chris@16 16 // http://mathworld.wolfram.com/InverseGaussianDistribution.html
Chris@16 17
Chris@16 18 // The normal-inverse Gaussian distribution
Chris@16 19 // also called the Wald distribution (some sources limit this to when mean = 1).
Chris@16 20
Chris@16 21 // It is the continuous probability distribution
Chris@16 22 // that is defined as the normal variance-mean mixture where the mixing density is the
Chris@16 23 // inverse Gaussian distribution. The tails of the distribution decrease more slowly
Chris@16 24 // than the normal distribution. It is therefore suitable to model phenomena
Chris@16 25 // where numerically large values are more probable than is the case for the normal distribution.
Chris@16 26
Chris@16 27 // The Inverse Gaussian distribution was first studied in relationship to Brownian motion.
Chris@16 28 // In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse
Chris@16 29 // relationship between the time to cover a unit distance and distance covered in unit time.
Chris@16 30
Chris@16 31 // Examples are returns from financial assets and turbulent wind speeds.
Chris@16 32 // The normal-inverse Gaussian distributions form
Chris@16 33 // a subclass of the generalised hyperbolic distributions.
Chris@16 34
Chris@16 35 // See also
Chris@16 36
Chris@16 37 // http://en.wikipedia.org/wiki/Normal_distribution
Chris@16 38 // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
Chris@16 39 // Also:
Chris@16 40 // Weisstein, Eric W. "Normal Distribution."
Chris@16 41 // From MathWorld--A Wolfram Web Resource.
Chris@16 42 // http://mathworld.wolfram.com/NormalDistribution.html
Chris@16 43
Chris@16 44 // http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions.
Chris@16 45 // ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/
Chris@16 46
Chris@16 47 // http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html
Chris@16 48 // R package for dinverse_gaussian, ...
Chris@16 49
Chris@16 50 // http://www.statsci.org/s/inverse_gaussian.s and http://www.statsci.org/s/inverse_gaussian.html
Chris@16 51
Chris@16 52 //#include <boost/math/distributions/fwd.hpp>
Chris@16 53 #include <boost/math/special_functions/erf.hpp> // for erf/erfc.
Chris@16 54 #include <boost/math/distributions/complement.hpp>
Chris@16 55 #include <boost/math/distributions/detail/common_error_handling.hpp>
Chris@16 56 #include <boost/math/distributions/normal.hpp>
Chris@16 57 #include <boost/math/distributions/gamma.hpp> // for gamma function
Chris@16 58 // using boost::math::gamma_p;
Chris@16 59
Chris@16 60 #include <boost/math/tools/tuple.hpp>
Chris@16 61 //using std::tr1::tuple;
Chris@16 62 //using std::tr1::make_tuple;
Chris@16 63 #include <boost/math/tools/roots.hpp>
Chris@16 64 //using boost::math::tools::newton_raphson_iterate;
Chris@16 65
Chris@16 66 #include <utility>
Chris@16 67
Chris@16 68 namespace boost{ namespace math{
Chris@16 69
Chris@16 70 template <class RealType = double, class Policy = policies::policy<> >
Chris@16 71 class inverse_gaussian_distribution
Chris@16 72 {
Chris@16 73 public:
Chris@16 74 typedef RealType value_type;
Chris@16 75 typedef Policy policy_type;
Chris@16 76
Chris@16 77 inverse_gaussian_distribution(RealType l_mean = 1, RealType l_scale = 1)
Chris@16 78 : m_mean(l_mean), m_scale(l_scale)
Chris@16 79 { // Default is a 1,1 inverse_gaussian distribution.
Chris@16 80 static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution";
Chris@16 81
Chris@16 82 RealType result;
Chris@16 83 detail::check_scale(function, l_scale, &result, Policy());
Chris@16 84 detail::check_location(function, l_mean, &result, Policy());
Chris@16 85 }
Chris@16 86
Chris@16 87 RealType mean()const
Chris@16 88 { // alias for location.
Chris@16 89 return m_mean; // aka mu
Chris@16 90 }
Chris@16 91
Chris@16 92 // Synonyms, provided to allow generic use of find_location and find_scale.
Chris@16 93 RealType location()const
Chris@16 94 { // location, aka mu.
Chris@16 95 return m_mean;
Chris@16 96 }
Chris@16 97 RealType scale()const
Chris@16 98 { // scale, aka lambda.
Chris@16 99 return m_scale;
Chris@16 100 }
Chris@16 101
Chris@16 102 RealType shape()const
Chris@16 103 { // shape, aka phi = lambda/mu.
Chris@16 104 return m_scale / m_mean;
Chris@16 105 }
Chris@16 106
Chris@16 107 private:
Chris@16 108 //
Chris@16 109 // Data members:
Chris@16 110 //
Chris@16 111 RealType m_mean; // distribution mean or location, aka mu.
Chris@16 112 RealType m_scale; // distribution standard deviation or scale, aka lambda.
Chris@16 113 }; // class normal_distribution
Chris@16 114
Chris@16 115 typedef inverse_gaussian_distribution<double> inverse_gaussian;
Chris@16 116
Chris@16 117 template <class RealType, class Policy>
Chris@16 118 inline const std::pair<RealType, RealType> range(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
Chris@16 119 { // Range of permissible values for random variable x, zero to max.
Chris@16 120 using boost::math::tools::max_value;
Chris@16 121 return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value.
Chris@16 122 }
Chris@16 123
Chris@16 124 template <class RealType, class Policy>
Chris@16 125 inline const std::pair<RealType, RealType> support(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
Chris@16 126 { // Range of supported values for random variable x, zero to max.
Chris@16 127 // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
Chris@16 128 using boost::math::tools::max_value;
Chris@16 129 return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value.
Chris@16 130 }
Chris@16 131
Chris@16 132 template <class RealType, class Policy>
Chris@16 133 inline RealType pdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
Chris@16 134 { // Probability Density Function
Chris@16 135 BOOST_MATH_STD_USING // for ADL of std functions
Chris@16 136
Chris@16 137 RealType scale = dist.scale();
Chris@16 138 RealType mean = dist.mean();
Chris@16 139 RealType result = 0;
Chris@16 140 static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)";
Chris@16 141 if(false == detail::check_scale(function, scale, &result, Policy()))
Chris@16 142 {
Chris@16 143 return result;
Chris@16 144 }
Chris@16 145 if(false == detail::check_location(function, mean, &result, Policy()))
Chris@16 146 {
Chris@16 147 return result;
Chris@16 148 }
Chris@16 149 if(false == detail::check_positive_x(function, x, &result, Policy()))
Chris@16 150 {
Chris@16 151 return result;
Chris@16 152 }
Chris@16 153
Chris@16 154 if (x == 0)
Chris@16 155 {
Chris@16 156 return 0; // Convenient, even if not defined mathematically.
Chris@16 157 }
Chris@16 158
Chris@16 159 result =
Chris@16 160 sqrt(scale / (constants::two_pi<RealType>() * x * x * x))
Chris@16 161 * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean));
Chris@16 162 return result;
Chris@16 163 } // pdf
Chris@16 164
Chris@16 165 template <class RealType, class Policy>
Chris@16 166 inline RealType cdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
Chris@16 167 { // Cumulative Density Function.
Chris@16 168 BOOST_MATH_STD_USING // for ADL of std functions.
Chris@16 169
Chris@16 170 RealType scale = dist.scale();
Chris@16 171 RealType mean = dist.mean();
Chris@16 172 static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)";
Chris@16 173 RealType result = 0;
Chris@16 174 if(false == detail::check_scale(function, scale, &result, Policy()))
Chris@16 175 {
Chris@16 176 return result;
Chris@16 177 }
Chris@16 178 if(false == detail::check_location(function, mean, &result, Policy()))
Chris@16 179 {
Chris@16 180 return result;
Chris@16 181 }
Chris@16 182 if(false == detail::check_positive_x(function, x, &result, Policy()))
Chris@16 183 {
Chris@16 184 return result;
Chris@16 185 }
Chris@16 186 if (x == 0)
Chris@16 187 {
Chris@16 188 return 0; // Convenient, even if not defined mathematically.
Chris@16 189 }
Chris@16 190 // Problem with this formula for large scale > 1000 or small x,
Chris@16 191 //result = 0.5 * (erf(sqrt(scale / x) * ((x / mean) - 1) / constants::root_two<RealType>(), Policy()) + 1)
Chris@16 192 // + exp(2 * scale / mean) / 2
Chris@16 193 // * (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy()));
Chris@16 194 // so use normal distribution version:
Chris@16 195 // Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution.
Chris@16 196
Chris@16 197 normal_distribution<RealType> n01;
Chris@16 198
Chris@16 199 RealType n0 = sqrt(scale / x);
Chris@16 200 n0 *= ((x / mean) -1);
Chris@16 201 RealType n1 = cdf(n01, n0);
Chris@16 202 RealType expfactor = exp(2 * scale / mean);
Chris@16 203 RealType n3 = - sqrt(scale / x);
Chris@16 204 n3 *= (x / mean) + 1;
Chris@16 205 RealType n4 = cdf(n01, n3);
Chris@16 206 result = n1 + expfactor * n4;
Chris@16 207 return result;
Chris@16 208 } // cdf
Chris@16 209
Chris@16 210 template <class RealType, class Policy>
Chris@16 211 struct inverse_gaussian_quantile_functor
Chris@16 212 {
Chris@16 213
Chris@16 214 inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
Chris@16 215 : distribution(dist), prob(p)
Chris@16 216 {
Chris@16 217 }
Chris@16 218 boost::math::tuple<RealType, RealType> operator()(RealType const& x)
Chris@16 219 {
Chris@16 220 RealType c = cdf(distribution, x);
Chris@16 221 RealType fx = c - prob; // Difference cdf - value - to minimize.
Chris@16 222 RealType dx = pdf(distribution, x); // pdf is 1st derivative.
Chris@16 223 // return both function evaluation difference f(x) and 1st derivative f'(x).
Chris@16 224 return boost::math::make_tuple(fx, dx);
Chris@16 225 }
Chris@16 226 private:
Chris@16 227 const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
Chris@16 228 RealType prob;
Chris@16 229 };
Chris@16 230
Chris@16 231 template <class RealType, class Policy>
Chris@16 232 struct inverse_gaussian_quantile_complement_functor
Chris@16 233 {
Chris@16 234 inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
Chris@16 235 : distribution(dist), prob(p)
Chris@16 236 {
Chris@16 237 }
Chris@16 238 boost::math::tuple<RealType, RealType> operator()(RealType const& x)
Chris@16 239 {
Chris@16 240 RealType c = cdf(complement(distribution, x));
Chris@16 241 RealType fx = c - prob; // Difference cdf - value - to minimize.
Chris@16 242 RealType dx = -pdf(distribution, x); // pdf is 1st derivative.
Chris@16 243 // return both function evaluation difference f(x) and 1st derivative f'(x).
Chris@16 244 //return std::tr1::make_tuple(fx, dx); if available.
Chris@16 245 return boost::math::make_tuple(fx, dx);
Chris@16 246 }
Chris@16 247 private:
Chris@16 248 const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
Chris@16 249 RealType prob;
Chris@16 250 };
Chris@16 251
Chris@16 252 namespace detail
Chris@16 253 {
Chris@16 254 template <class RealType>
Chris@16 255 inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1)
Chris@16 256 { // guess at random variate value x for inverse gaussian quantile.
Chris@16 257 BOOST_MATH_STD_USING
Chris@16 258 using boost::math::policies::policy;
Chris@16 259 // Error type.
Chris@16 260 using boost::math::policies::overflow_error;
Chris@16 261 // Action.
Chris@16 262 using boost::math::policies::ignore_error;
Chris@16 263
Chris@16 264 typedef policy<
Chris@16 265 overflow_error<ignore_error> // Ignore overflow (return infinity)
Chris@16 266 > no_overthrow_policy;
Chris@16 267
Chris@16 268 RealType x; // result is guess at random variate value x.
Chris@16 269 RealType phi = lambda / mu;
Chris@16 270 if (phi > 2.)
Chris@16 271 { // Big phi, so starting to look like normal Gaussian distribution.
Chris@16 272 // x=(qnorm(p,0,1,true,false) - 0.5 * sqrt(mu/lambda)) / sqrt(lambda/mu);
Chris@16 273 // Whitmore, G.A. and Yalovsky, M.
Chris@16 274 // A normalising logarithmic transformation for inverse Gaussian random variables,
Chris@16 275 // Technometrics 20-2, 207-208 (1978), but using expression from
Chris@16 276 // V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6.
Chris@16 277
Chris@16 278 normal_distribution<RealType, no_overthrow_policy> n01;
Chris@16 279 x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi));
Chris@16 280 }
Chris@16 281 else
Chris@16 282 { // phi < 2 so much less symmetrical with long tail,
Chris@16 283 // so use gamma distribution as an approximation.
Chris@16 284 using boost::math::gamma_distribution;
Chris@16 285
Chris@16 286 // Define the distribution, using gamma_nooverflow:
Chris@16 287 typedef gamma_distribution<RealType, no_overthrow_policy> gamma_nooverflow;
Chris@16 288
Chris@16 289 gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
Chris@16 290
Chris@16 291 // gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
Chris@16 292 // R qgamma(0.2, 0.5, 1) 0.0320923
Chris@16 293 RealType qg = quantile(complement(g, p));
Chris@16 294 //RealType qg1 = qgamma(1.- p, 0.5, 1.0, true, false);
Chris@16 295 x = lambda / (qg * 2);
Chris@16 296 //
Chris@16 297 if (x > mu/2) // x > mu /2?
Chris@16 298 { // x too large for the gamma approximation to work well.
Chris@16 299 //x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807
Chris@16 300 RealType q = quantile(g, p);
Chris@16 301 // x = mu * exp(q * static_cast<RealType>(0.1)); // Said to improve at high p
Chris@16 302 // x = mu * x; // Improves at high p?
Chris@16 303 x = mu * exp(q / sqrt(phi) - 1/(2 * phi));
Chris@16 304 }
Chris@16 305 }
Chris@16 306 return x;
Chris@16 307 } // guess_ig
Chris@16 308 } // namespace detail
Chris@16 309
Chris@16 310 template <class RealType, class Policy>
Chris@16 311 inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& p)
Chris@16 312 {
Chris@16 313 BOOST_MATH_STD_USING // for ADL of std functions.
Chris@16 314 // No closed form exists so guess and use Newton Raphson iteration.
Chris@16 315
Chris@16 316 RealType mean = dist.mean();
Chris@16 317 RealType scale = dist.scale();
Chris@16 318 static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)";
Chris@16 319
Chris@16 320 RealType result = 0;
Chris@16 321 if(false == detail::check_scale(function, scale, &result, Policy()))
Chris@16 322 return result;
Chris@16 323 if(false == detail::check_location(function, mean, &result, Policy()))
Chris@16 324 return result;
Chris@16 325 if(false == detail::check_probability(function, p, &result, Policy()))
Chris@16 326 return result;
Chris@16 327 if (p == 0)
Chris@16 328 {
Chris@16 329 return 0; // Convenient, even if not defined mathematically?
Chris@16 330 }
Chris@16 331 if (p == 1)
Chris@16 332 { // overflow
Chris@16 333 result = policies::raise_overflow_error<RealType>(function,
Chris@16 334 "probability parameter is 1, but must be < 1!", Policy());
Chris@16 335 return result; // std::numeric_limits<RealType>::infinity();
Chris@16 336 }
Chris@16 337
Chris@16 338 RealType guess = detail::guess_ig(p, dist.mean(), dist.scale());
Chris@16 339 using boost::math::tools::max_value;
Chris@16 340
Chris@16 341 RealType min = 0.; // Minimum possible value is bottom of range of distribution.
Chris@16 342 RealType max = max_value<RealType>();// Maximum possible value is top of range.
Chris@16 343 // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
Chris@16 344 // digits used to control how accurate to try to make the result.
Chris@16 345 // To allow user to control accuracy versus speed,
Chris@16 346 int get_digits = policies::digits<RealType, Policy>();// get digits from policy,
Chris@16 347 boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
Chris@16 348 using boost::math::tools::newton_raphson_iterate;
Chris@16 349 result =
Chris@16 350 newton_raphson_iterate(inverse_gaussian_quantile_functor<RealType, Policy>(dist, p), guess, min, max, get_digits, m);
Chris@16 351 return result;
Chris@16 352 } // quantile
Chris@16 353
Chris@16 354 template <class RealType, class Policy>
Chris@16 355 inline RealType cdf(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
Chris@16 356 {
Chris@16 357 BOOST_MATH_STD_USING // for ADL of std functions.
Chris@16 358
Chris@16 359 RealType scale = c.dist.scale();
Chris@16 360 RealType mean = c.dist.mean();
Chris@16 361 RealType x = c.param;
Chris@16 362 static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
Chris@16 363 // infinite arguments not supported.
Chris@16 364 //if((boost::math::isinf)(x))
Chris@16 365 //{
Chris@16 366 // if(x < 0) return 1; // cdf complement -infinity is unity.
Chris@16 367 // return 0; // cdf complement +infinity is zero
Chris@16 368 //}
Chris@16 369 // These produce MSVC 4127 warnings, so the above used instead.
Chris@16 370 //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
Chris@16 371 //{ // cdf complement +infinity is zero.
Chris@16 372 // return 0;
Chris@16 373 //}
Chris@16 374 //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
Chris@16 375 //{ // cdf complement -infinity is unity.
Chris@16 376 // return 1;
Chris@16 377 //}
Chris@16 378 RealType result = 0;
Chris@16 379 if(false == detail::check_scale(function, scale, &result, Policy()))
Chris@16 380 return result;
Chris@16 381 if(false == detail::check_location(function, mean, &result, Policy()))
Chris@16 382 return result;
Chris@16 383 if(false == detail::check_positive_x(function, x, &result, Policy()))
Chris@16 384 return result;
Chris@16 385
Chris@16 386 normal_distribution<RealType> n01;
Chris@16 387 RealType n0 = sqrt(scale / x);
Chris@16 388 n0 *= ((x / mean) -1);
Chris@16 389 RealType cdf_1 = cdf(complement(n01, n0));
Chris@16 390
Chris@16 391 RealType expfactor = exp(2 * scale / mean);
Chris@16 392 RealType n3 = - sqrt(scale / x);
Chris@16 393 n3 *= (x / mean) + 1;
Chris@16 394
Chris@16 395 //RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign.
Chris@16 396 RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1)));
Chris@16 397 // RealType n4 = cdf(n01, n3); // =
Chris@16 398 result = cdf_1 - expfactor * n6;
Chris@16 399 return result;
Chris@16 400 } // cdf complement
Chris@16 401
Chris@16 402 template <class RealType, class Policy>
Chris@16 403 inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
Chris@16 404 {
Chris@16 405 BOOST_MATH_STD_USING // for ADL of std functions
Chris@16 406
Chris@16 407 RealType scale = c.dist.scale();
Chris@16 408 RealType mean = c.dist.mean();
Chris@16 409 static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
Chris@16 410 RealType result = 0;
Chris@16 411 if(false == detail::check_scale(function, scale, &result, Policy()))
Chris@16 412 return result;
Chris@16 413 if(false == detail::check_location(function, mean, &result, Policy()))
Chris@16 414 return result;
Chris@16 415 RealType q = c.param;
Chris@16 416 if(false == detail::check_probability(function, q, &result, Policy()))
Chris@16 417 return result;
Chris@16 418
Chris@16 419 RealType guess = detail::guess_ig(q, mean, scale);
Chris@16 420 // Complement.
Chris@16 421 using boost::math::tools::max_value;
Chris@16 422
Chris@16 423 RealType min = 0.; // Minimum possible value is bottom of range of distribution.
Chris@16 424 RealType max = max_value<RealType>();// Maximum possible value is top of range.
Chris@16 425 // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
Chris@16 426 // digits used to control how accurate to try to make the result.
Chris@16 427 int get_digits = policies::digits<RealType, Policy>();
Chris@16 428 boost::uintmax_t m = policies::get_max_root_iterations<Policy>();
Chris@16 429 using boost::math::tools::newton_raphson_iterate;
Chris@16 430 result =
Chris@16 431 newton_raphson_iterate(inverse_gaussian_quantile_complement_functor<RealType, Policy>(c.dist, q), guess, min, max, get_digits, m);
Chris@16 432 return result;
Chris@16 433 } // quantile
Chris@16 434
Chris@16 435 template <class RealType, class Policy>
Chris@16 436 inline RealType mean(const inverse_gaussian_distribution<RealType, Policy>& dist)
Chris@16 437 { // aka mu
Chris@16 438 return dist.mean();
Chris@16 439 }
Chris@16 440
Chris@16 441 template <class RealType, class Policy>
Chris@16 442 inline RealType scale(const inverse_gaussian_distribution<RealType, Policy>& dist)
Chris@16 443 { // aka lambda
Chris@16 444 return dist.scale();
Chris@16 445 }
Chris@16 446
Chris@16 447 template <class RealType, class Policy>
Chris@16 448 inline RealType shape(const inverse_gaussian_distribution<RealType, Policy>& dist)
Chris@16 449 { // aka phi
Chris@16 450 return dist.shape();
Chris@16 451 }
Chris@16 452
Chris@16 453 template <class RealType, class Policy>
Chris@16 454 inline RealType standard_deviation(const inverse_gaussian_distribution<RealType, Policy>& dist)
Chris@16 455 {
Chris@16 456 BOOST_MATH_STD_USING
Chris@16 457 RealType scale = dist.scale();
Chris@16 458 RealType mean = dist.mean();
Chris@16 459 RealType result = sqrt(mean * mean * mean / scale);
Chris@16 460 return result;
Chris@16 461 }
Chris@16 462
Chris@16 463 template <class RealType, class Policy>
Chris@16 464 inline RealType mode(const inverse_gaussian_distribution<RealType, Policy>& dist)
Chris@16 465 {
Chris@16 466 BOOST_MATH_STD_USING
Chris@16 467 RealType scale = dist.scale();
Chris@16 468 RealType mean = dist.mean();
Chris@16 469 RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale))
Chris@16 470 - 3 * mean / (2 * scale));
Chris@16 471 return result;
Chris@16 472 }
Chris@16 473
Chris@16 474 template <class RealType, class Policy>
Chris@16 475 inline RealType skewness(const inverse_gaussian_distribution<RealType, Policy>& dist)
Chris@16 476 {
Chris@16 477 BOOST_MATH_STD_USING
Chris@16 478 RealType scale = dist.scale();
Chris@16 479 RealType mean = dist.mean();
Chris@16 480 RealType result = 3 * sqrt(mean/scale);
Chris@16 481 return result;
Chris@16 482 }
Chris@16 483
Chris@16 484 template <class RealType, class Policy>
Chris@16 485 inline RealType kurtosis(const inverse_gaussian_distribution<RealType, Policy>& dist)
Chris@16 486 {
Chris@16 487 RealType scale = dist.scale();
Chris@16 488 RealType mean = dist.mean();
Chris@16 489 RealType result = 15 * mean / scale -3;
Chris@16 490 return result;
Chris@16 491 }
Chris@16 492
Chris@16 493 template <class RealType, class Policy>
Chris@16 494 inline RealType kurtosis_excess(const inverse_gaussian_distribution<RealType, Policy>& dist)
Chris@16 495 {
Chris@16 496 RealType scale = dist.scale();
Chris@16 497 RealType mean = dist.mean();
Chris@16 498 RealType result = 15 * mean / scale;
Chris@16 499 return result;
Chris@16 500 }
Chris@16 501
Chris@16 502 } // namespace math
Chris@16 503 } // namespace boost
Chris@16 504
Chris@16 505 // This include must be at the end, *after* the accessors
Chris@16 506 // for this distribution have been defined, in order to
Chris@16 507 // keep compilers that support two-phase lookup happy.
Chris@16 508 #include <boost/math/distributions/detail/derived_accessors.hpp>
Chris@16 509
Chris@16 510 #endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP
Chris@16 511
Chris@16 512