annotate DEPENDENCIES/generic/include/boost/math/distributions/detail/hypergeometric_pdf.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // Copyright 2008 Gautam Sewani
Chris@16 2 // Copyright 2008 John Maddock
Chris@16 3 //
Chris@16 4 // Use, modification and distribution are subject to the
Chris@16 5 // Boost Software License, Version 1.0.
Chris@16 6 // (See accompanying file LICENSE_1_0.txt
Chris@16 7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 8
Chris@16 9 #ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
Chris@16 10 #define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
Chris@16 11
Chris@16 12 #include <boost/math/constants/constants.hpp>
Chris@16 13 #include <boost/math/special_functions/lanczos.hpp>
Chris@16 14 #include <boost/math/special_functions/gamma.hpp>
Chris@16 15 #include <boost/math/special_functions/pow.hpp>
Chris@16 16 #include <boost/math/special_functions/prime.hpp>
Chris@16 17 #include <boost/math/policies/error_handling.hpp>
Chris@16 18
Chris@16 19 #ifdef BOOST_MATH_INSTRUMENT
Chris@16 20 #include <typeinfo>
Chris@16 21 #endif
Chris@16 22
Chris@16 23 namespace boost{ namespace math{ namespace detail{
Chris@16 24
Chris@16 25 template <class T, class Func>
Chris@16 26 void bubble_down_one(T* first, T* last, Func f)
Chris@16 27 {
Chris@16 28 using std::swap;
Chris@16 29 T* next = first;
Chris@16 30 ++next;
Chris@16 31 while((next != last) && (!f(*first, *next)))
Chris@16 32 {
Chris@16 33 swap(*first, *next);
Chris@16 34 ++first;
Chris@16 35 ++next;
Chris@16 36 }
Chris@16 37 }
Chris@16 38
Chris@16 39 template <class T>
Chris@16 40 struct sort_functor
Chris@16 41 {
Chris@16 42 sort_functor(const T* exponents) : m_exponents(exponents){}
Chris@16 43 bool operator()(int i, int j)
Chris@16 44 {
Chris@16 45 return m_exponents[i] > m_exponents[j];
Chris@16 46 }
Chris@16 47 private:
Chris@16 48 const T* m_exponents;
Chris@16 49 };
Chris@16 50
Chris@16 51 template <class T, class Lanczos, class Policy>
Chris@16 52 T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const Lanczos&, const Policy&)
Chris@16 53 {
Chris@16 54 BOOST_MATH_STD_USING
Chris@16 55
Chris@16 56 BOOST_MATH_INSTRUMENT_FPU
Chris@16 57 BOOST_MATH_INSTRUMENT_VARIABLE(x);
Chris@16 58 BOOST_MATH_INSTRUMENT_VARIABLE(r);
Chris@16 59 BOOST_MATH_INSTRUMENT_VARIABLE(n);
Chris@16 60 BOOST_MATH_INSTRUMENT_VARIABLE(N);
Chris@16 61 BOOST_MATH_INSTRUMENT_VARIABLE(typeid(Lanczos).name());
Chris@16 62
Chris@16 63 T bases[9] = {
Chris@101 64 T(n) + static_cast<T>(Lanczos::g()) + 0.5f,
Chris@101 65 T(r) + static_cast<T>(Lanczos::g()) + 0.5f,
Chris@101 66 T(N - n) + static_cast<T>(Lanczos::g()) + 0.5f,
Chris@101 67 T(N - r) + static_cast<T>(Lanczos::g()) + 0.5f,
Chris@101 68 1 / (T(N) + static_cast<T>(Lanczos::g()) + 0.5f),
Chris@101 69 1 / (T(x) + static_cast<T>(Lanczos::g()) + 0.5f),
Chris@101 70 1 / (T(n - x) + static_cast<T>(Lanczos::g()) + 0.5f),
Chris@101 71 1 / (T(r - x) + static_cast<T>(Lanczos::g()) + 0.5f),
Chris@101 72 1 / (T(N - n - r + x) + static_cast<T>(Lanczos::g()) + 0.5f)
Chris@16 73 };
Chris@16 74 T exponents[9] = {
Chris@16 75 n + T(0.5f),
Chris@16 76 r + T(0.5f),
Chris@16 77 N - n + T(0.5f),
Chris@16 78 N - r + T(0.5f),
Chris@16 79 N + T(0.5f),
Chris@16 80 x + T(0.5f),
Chris@16 81 n - x + T(0.5f),
Chris@16 82 r - x + T(0.5f),
Chris@16 83 N - n - r + x + T(0.5f)
Chris@16 84 };
Chris@16 85 int base_e_factors[9] = {
Chris@16 86 -1, -1, -1, -1, 1, 1, 1, 1, 1
Chris@16 87 };
Chris@16 88 int sorted_indexes[9] = {
Chris@16 89 0, 1, 2, 3, 4, 5, 6, 7, 8
Chris@16 90 };
Chris@16 91 #ifdef BOOST_MATH_INSTRUMENT
Chris@16 92 BOOST_MATH_INSTRUMENT_FPU
Chris@16 93 for(unsigned i = 0; i < 9; ++i)
Chris@16 94 {
Chris@16 95 BOOST_MATH_INSTRUMENT_VARIABLE(i);
Chris@16 96 BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
Chris@16 97 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
Chris@16 98 BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
Chris@16 99 BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
Chris@16 100 }
Chris@16 101 #endif
Chris@16 102 std::sort(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
Chris@16 103 #ifdef BOOST_MATH_INSTRUMENT
Chris@16 104 BOOST_MATH_INSTRUMENT_FPU
Chris@16 105 for(unsigned i = 0; i < 9; ++i)
Chris@16 106 {
Chris@16 107 BOOST_MATH_INSTRUMENT_VARIABLE(i);
Chris@16 108 BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
Chris@16 109 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
Chris@16 110 BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
Chris@16 111 BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
Chris@16 112 }
Chris@16 113 #endif
Chris@16 114
Chris@16 115 do{
Chris@16 116 exponents[sorted_indexes[0]] -= exponents[sorted_indexes[1]];
Chris@16 117 bases[sorted_indexes[1]] *= bases[sorted_indexes[0]];
Chris@16 118 if((bases[sorted_indexes[1]] < tools::min_value<T>()) && (exponents[sorted_indexes[1]] != 0))
Chris@16 119 {
Chris@16 120 return 0;
Chris@16 121 }
Chris@16 122 base_e_factors[sorted_indexes[1]] += base_e_factors[sorted_indexes[0]];
Chris@16 123 bubble_down_one(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
Chris@16 124
Chris@16 125 #ifdef BOOST_MATH_INSTRUMENT
Chris@16 126 for(unsigned i = 0; i < 9; ++i)
Chris@16 127 {
Chris@16 128 BOOST_MATH_INSTRUMENT_VARIABLE(i);
Chris@16 129 BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
Chris@16 130 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
Chris@16 131 BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
Chris@16 132 BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
Chris@16 133 }
Chris@16 134 #endif
Chris@16 135 }while(exponents[sorted_indexes[1]] > 1);
Chris@16 136
Chris@16 137 //
Chris@16 138 // Combine equal powers:
Chris@16 139 //
Chris@16 140 int j = 8;
Chris@16 141 while(exponents[sorted_indexes[j]] == 0) --j;
Chris@16 142 while(j)
Chris@16 143 {
Chris@16 144 while(j && (exponents[sorted_indexes[j-1]] == exponents[sorted_indexes[j]]))
Chris@16 145 {
Chris@16 146 bases[sorted_indexes[j-1]] *= bases[sorted_indexes[j]];
Chris@16 147 exponents[sorted_indexes[j]] = 0;
Chris@16 148 base_e_factors[sorted_indexes[j-1]] += base_e_factors[sorted_indexes[j]];
Chris@16 149 bubble_down_one(sorted_indexes + j, sorted_indexes + 9, sort_functor<T>(exponents));
Chris@16 150 --j;
Chris@16 151 }
Chris@16 152 --j;
Chris@16 153
Chris@16 154 #ifdef BOOST_MATH_INSTRUMENT
Chris@16 155 BOOST_MATH_INSTRUMENT_VARIABLE(j);
Chris@16 156 for(unsigned i = 0; i < 9; ++i)
Chris@16 157 {
Chris@16 158 BOOST_MATH_INSTRUMENT_VARIABLE(i);
Chris@16 159 BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
Chris@16 160 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
Chris@16 161 BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
Chris@16 162 BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
Chris@16 163 }
Chris@16 164 #endif
Chris@16 165 }
Chris@16 166
Chris@16 167 #ifdef BOOST_MATH_INSTRUMENT
Chris@16 168 BOOST_MATH_INSTRUMENT_FPU
Chris@16 169 for(unsigned i = 0; i < 9; ++i)
Chris@16 170 {
Chris@16 171 BOOST_MATH_INSTRUMENT_VARIABLE(i);
Chris@16 172 BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
Chris@16 173 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
Chris@16 174 BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
Chris@16 175 BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
Chris@16 176 }
Chris@16 177 #endif
Chris@16 178
Chris@16 179 T result;
Chris@16 180 BOOST_MATH_INSTRUMENT_VARIABLE(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])));
Chris@16 181 BOOST_MATH_INSTRUMENT_VARIABLE(exponents[sorted_indexes[0]]);
Chris@16 182 {
Chris@16 183 BOOST_FPU_EXCEPTION_GUARD
Chris@16 184 result = pow(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])), exponents[sorted_indexes[0]]);
Chris@16 185 }
Chris@16 186 BOOST_MATH_INSTRUMENT_VARIABLE(result);
Chris@16 187 for(unsigned i = 1; (i < 9) && (exponents[sorted_indexes[i]] > 0); ++i)
Chris@16 188 {
Chris@16 189 BOOST_FPU_EXCEPTION_GUARD
Chris@16 190 if(result < tools::min_value<T>())
Chris@16 191 return 0; // short circuit further evaluation
Chris@16 192 if(exponents[sorted_indexes[i]] == 1)
Chris@16 193 result *= bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]]));
Chris@16 194 else if(exponents[sorted_indexes[i]] == 0.5f)
Chris@16 195 result *= sqrt(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])));
Chris@16 196 else
Chris@16 197 result *= pow(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])), exponents[sorted_indexes[i]]);
Chris@16 198
Chris@16 199 BOOST_MATH_INSTRUMENT_VARIABLE(result);
Chris@16 200 }
Chris@16 201
Chris@16 202 result *= Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n + 1))
Chris@16 203 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r + 1))
Chris@16 204 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n + 1))
Chris@16 205 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - r + 1))
Chris@16 206 /
Chris@16 207 ( Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N + 1))
Chris@16 208 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(x + 1))
Chris@16 209 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n - x + 1))
Chris@16 210 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r - x + 1))
Chris@16 211 * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n - r + x + 1)));
Chris@16 212
Chris@16 213 BOOST_MATH_INSTRUMENT_VARIABLE(result);
Chris@16 214 return result;
Chris@16 215 }
Chris@16 216
Chris@16 217 template <class T, class Policy>
Chris@16 218 T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const boost::math::lanczos::undefined_lanczos&, const Policy& pol)
Chris@16 219 {
Chris@16 220 BOOST_MATH_STD_USING
Chris@16 221 return exp(
Chris@16 222 boost::math::lgamma(T(n + 1), pol)
Chris@16 223 + boost::math::lgamma(T(r + 1), pol)
Chris@16 224 + boost::math::lgamma(T(N - n + 1), pol)
Chris@16 225 + boost::math::lgamma(T(N - r + 1), pol)
Chris@16 226 - boost::math::lgamma(T(N + 1), pol)
Chris@16 227 - boost::math::lgamma(T(x + 1), pol)
Chris@16 228 - boost::math::lgamma(T(n - x + 1), pol)
Chris@16 229 - boost::math::lgamma(T(r - x + 1), pol)
Chris@16 230 - boost::math::lgamma(T(N - n - r + x + 1), pol));
Chris@16 231 }
Chris@16 232
Chris@16 233 template <class T>
Chris@16 234 inline T integer_power(const T& x, int ex)
Chris@16 235 {
Chris@16 236 if(ex < 0)
Chris@16 237 return 1 / integer_power(x, -ex);
Chris@16 238 switch(ex)
Chris@16 239 {
Chris@16 240 case 0:
Chris@16 241 return 1;
Chris@16 242 case 1:
Chris@16 243 return x;
Chris@16 244 case 2:
Chris@16 245 return x * x;
Chris@16 246 case 3:
Chris@16 247 return x * x * x;
Chris@16 248 case 4:
Chris@16 249 return boost::math::pow<4>(x);
Chris@16 250 case 5:
Chris@16 251 return boost::math::pow<5>(x);
Chris@16 252 case 6:
Chris@16 253 return boost::math::pow<6>(x);
Chris@16 254 case 7:
Chris@16 255 return boost::math::pow<7>(x);
Chris@16 256 case 8:
Chris@16 257 return boost::math::pow<8>(x);
Chris@16 258 }
Chris@16 259 BOOST_MATH_STD_USING
Chris@16 260 #ifdef __SUNPRO_CC
Chris@16 261 return pow(x, T(ex));
Chris@16 262 #else
Chris@16 263 return pow(x, ex);
Chris@16 264 #endif
Chris@16 265 }
Chris@16 266 template <class T>
Chris@16 267 struct hypergeometric_pdf_prime_loop_result_entry
Chris@16 268 {
Chris@16 269 T value;
Chris@16 270 const hypergeometric_pdf_prime_loop_result_entry* next;
Chris@16 271 };
Chris@16 272
Chris@16 273 #ifdef BOOST_MSVC
Chris@16 274 #pragma warning(push)
Chris@16 275 #pragma warning(disable:4510 4512 4610)
Chris@16 276 #endif
Chris@16 277
Chris@16 278 struct hypergeometric_pdf_prime_loop_data
Chris@16 279 {
Chris@16 280 const unsigned x;
Chris@16 281 const unsigned r;
Chris@16 282 const unsigned n;
Chris@16 283 const unsigned N;
Chris@16 284 unsigned prime_index;
Chris@16 285 unsigned current_prime;
Chris@16 286 };
Chris@16 287
Chris@16 288 #ifdef BOOST_MSVC
Chris@16 289 #pragma warning(pop)
Chris@16 290 #endif
Chris@16 291
Chris@16 292 template <class T>
Chris@16 293 T hypergeometric_pdf_prime_loop_imp(hypergeometric_pdf_prime_loop_data& data, hypergeometric_pdf_prime_loop_result_entry<T>& result)
Chris@16 294 {
Chris@16 295 while(data.current_prime <= data.N)
Chris@16 296 {
Chris@16 297 unsigned base = data.current_prime;
Chris@16 298 int prime_powers = 0;
Chris@16 299 while(base <= data.N)
Chris@16 300 {
Chris@16 301 prime_powers += data.n / base;
Chris@16 302 prime_powers += data.r / base;
Chris@16 303 prime_powers += (data.N - data.n) / base;
Chris@16 304 prime_powers += (data.N - data.r) / base;
Chris@16 305 prime_powers -= data.N / base;
Chris@16 306 prime_powers -= data.x / base;
Chris@16 307 prime_powers -= (data.n - data.x) / base;
Chris@16 308 prime_powers -= (data.r - data.x) / base;
Chris@16 309 prime_powers -= (data.N - data.n - data.r + data.x) / base;
Chris@16 310 base *= data.current_prime;
Chris@16 311 }
Chris@16 312 if(prime_powers)
Chris@16 313 {
Chris@16 314 T p = integer_power<T>(data.current_prime, prime_powers);
Chris@16 315 if((p > 1) && (tools::max_value<T>() / p < result.value))
Chris@16 316 {
Chris@16 317 //
Chris@16 318 // The next calculation would overflow, use recursion
Chris@16 319 // to sidestep the issue:
Chris@16 320 //
Chris@16 321 hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
Chris@16 322 data.current_prime = prime(++data.prime_index);
Chris@16 323 return hypergeometric_pdf_prime_loop_imp<T>(data, t);
Chris@16 324 }
Chris@16 325 if((p < 1) && (tools::min_value<T>() / p > result.value))
Chris@16 326 {
Chris@16 327 //
Chris@16 328 // The next calculation would underflow, use recursion
Chris@16 329 // to sidestep the issue:
Chris@16 330 //
Chris@16 331 hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
Chris@16 332 data.current_prime = prime(++data.prime_index);
Chris@16 333 return hypergeometric_pdf_prime_loop_imp<T>(data, t);
Chris@16 334 }
Chris@16 335 result.value *= p;
Chris@16 336 }
Chris@16 337 data.current_prime = prime(++data.prime_index);
Chris@16 338 }
Chris@16 339 //
Chris@16 340 // When we get to here we have run out of prime factors,
Chris@16 341 // the overall result is the product of all the partial
Chris@16 342 // results we have accumulated on the stack so far, these
Chris@16 343 // are in a linked list starting with "data.head" and ending
Chris@16 344 // with "result".
Chris@16 345 //
Chris@16 346 // All that remains is to multiply them together, taking
Chris@16 347 // care not to overflow or underflow.
Chris@16 348 //
Chris@16 349 // Enumerate partial results >= 1 in variable i
Chris@16 350 // and partial results < 1 in variable j:
Chris@16 351 //
Chris@16 352 hypergeometric_pdf_prime_loop_result_entry<T> const *i, *j;
Chris@16 353 i = &result;
Chris@16 354 while(i && i->value < 1)
Chris@16 355 i = i->next;
Chris@16 356 j = &result;
Chris@16 357 while(j && j->value >= 1)
Chris@16 358 j = j->next;
Chris@16 359
Chris@16 360 T prod = 1;
Chris@16 361
Chris@16 362 while(i || j)
Chris@16 363 {
Chris@16 364 while(i && ((prod <= 1) || (j == 0)))
Chris@16 365 {
Chris@16 366 prod *= i->value;
Chris@16 367 i = i->next;
Chris@16 368 while(i && i->value < 1)
Chris@16 369 i = i->next;
Chris@16 370 }
Chris@16 371 while(j && ((prod >= 1) || (i == 0)))
Chris@16 372 {
Chris@16 373 prod *= j->value;
Chris@16 374 j = j->next;
Chris@16 375 while(j && j->value >= 1)
Chris@16 376 j = j->next;
Chris@16 377 }
Chris@16 378 }
Chris@16 379
Chris@16 380 return prod;
Chris@16 381 }
Chris@16 382
Chris@16 383 template <class T, class Policy>
Chris@16 384 inline T hypergeometric_pdf_prime_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
Chris@16 385 {
Chris@16 386 hypergeometric_pdf_prime_loop_result_entry<T> result = { 1, 0 };
Chris@16 387 hypergeometric_pdf_prime_loop_data data = { x, r, n, N, 0, prime(0) };
Chris@16 388 return hypergeometric_pdf_prime_loop_imp<T>(data, result);
Chris@16 389 }
Chris@16 390
Chris@16 391 template <class T, class Policy>
Chris@16 392 T hypergeometric_pdf_factorial_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
Chris@16 393 {
Chris@16 394 BOOST_MATH_STD_USING
Chris@16 395 BOOST_ASSERT(N <= boost::math::max_factorial<T>::value);
Chris@16 396 T result = boost::math::unchecked_factorial<T>(n);
Chris@16 397 T num[3] = {
Chris@16 398 boost::math::unchecked_factorial<T>(r),
Chris@16 399 boost::math::unchecked_factorial<T>(N - n),
Chris@16 400 boost::math::unchecked_factorial<T>(N - r)
Chris@16 401 };
Chris@16 402 T denom[5] = {
Chris@16 403 boost::math::unchecked_factorial<T>(N),
Chris@16 404 boost::math::unchecked_factorial<T>(x),
Chris@16 405 boost::math::unchecked_factorial<T>(n - x),
Chris@16 406 boost::math::unchecked_factorial<T>(r - x),
Chris@16 407 boost::math::unchecked_factorial<T>(N - n - r + x)
Chris@16 408 };
Chris@16 409 int i = 0;
Chris@16 410 int j = 0;
Chris@16 411 while((i < 3) || (j < 5))
Chris@16 412 {
Chris@16 413 while((j < 5) && ((result >= 1) || (i >= 3)))
Chris@16 414 {
Chris@16 415 result /= denom[j];
Chris@16 416 ++j;
Chris@16 417 }
Chris@16 418 while((i < 3) && ((result <= 1) || (j >= 5)))
Chris@16 419 {
Chris@16 420 result *= num[i];
Chris@16 421 ++i;
Chris@16 422 }
Chris@16 423 }
Chris@16 424 return result;
Chris@16 425 }
Chris@16 426
Chris@16 427
Chris@16 428 template <class T, class Policy>
Chris@16 429 inline typename tools::promote_args<T>::type
Chris@16 430 hypergeometric_pdf(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
Chris@16 431 {
Chris@16 432 BOOST_FPU_EXCEPTION_GUARD
Chris@16 433 typedef typename tools::promote_args<T>::type result_type;
Chris@16 434 typedef typename policies::evaluation<result_type, Policy>::type value_type;
Chris@16 435 typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
Chris@16 436 typedef typename policies::normalise<
Chris@16 437 Policy,
Chris@16 438 policies::promote_float<false>,
Chris@16 439 policies::promote_double<false>,
Chris@16 440 policies::discrete_quantile<>,
Chris@16 441 policies::assert_undefined<> >::type forwarding_policy;
Chris@16 442
Chris@16 443 value_type result;
Chris@16 444 if(N <= boost::math::max_factorial<value_type>::value)
Chris@16 445 {
Chris@16 446 //
Chris@16 447 // If N is small enough then we can evaluate the PDF via the factorials
Chris@16 448 // directly: table lookup of the factorials gives the best performance
Chris@16 449 // of the methods available:
Chris@16 450 //
Chris@16 451 result = detail::hypergeometric_pdf_factorial_imp<value_type>(x, r, n, N, forwarding_policy());
Chris@16 452 }
Chris@16 453 else if(N <= boost::math::prime(boost::math::max_prime - 1))
Chris@16 454 {
Chris@16 455 //
Chris@16 456 // If N is no larger than the largest prime number in our lookup table
Chris@16 457 // (104729) then we can use prime factorisation to evaluate the PDF,
Chris@16 458 // this is slow but accurate:
Chris@16 459 //
Chris@16 460 result = detail::hypergeometric_pdf_prime_imp<value_type>(x, r, n, N, forwarding_policy());
Chris@16 461 }
Chris@16 462 else
Chris@16 463 {
Chris@16 464 //
Chris@16 465 // Catch all case - use the lanczos approximation - where available -
Chris@16 466 // to evaluate the ratio of factorials. This is reasonably fast
Chris@16 467 // (almost as quick as using logarithmic evaluation in terms of lgamma)
Chris@16 468 // but only a few digits better in accuracy than using lgamma:
Chris@16 469 //
Chris@16 470 result = detail::hypergeometric_pdf_lanczos_imp(value_type(), x, r, n, N, evaluation_type(), forwarding_policy());
Chris@16 471 }
Chris@16 472
Chris@16 473 if(result > 1)
Chris@16 474 {
Chris@16 475 result = 1;
Chris@16 476 }
Chris@16 477 if(result < 0)
Chris@16 478 {
Chris@16 479 result = 0;
Chris@16 480 }
Chris@16 481
Chris@16 482 return policies::checked_narrowing_cast<result_type, forwarding_policy>(result, "boost::math::hypergeometric_pdf<%1%>(%1%,%1%,%1%,%1%)");
Chris@16 483 }
Chris@16 484
Chris@16 485 }}} // namespaces
Chris@16 486
Chris@16 487 #endif
Chris@16 488