Chris@16
|
1 // Copyright John Maddock 2010, 2012.
|
Chris@16
|
2 // Copyright Paul A. Bristow 2011, 2012.
|
Chris@16
|
3
|
Chris@16
|
4 // Use, modification and distribution are subject to the
|
Chris@16
|
5 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
6 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
7
|
Chris@16
|
8 #ifndef BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED
|
Chris@16
|
9 #define BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED
|
Chris@16
|
10
|
Chris@16
|
11 #include <boost/math/special_functions/trunc.hpp>
|
Chris@16
|
12
|
Chris@16
|
13 namespace boost{ namespace math{ namespace constants{ namespace detail{
|
Chris@16
|
14
|
Chris@16
|
15 template <class T>
|
Chris@16
|
16 template<int N>
|
Chris@16
|
17 inline T constant_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
18 {
|
Chris@16
|
19 BOOST_MATH_STD_USING
|
Chris@16
|
20
|
Chris@16
|
21 return ldexp(acos(T(0)), 1);
|
Chris@16
|
22
|
Chris@16
|
23 /*
|
Chris@16
|
24 // Although this code works well, it's usually more accurate to just call acos
|
Chris@16
|
25 // and access the number types own representation of PI which is usually calculated
|
Chris@16
|
26 // at slightly higher precision...
|
Chris@16
|
27
|
Chris@16
|
28 T result;
|
Chris@16
|
29 T a = 1;
|
Chris@16
|
30 T b;
|
Chris@16
|
31 T A(a);
|
Chris@16
|
32 T B = 0.5f;
|
Chris@16
|
33 T D = 0.25f;
|
Chris@16
|
34
|
Chris@16
|
35 T lim;
|
Chris@16
|
36 lim = boost::math::tools::epsilon<T>();
|
Chris@16
|
37
|
Chris@16
|
38 unsigned k = 1;
|
Chris@16
|
39
|
Chris@16
|
40 do
|
Chris@16
|
41 {
|
Chris@16
|
42 result = A + B;
|
Chris@16
|
43 result = ldexp(result, -2);
|
Chris@16
|
44 b = sqrt(B);
|
Chris@16
|
45 a += b;
|
Chris@16
|
46 a = ldexp(a, -1);
|
Chris@16
|
47 A = a * a;
|
Chris@16
|
48 B = A - result;
|
Chris@16
|
49 B = ldexp(B, 1);
|
Chris@16
|
50 result = A - B;
|
Chris@16
|
51 bool neg = boost::math::sign(result) < 0;
|
Chris@16
|
52 if(neg)
|
Chris@16
|
53 result = -result;
|
Chris@16
|
54 if(result <= lim)
|
Chris@16
|
55 break;
|
Chris@16
|
56 if(neg)
|
Chris@16
|
57 result = -result;
|
Chris@16
|
58 result = ldexp(result, k - 1);
|
Chris@16
|
59 D -= result;
|
Chris@16
|
60 ++k;
|
Chris@16
|
61 lim = ldexp(lim, 1);
|
Chris@16
|
62 }
|
Chris@16
|
63 while(true);
|
Chris@16
|
64
|
Chris@16
|
65 result = B / D;
|
Chris@16
|
66 return result;
|
Chris@16
|
67 */
|
Chris@16
|
68 }
|
Chris@16
|
69
|
Chris@16
|
70 template <class T>
|
Chris@16
|
71 template<int N>
|
Chris@16
|
72 inline T constant_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
73 {
|
Chris@16
|
74 return 2 * pi<T, policies::policy<policies::digits2<N> > >();
|
Chris@16
|
75 }
|
Chris@16
|
76
|
Chris@16
|
77 template <class T> // 2 / pi
|
Chris@16
|
78 template<int N>
|
Chris@16
|
79 inline T constant_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
80 {
|
Chris@16
|
81 return 2 / pi<T, policies::policy<policies::digits2<N> > >();
|
Chris@16
|
82 }
|
Chris@16
|
83
|
Chris@16
|
84 template <class T> // sqrt(2/pi)
|
Chris@16
|
85 template <int N>
|
Chris@16
|
86 inline T constant_root_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
87 {
|
Chris@16
|
88 BOOST_MATH_STD_USING
|
Chris@16
|
89 return sqrt((2 / pi<T, policies::policy<policies::digits2<N> > >()));
|
Chris@16
|
90 }
|
Chris@16
|
91
|
Chris@16
|
92 template <class T>
|
Chris@16
|
93 template<int N>
|
Chris@16
|
94 inline T constant_one_div_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
95 {
|
Chris@16
|
96 return 1 / two_pi<T, policies::policy<policies::digits2<N> > >();
|
Chris@16
|
97 }
|
Chris@16
|
98
|
Chris@16
|
99 template <class T>
|
Chris@16
|
100 template<int N>
|
Chris@16
|
101 inline T constant_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
102 {
|
Chris@16
|
103 BOOST_MATH_STD_USING
|
Chris@16
|
104 return sqrt(pi<T, policies::policy<policies::digits2<N> > >());
|
Chris@16
|
105 }
|
Chris@16
|
106
|
Chris@16
|
107 template <class T>
|
Chris@16
|
108 template<int N>
|
Chris@16
|
109 inline T constant_root_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
110 {
|
Chris@16
|
111 BOOST_MATH_STD_USING
|
Chris@16
|
112 return sqrt(pi<T, policies::policy<policies::digits2<N> > >() / 2);
|
Chris@16
|
113 }
|
Chris@16
|
114
|
Chris@16
|
115 template <class T>
|
Chris@16
|
116 template<int N>
|
Chris@16
|
117 inline T constant_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
118 {
|
Chris@16
|
119 BOOST_MATH_STD_USING
|
Chris@16
|
120 return sqrt(two_pi<T, policies::policy<policies::digits2<N> > >());
|
Chris@16
|
121 }
|
Chris@16
|
122
|
Chris@16
|
123 template <class T>
|
Chris@16
|
124 template<int N>
|
Chris@16
|
125 inline T constant_log_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
126 {
|
Chris@16
|
127 BOOST_MATH_STD_USING
|
Chris@16
|
128 return log(root_two_pi<T, policies::policy<policies::digits2<N> > >());
|
Chris@16
|
129 }
|
Chris@16
|
130
|
Chris@16
|
131 template <class T>
|
Chris@16
|
132 template<int N>
|
Chris@16
|
133 inline T constant_root_ln_four<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
134 {
|
Chris@16
|
135 BOOST_MATH_STD_USING
|
Chris@16
|
136 return sqrt(log(static_cast<T>(4)));
|
Chris@16
|
137 }
|
Chris@16
|
138
|
Chris@16
|
139 template <class T>
|
Chris@16
|
140 template<int N>
|
Chris@16
|
141 inline T constant_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
142 {
|
Chris@16
|
143 //
|
Chris@16
|
144 // Although we can clearly calculate this from first principles, this hooks into
|
Chris@16
|
145 // T's own notion of e, which hopefully will more accurate than one calculated to
|
Chris@16
|
146 // a few epsilon:
|
Chris@16
|
147 //
|
Chris@16
|
148 BOOST_MATH_STD_USING
|
Chris@16
|
149 return exp(static_cast<T>(1));
|
Chris@16
|
150 }
|
Chris@16
|
151
|
Chris@16
|
152 template <class T>
|
Chris@16
|
153 template<int N>
|
Chris@16
|
154 inline T constant_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
155 {
|
Chris@16
|
156 return static_cast<T>(1) / static_cast<T>(2);
|
Chris@16
|
157 }
|
Chris@16
|
158
|
Chris@16
|
159 template <class T>
|
Chris@16
|
160 template<int M>
|
Chris@16
|
161 inline T constant_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<M>))
|
Chris@16
|
162 {
|
Chris@16
|
163 BOOST_MATH_STD_USING
|
Chris@16
|
164 //
|
Chris@16
|
165 // This is the method described in:
|
Chris@16
|
166 // "Some New Algorithms for High-Precision Computation of Euler's Constant"
|
Chris@16
|
167 // Richard P Brent and Edwin M McMillan.
|
Chris@16
|
168 // Mathematics of Computation, Volume 34, Number 149, Jan 1980, pages 305-312.
|
Chris@16
|
169 // See equation 17 with p = 2.
|
Chris@16
|
170 //
|
Chris@16
|
171 T n = 3 + (M ? (std::min)(M, tools::digits<T>()) : tools::digits<T>()) / 4;
|
Chris@16
|
172 T lim = M ? ldexp(T(1), 1 - (std::min)(M, tools::digits<T>())) : tools::epsilon<T>();
|
Chris@16
|
173 T lnn = log(n);
|
Chris@16
|
174 T term = 1;
|
Chris@16
|
175 T N = -lnn;
|
Chris@16
|
176 T D = 1;
|
Chris@16
|
177 T Hk = 0;
|
Chris@16
|
178 T one = 1;
|
Chris@16
|
179
|
Chris@16
|
180 for(unsigned k = 1;; ++k)
|
Chris@16
|
181 {
|
Chris@16
|
182 term *= n * n;
|
Chris@16
|
183 term /= k * k;
|
Chris@16
|
184 Hk += one / k;
|
Chris@16
|
185 N += term * (Hk - lnn);
|
Chris@16
|
186 D += term;
|
Chris@16
|
187
|
Chris@16
|
188 if(term < D * lim)
|
Chris@16
|
189 break;
|
Chris@16
|
190 }
|
Chris@16
|
191 return N / D;
|
Chris@16
|
192 }
|
Chris@16
|
193
|
Chris@16
|
194 template <class T>
|
Chris@16
|
195 template<int N>
|
Chris@16
|
196 inline T constant_euler_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
197 {
|
Chris@16
|
198 BOOST_MATH_STD_USING
|
Chris@16
|
199 return euler<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
200 * euler<T, policies::policy<policies::digits2<N> > >();
|
Chris@16
|
201 }
|
Chris@16
|
202
|
Chris@16
|
203 template <class T>
|
Chris@16
|
204 template<int N>
|
Chris@16
|
205 inline T constant_one_div_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
206 {
|
Chris@16
|
207 BOOST_MATH_STD_USING
|
Chris@16
|
208 return static_cast<T>(1)
|
Chris@16
|
209 / euler<T, policies::policy<policies::digits2<N> > >();
|
Chris@16
|
210 }
|
Chris@16
|
211
|
Chris@16
|
212
|
Chris@16
|
213 template <class T>
|
Chris@16
|
214 template<int N>
|
Chris@16
|
215 inline T constant_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
216 {
|
Chris@16
|
217 BOOST_MATH_STD_USING
|
Chris@16
|
218 return sqrt(static_cast<T>(2));
|
Chris@16
|
219 }
|
Chris@16
|
220
|
Chris@16
|
221
|
Chris@16
|
222 template <class T>
|
Chris@16
|
223 template<int N>
|
Chris@16
|
224 inline T constant_root_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
225 {
|
Chris@16
|
226 BOOST_MATH_STD_USING
|
Chris@16
|
227 return sqrt(static_cast<T>(3));
|
Chris@16
|
228 }
|
Chris@16
|
229
|
Chris@16
|
230 template <class T>
|
Chris@16
|
231 template<int N>
|
Chris@16
|
232 inline T constant_half_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
233 {
|
Chris@16
|
234 BOOST_MATH_STD_USING
|
Chris@16
|
235 return sqrt(static_cast<T>(2)) / 2;
|
Chris@16
|
236 }
|
Chris@16
|
237
|
Chris@16
|
238 template <class T>
|
Chris@16
|
239 template<int N>
|
Chris@16
|
240 inline T constant_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
241 {
|
Chris@16
|
242 //
|
Chris@16
|
243 // Although there are good ways to calculate this from scratch, this hooks into
|
Chris@16
|
244 // T's own notion of log(2) which will hopefully be accurate to the full precision
|
Chris@16
|
245 // of T:
|
Chris@16
|
246 //
|
Chris@16
|
247 BOOST_MATH_STD_USING
|
Chris@16
|
248 return log(static_cast<T>(2));
|
Chris@16
|
249 }
|
Chris@16
|
250
|
Chris@16
|
251 template <class T>
|
Chris@16
|
252 template<int N>
|
Chris@16
|
253 inline T constant_ln_ten<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
254 {
|
Chris@16
|
255 BOOST_MATH_STD_USING
|
Chris@16
|
256 return log(static_cast<T>(10));
|
Chris@16
|
257 }
|
Chris@16
|
258
|
Chris@16
|
259 template <class T>
|
Chris@16
|
260 template<int N>
|
Chris@16
|
261 inline T constant_ln_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
262 {
|
Chris@16
|
263 BOOST_MATH_STD_USING
|
Chris@16
|
264 return log(log(static_cast<T>(2)));
|
Chris@16
|
265 }
|
Chris@16
|
266
|
Chris@16
|
267 template <class T>
|
Chris@16
|
268 template<int N>
|
Chris@16
|
269 inline T constant_third<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
270 {
|
Chris@16
|
271 BOOST_MATH_STD_USING
|
Chris@16
|
272 return static_cast<T>(1) / static_cast<T>(3);
|
Chris@16
|
273 }
|
Chris@16
|
274
|
Chris@16
|
275 template <class T>
|
Chris@16
|
276 template<int N>
|
Chris@16
|
277 inline T constant_twothirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
278 {
|
Chris@16
|
279 BOOST_MATH_STD_USING
|
Chris@16
|
280 return static_cast<T>(2) / static_cast<T>(3);
|
Chris@16
|
281 }
|
Chris@16
|
282
|
Chris@16
|
283 template <class T>
|
Chris@16
|
284 template<int N>
|
Chris@16
|
285 inline T constant_two_thirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
286 {
|
Chris@16
|
287 BOOST_MATH_STD_USING
|
Chris@16
|
288 return static_cast<T>(2) / static_cast<T>(3);
|
Chris@16
|
289 }
|
Chris@16
|
290
|
Chris@16
|
291 template <class T>
|
Chris@16
|
292 template<int N>
|
Chris@16
|
293 inline T constant_three_quarters<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
294 {
|
Chris@16
|
295 BOOST_MATH_STD_USING
|
Chris@16
|
296 return static_cast<T>(3) / static_cast<T>(4);
|
Chris@16
|
297 }
|
Chris@16
|
298
|
Chris@16
|
299 template <class T>
|
Chris@16
|
300 template<int N>
|
Chris@16
|
301 inline T constant_pi_minus_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
302 {
|
Chris@16
|
303 return pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(3);
|
Chris@16
|
304 }
|
Chris@16
|
305
|
Chris@16
|
306 template <class T>
|
Chris@16
|
307 template<int N>
|
Chris@16
|
308 inline T constant_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
309 {
|
Chris@16
|
310 return static_cast<T>(4) - pi<T, policies::policy<policies::digits2<N> > >();
|
Chris@16
|
311 }
|
Chris@16
|
312
|
Chris@101
|
313 //template <class T>
|
Chris@101
|
314 //template<int N>
|
Chris@101
|
315 //inline T constant_pow23_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@101
|
316 //{
|
Chris@101
|
317 // BOOST_MATH_STD_USING
|
Chris@101
|
318 // return pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1.5));
|
Chris@101
|
319 //}
|
Chris@16
|
320
|
Chris@16
|
321 template <class T>
|
Chris@16
|
322 template<int N>
|
Chris@16
|
323 inline T constant_exp_minus_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
324 {
|
Chris@16
|
325 BOOST_MATH_STD_USING
|
Chris@16
|
326 return exp(static_cast<T>(-0.5));
|
Chris@16
|
327 }
|
Chris@16
|
328
|
Chris@16
|
329 // Pi
|
Chris@16
|
330 template <class T>
|
Chris@16
|
331 template<int N>
|
Chris@16
|
332 inline T constant_one_div_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
333 {
|
Chris@16
|
334 return static_cast<T>(1) / root_two<T, policies::policy<policies::digits2<N> > >();
|
Chris@16
|
335 }
|
Chris@16
|
336
|
Chris@16
|
337 template <class T>
|
Chris@16
|
338 template<int N>
|
Chris@16
|
339 inline T constant_one_div_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
340 {
|
Chris@16
|
341 return static_cast<T>(1) / root_pi<T, policies::policy<policies::digits2<N> > >();
|
Chris@16
|
342 }
|
Chris@16
|
343
|
Chris@16
|
344 template <class T>
|
Chris@16
|
345 template<int N>
|
Chris@16
|
346 inline T constant_one_div_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
347 {
|
Chris@16
|
348 return static_cast<T>(1) / root_two_pi<T, policies::policy<policies::digits2<N> > >();
|
Chris@16
|
349 }
|
Chris@16
|
350
|
Chris@16
|
351 template <class T>
|
Chris@16
|
352 template<int N>
|
Chris@16
|
353 inline T constant_root_one_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
354 {
|
Chris@16
|
355 BOOST_MATH_STD_USING
|
Chris@16
|
356 return sqrt(static_cast<T>(1) / pi<T, policies::policy<policies::digits2<N> > >());
|
Chris@16
|
357 }
|
Chris@16
|
358
|
Chris@16
|
359
|
Chris@16
|
360 template <class T>
|
Chris@16
|
361 template<int N>
|
Chris@16
|
362 inline T constant_four_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
363 {
|
Chris@16
|
364 BOOST_MATH_STD_USING
|
Chris@16
|
365 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(4) / static_cast<T>(3);
|
Chris@16
|
366 }
|
Chris@16
|
367
|
Chris@16
|
368 template <class T>
|
Chris@16
|
369 template<int N>
|
Chris@16
|
370 inline T constant_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
371 {
|
Chris@16
|
372 BOOST_MATH_STD_USING
|
Chris@16
|
373 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(2);
|
Chris@16
|
374 }
|
Chris@16
|
375
|
Chris@16
|
376
|
Chris@16
|
377 template <class T>
|
Chris@16
|
378 template<int N>
|
Chris@16
|
379 inline T constant_third_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
380 {
|
Chris@16
|
381 BOOST_MATH_STD_USING
|
Chris@16
|
382 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(3);
|
Chris@16
|
383 }
|
Chris@16
|
384
|
Chris@16
|
385 template <class T>
|
Chris@16
|
386 template<int N>
|
Chris@16
|
387 inline T constant_sixth_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
388 {
|
Chris@16
|
389 BOOST_MATH_STD_USING
|
Chris@16
|
390 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(6);
|
Chris@16
|
391 }
|
Chris@16
|
392
|
Chris@16
|
393 template <class T>
|
Chris@16
|
394 template<int N>
|
Chris@16
|
395 inline T constant_two_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
396 {
|
Chris@16
|
397 BOOST_MATH_STD_USING
|
Chris@16
|
398 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(2) / static_cast<T>(3);
|
Chris@16
|
399 }
|
Chris@16
|
400
|
Chris@16
|
401 template <class T>
|
Chris@16
|
402 template<int N>
|
Chris@16
|
403 inline T constant_three_quarters_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
404 {
|
Chris@16
|
405 BOOST_MATH_STD_USING
|
Chris@16
|
406 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(3) / static_cast<T>(4);
|
Chris@16
|
407 }
|
Chris@16
|
408
|
Chris@16
|
409 template <class T>
|
Chris@16
|
410 template<int N>
|
Chris@16
|
411 inline T constant_pi_pow_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
412 {
|
Chris@16
|
413 BOOST_MATH_STD_USING
|
Chris@16
|
414 return pow(pi<T, policies::policy<policies::digits2<N> > >(), e<T, policies::policy<policies::digits2<N> > >()); //
|
Chris@16
|
415 }
|
Chris@16
|
416
|
Chris@16
|
417 template <class T>
|
Chris@16
|
418 template<int N>
|
Chris@16
|
419 inline T constant_pi_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
420 {
|
Chris@16
|
421 BOOST_MATH_STD_USING
|
Chris@16
|
422 return pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
423 * pi<T, policies::policy<policies::digits2<N> > >() ; //
|
Chris@16
|
424 }
|
Chris@16
|
425
|
Chris@16
|
426 template <class T>
|
Chris@16
|
427 template<int N>
|
Chris@16
|
428 inline T constant_pi_sqr_div_six<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
429 {
|
Chris@16
|
430 BOOST_MATH_STD_USING
|
Chris@16
|
431 return pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
432 * pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
433 / static_cast<T>(6); //
|
Chris@16
|
434 }
|
Chris@16
|
435
|
Chris@16
|
436
|
Chris@16
|
437 template <class T>
|
Chris@16
|
438 template<int N>
|
Chris@16
|
439 inline T constant_pi_cubed<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
440 {
|
Chris@16
|
441 BOOST_MATH_STD_USING
|
Chris@16
|
442 return pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
443 * pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
444 * pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
445 ; //
|
Chris@16
|
446 }
|
Chris@16
|
447
|
Chris@16
|
448 template <class T>
|
Chris@16
|
449 template<int N>
|
Chris@16
|
450 inline T constant_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
451 {
|
Chris@16
|
452 BOOST_MATH_STD_USING
|
Chris@16
|
453 return pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3));
|
Chris@16
|
454 }
|
Chris@16
|
455
|
Chris@16
|
456 template <class T>
|
Chris@16
|
457 template<int N>
|
Chris@16
|
458 inline T constant_one_div_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
459 {
|
Chris@16
|
460 BOOST_MATH_STD_USING
|
Chris@16
|
461 return static_cast<T>(1)
|
Chris@16
|
462 / pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3));
|
Chris@16
|
463 }
|
Chris@16
|
464
|
Chris@16
|
465 // Euler's e
|
Chris@16
|
466
|
Chris@16
|
467 template <class T>
|
Chris@16
|
468 template<int N>
|
Chris@16
|
469 inline T constant_e_pow_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
470 {
|
Chris@16
|
471 BOOST_MATH_STD_USING
|
Chris@16
|
472 return pow(e<T, policies::policy<policies::digits2<N> > >(), pi<T, policies::policy<policies::digits2<N> > >()); //
|
Chris@16
|
473 }
|
Chris@16
|
474
|
Chris@16
|
475 template <class T>
|
Chris@16
|
476 template<int N>
|
Chris@16
|
477 inline T constant_root_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
478 {
|
Chris@16
|
479 BOOST_MATH_STD_USING
|
Chris@16
|
480 return sqrt(e<T, policies::policy<policies::digits2<N> > >());
|
Chris@16
|
481 }
|
Chris@16
|
482
|
Chris@16
|
483 template <class T>
|
Chris@16
|
484 template<int N>
|
Chris@16
|
485 inline T constant_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
486 {
|
Chris@16
|
487 BOOST_MATH_STD_USING
|
Chris@16
|
488 return log10(e<T, policies::policy<policies::digits2<N> > >());
|
Chris@16
|
489 }
|
Chris@16
|
490
|
Chris@16
|
491 template <class T>
|
Chris@16
|
492 template<int N>
|
Chris@16
|
493 inline T constant_one_div_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
494 {
|
Chris@16
|
495 BOOST_MATH_STD_USING
|
Chris@16
|
496 return static_cast<T>(1) /
|
Chris@16
|
497 log10(e<T, policies::policy<policies::digits2<N> > >());
|
Chris@16
|
498 }
|
Chris@16
|
499
|
Chris@16
|
500 // Trigonometric
|
Chris@16
|
501
|
Chris@16
|
502 template <class T>
|
Chris@16
|
503 template<int N>
|
Chris@16
|
504 inline T constant_degree<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
505 {
|
Chris@16
|
506 BOOST_MATH_STD_USING
|
Chris@16
|
507 return pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
508 / static_cast<T>(180)
|
Chris@16
|
509 ; //
|
Chris@16
|
510 }
|
Chris@16
|
511
|
Chris@16
|
512 template <class T>
|
Chris@16
|
513 template<int N>
|
Chris@16
|
514 inline T constant_radian<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
515 {
|
Chris@16
|
516 BOOST_MATH_STD_USING
|
Chris@16
|
517 return static_cast<T>(180)
|
Chris@16
|
518 / pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
519 ; //
|
Chris@16
|
520 }
|
Chris@16
|
521
|
Chris@16
|
522 template <class T>
|
Chris@16
|
523 template<int N>
|
Chris@16
|
524 inline T constant_sin_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
525 {
|
Chris@16
|
526 BOOST_MATH_STD_USING
|
Chris@16
|
527 return sin(static_cast<T>(1)) ; //
|
Chris@16
|
528 }
|
Chris@16
|
529
|
Chris@16
|
530 template <class T>
|
Chris@16
|
531 template<int N>
|
Chris@16
|
532 inline T constant_cos_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
533 {
|
Chris@16
|
534 BOOST_MATH_STD_USING
|
Chris@16
|
535 return cos(static_cast<T>(1)) ; //
|
Chris@16
|
536 }
|
Chris@16
|
537
|
Chris@16
|
538 template <class T>
|
Chris@16
|
539 template<int N>
|
Chris@16
|
540 inline T constant_sinh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
541 {
|
Chris@16
|
542 BOOST_MATH_STD_USING
|
Chris@16
|
543 return sinh(static_cast<T>(1)) ; //
|
Chris@16
|
544 }
|
Chris@16
|
545
|
Chris@16
|
546 template <class T>
|
Chris@16
|
547 template<int N>
|
Chris@16
|
548 inline T constant_cosh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
549 {
|
Chris@16
|
550 BOOST_MATH_STD_USING
|
Chris@16
|
551 return cosh(static_cast<T>(1)) ; //
|
Chris@16
|
552 }
|
Chris@16
|
553
|
Chris@16
|
554 template <class T>
|
Chris@16
|
555 template<int N>
|
Chris@16
|
556 inline T constant_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
557 {
|
Chris@16
|
558 BOOST_MATH_STD_USING
|
Chris@16
|
559 return (static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ; //
|
Chris@16
|
560 }
|
Chris@16
|
561
|
Chris@16
|
562 template <class T>
|
Chris@16
|
563 template<int N>
|
Chris@16
|
564 inline T constant_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
565 {
|
Chris@16
|
566 BOOST_MATH_STD_USING
|
Chris@16
|
567 //return log(phi<T, policies::policy<policies::digits2<N> > >()); // ???
|
Chris@16
|
568 return log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) );
|
Chris@16
|
569 }
|
Chris@16
|
570 template <class T>
|
Chris@16
|
571 template<int N>
|
Chris@16
|
572 inline T constant_one_div_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
573 {
|
Chris@16
|
574 BOOST_MATH_STD_USING
|
Chris@16
|
575 return static_cast<T>(1) /
|
Chris@16
|
576 log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) );
|
Chris@16
|
577 }
|
Chris@16
|
578
|
Chris@16
|
579 // Zeta
|
Chris@16
|
580
|
Chris@16
|
581 template <class T>
|
Chris@16
|
582 template<int N>
|
Chris@16
|
583 inline T constant_zeta_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
584 {
|
Chris@16
|
585 BOOST_MATH_STD_USING
|
Chris@16
|
586
|
Chris@16
|
587 return pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
588 * pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
589 /static_cast<T>(6);
|
Chris@16
|
590 }
|
Chris@16
|
591
|
Chris@16
|
592 template <class T>
|
Chris@16
|
593 template<int N>
|
Chris@16
|
594 inline T constant_zeta_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
595 {
|
Chris@16
|
596 // http://mathworld.wolfram.com/AperysConstant.html
|
Chris@16
|
597 // http://en.wikipedia.org/wiki/Mathematical_constant
|
Chris@16
|
598
|
Chris@16
|
599 // http://oeis.org/A002117/constant
|
Chris@16
|
600 //T zeta3("1.20205690315959428539973816151144999076"
|
Chris@16
|
601 // "4986292340498881792271555341838205786313"
|
Chris@16
|
602 // "09018645587360933525814619915");
|
Chris@16
|
603
|
Chris@16
|
604 //"1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915" A002117
|
Chris@16
|
605 // 1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915780, +00);
|
Chris@16
|
606 //"1.2020569031595942 double
|
Chris@16
|
607 // http://www.spaennare.se/SSPROG/ssnum.pdf // section 11, Algorithm for Apery's constant zeta(3).
|
Chris@16
|
608 // Programs to Calculate some Mathematical Constants to Large Precision, Document Version 1.50
|
Chris@16
|
609
|
Chris@16
|
610 // by Stefan Spannare September 19, 2007
|
Chris@16
|
611 // zeta(3) = 1/64 * sum
|
Chris@16
|
612 BOOST_MATH_STD_USING
|
Chris@16
|
613 T n_fact=static_cast<T>(1); // build n! for n = 0.
|
Chris@16
|
614 T sum = static_cast<double>(77); // Start with n = 0 case.
|
Chris@16
|
615 // for n = 0, (77/1) /64 = 1.203125
|
Chris@16
|
616 //double lim = std::numeric_limits<double>::epsilon();
|
Chris@16
|
617 T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>();
|
Chris@16
|
618 for(unsigned int n = 1; n < 40; ++n)
|
Chris@16
|
619 { // three to five decimal digits per term, so 40 should be plenty for 100 decimal digits.
|
Chris@16
|
620 //cout << "n = " << n << endl;
|
Chris@16
|
621 n_fact *= n; // n!
|
Chris@16
|
622 T n_fact_p10 = n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact; // (n!)^10
|
Chris@16
|
623 T num = ((205 * n * n) + (250 * n) + 77) * n_fact_p10; // 205n^2 + 250n + 77
|
Chris@16
|
624 // int nn = (2 * n + 1);
|
Chris@16
|
625 // T d = factorial(nn); // inline factorial.
|
Chris@16
|
626 T d = 1;
|
Chris@16
|
627 for(unsigned int i = 1; i <= (n+n + 1); ++i) // (2n + 1)
|
Chris@16
|
628 {
|
Chris@16
|
629 d *= i;
|
Chris@16
|
630 }
|
Chris@16
|
631 T den = d * d * d * d * d; // [(2n+1)!]^5
|
Chris@16
|
632 //cout << "den = " << den << endl;
|
Chris@16
|
633 T term = num/den;
|
Chris@16
|
634 if (n % 2 != 0)
|
Chris@16
|
635 { //term *= -1;
|
Chris@16
|
636 sum -= term;
|
Chris@16
|
637 }
|
Chris@16
|
638 else
|
Chris@16
|
639 {
|
Chris@16
|
640 sum += term;
|
Chris@16
|
641 }
|
Chris@16
|
642 //cout << "term = " << term << endl;
|
Chris@16
|
643 //cout << "sum/64 = " << sum/64 << endl;
|
Chris@16
|
644 if(abs(term) < lim)
|
Chris@16
|
645 {
|
Chris@16
|
646 break;
|
Chris@16
|
647 }
|
Chris@16
|
648 }
|
Chris@16
|
649 return sum / 64;
|
Chris@16
|
650 }
|
Chris@16
|
651
|
Chris@16
|
652 template <class T>
|
Chris@16
|
653 template<int N>
|
Chris@16
|
654 inline T constant_catalan<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
655 { // http://oeis.org/A006752/constant
|
Chris@16
|
656 //T c("0.915965594177219015054603514932384110774"
|
Chris@16
|
657 //"149374281672134266498119621763019776254769479356512926115106248574");
|
Chris@16
|
658
|
Chris@16
|
659 // 9.159655941772190150546035149323841107, 74149374281672134266498119621763019776254769479356512926115106248574422619, -01);
|
Chris@16
|
660
|
Chris@16
|
661 // This is equation (entry) 31 from
|
Chris@16
|
662 // http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm
|
Chris@16
|
663 // See also http://www.mpfr.org/algorithms.pdf
|
Chris@16
|
664 BOOST_MATH_STD_USING
|
Chris@16
|
665 T k_fact = 1;
|
Chris@16
|
666 T tk_fact = 1;
|
Chris@16
|
667 T sum = 1;
|
Chris@16
|
668 T term;
|
Chris@16
|
669 T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>();
|
Chris@16
|
670
|
Chris@16
|
671 for(unsigned k = 1;; ++k)
|
Chris@16
|
672 {
|
Chris@16
|
673 k_fact *= k;
|
Chris@16
|
674 tk_fact *= (2 * k) * (2 * k - 1);
|
Chris@16
|
675 term = k_fact * k_fact / (tk_fact * (2 * k + 1) * (2 * k + 1));
|
Chris@16
|
676 sum += term;
|
Chris@16
|
677 if(term < lim)
|
Chris@16
|
678 {
|
Chris@16
|
679 break;
|
Chris@16
|
680 }
|
Chris@16
|
681 }
|
Chris@16
|
682 return boost::math::constants::pi<T, boost::math::policies::policy<> >()
|
Chris@16
|
683 * log(2 + boost::math::constants::root_three<T, boost::math::policies::policy<> >())
|
Chris@16
|
684 / 8
|
Chris@16
|
685 + 3 * sum / 8;
|
Chris@16
|
686 }
|
Chris@16
|
687
|
Chris@16
|
688 namespace khinchin_detail{
|
Chris@16
|
689
|
Chris@16
|
690 template <class T>
|
Chris@16
|
691 T zeta_polynomial_series(T s, T sc, int digits)
|
Chris@16
|
692 {
|
Chris@16
|
693 BOOST_MATH_STD_USING
|
Chris@16
|
694 //
|
Chris@16
|
695 // This is algorithm 3 from:
|
Chris@16
|
696 //
|
Chris@16
|
697 // "An Efficient Algorithm for the Riemann Zeta Function", P. Borwein,
|
Chris@16
|
698 // Canadian Mathematical Society, Conference Proceedings, 2000.
|
Chris@16
|
699 // See: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf
|
Chris@16
|
700 //
|
Chris@16
|
701 BOOST_MATH_STD_USING
|
Chris@16
|
702 int n = (digits * 19) / 53;
|
Chris@16
|
703 T sum = 0;
|
Chris@16
|
704 T two_n = ldexp(T(1), n);
|
Chris@16
|
705 int ej_sign = 1;
|
Chris@16
|
706 for(int j = 0; j < n; ++j)
|
Chris@16
|
707 {
|
Chris@16
|
708 sum += ej_sign * -two_n / pow(T(j + 1), s);
|
Chris@16
|
709 ej_sign = -ej_sign;
|
Chris@16
|
710 }
|
Chris@16
|
711 T ej_sum = 1;
|
Chris@16
|
712 T ej_term = 1;
|
Chris@16
|
713 for(int j = n; j <= 2 * n - 1; ++j)
|
Chris@16
|
714 {
|
Chris@16
|
715 sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s);
|
Chris@16
|
716 ej_sign = -ej_sign;
|
Chris@16
|
717 ej_term *= 2 * n - j;
|
Chris@16
|
718 ej_term /= j - n + 1;
|
Chris@16
|
719 ej_sum += ej_term;
|
Chris@16
|
720 }
|
Chris@16
|
721 return -sum / (two_n * (1 - pow(T(2), sc)));
|
Chris@16
|
722 }
|
Chris@16
|
723
|
Chris@16
|
724 template <class T>
|
Chris@16
|
725 T khinchin(int digits)
|
Chris@16
|
726 {
|
Chris@16
|
727 BOOST_MATH_STD_USING
|
Chris@16
|
728 T sum = 0;
|
Chris@16
|
729 T term;
|
Chris@16
|
730 T lim = ldexp(T(1), 1-digits);
|
Chris@16
|
731 T factor = 0;
|
Chris@16
|
732 unsigned last_k = 1;
|
Chris@16
|
733 T num = 1;
|
Chris@16
|
734 for(unsigned n = 1;; ++n)
|
Chris@16
|
735 {
|
Chris@16
|
736 for(unsigned k = last_k; k <= 2 * n - 1; ++k)
|
Chris@16
|
737 {
|
Chris@16
|
738 factor += num / k;
|
Chris@16
|
739 num = -num;
|
Chris@16
|
740 }
|
Chris@16
|
741 last_k = 2 * n;
|
Chris@16
|
742 term = (zeta_polynomial_series(T(2 * n), T(1 - T(2 * n)), digits) - 1) * factor / n;
|
Chris@16
|
743 sum += term;
|
Chris@16
|
744 if(term < lim)
|
Chris@16
|
745 break;
|
Chris@16
|
746 }
|
Chris@16
|
747 return exp(sum / boost::math::constants::ln_two<T, boost::math::policies::policy<> >());
|
Chris@16
|
748 }
|
Chris@16
|
749
|
Chris@16
|
750 }
|
Chris@16
|
751
|
Chris@16
|
752 template <class T>
|
Chris@16
|
753 template<int N>
|
Chris@16
|
754 inline T constant_khinchin<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
755 {
|
Chris@16
|
756 int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>();
|
Chris@16
|
757 return khinchin_detail::khinchin<T>(n);
|
Chris@16
|
758 }
|
Chris@16
|
759
|
Chris@16
|
760 template <class T>
|
Chris@16
|
761 template<int N>
|
Chris@16
|
762 inline T constant_extreme_value_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
763 { // from e_float constants.cpp
|
Chris@16
|
764 // Mathematica: N[12 Sqrt[6] Zeta[3]/Pi^3, 1101]
|
Chris@16
|
765 BOOST_MATH_STD_USING
|
Chris@16
|
766 T ev(12 * sqrt(static_cast<T>(6)) * zeta_three<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
767 / pi_cubed<T, policies::policy<policies::digits2<N> > >() );
|
Chris@16
|
768
|
Chris@16
|
769 //T ev(
|
Chris@16
|
770 //"1.1395470994046486574927930193898461120875997958365518247216557100852480077060706857071875468869385150"
|
Chris@16
|
771 //"1894272048688553376986765366075828644841024041679714157616857834895702411080704529137366329462558680"
|
Chris@16
|
772 //"2015498788776135705587959418756809080074611906006528647805347822929577145038743873949415294942796280"
|
Chris@16
|
773 //"0895597703063466053535550338267721294164578901640163603544404938283861127819804918174973533694090594"
|
Chris@16
|
774 //"3094963822672055237678432023017824416203652657301470473548274848068762500300316769691474974950757965"
|
Chris@16
|
775 //"8640779777748741897542093874605477776538884083378029488863880220988107155275203245233994097178778984"
|
Chris@16
|
776 //"3488995668362387892097897322246698071290011857605809901090220903955815127463328974447572119951192970"
|
Chris@16
|
777 //"3684453635456559086126406960279692862247058250100678008419431185138019869693206366891639436908462809"
|
Chris@16
|
778 //"9756051372711251054914491837034685476095423926553367264355374652153595857163724698198860485357368964"
|
Chris@16
|
779 //"3807049634423621246870868566707915720704996296083373077647528285782964567312903914752617978405994377"
|
Chris@16
|
780 //"9064157147206717895272199736902453130842229559980076472936976287378945035706933650987259357729800315");
|
Chris@16
|
781
|
Chris@16
|
782 return ev;
|
Chris@16
|
783 }
|
Chris@16
|
784
|
Chris@16
|
785 namespace detail{
|
Chris@16
|
786 //
|
Chris@16
|
787 // Calculation of the Glaisher constant depends upon calculating the
|
Chris@16
|
788 // derivative of the zeta function at 2, we can then use the relation:
|
Chris@16
|
789 // zeta'(2) = 1/6 pi^2 [euler + ln(2pi)-12ln(A)]
|
Chris@16
|
790 // To get the constant A.
|
Chris@16
|
791 // See equation 45 at http://mathworld.wolfram.com/RiemannZetaFunction.html.
|
Chris@16
|
792 //
|
Chris@16
|
793 // The derivative of the zeta function is computed by direct differentiation
|
Chris@16
|
794 // of the relation:
|
Chris@16
|
795 // (1-2^(1-s))zeta(s) = SUM(n=0, INF){ (-n)^n / (n+1)^s }
|
Chris@16
|
796 // Which gives us 2 slowly converging but alternating sums to compute,
|
Chris@16
|
797 // for this we use Algorithm 1 from "Convergent Acceleration of Alternating Series",
|
Chris@16
|
798 // Henri Cohen, Fernando Rodriguez Villegas and Don Zagier, Experimental Mathematics 9:1 (1999).
|
Chris@16
|
799 // See http://www.math.utexas.edu/users/villegas/publications/conv-accel.pdf
|
Chris@16
|
800 //
|
Chris@16
|
801 template <class T>
|
Chris@16
|
802 T zeta_series_derivative_2(unsigned digits)
|
Chris@16
|
803 {
|
Chris@16
|
804 // Derivative of the series part, evaluated at 2:
|
Chris@16
|
805 BOOST_MATH_STD_USING
|
Chris@16
|
806 int n = digits * 301 * 13 / 10000;
|
Chris@16
|
807 boost::math::itrunc((std::numeric_limits<T>::digits10 + 1) * 1.3);
|
Chris@16
|
808 T d = pow(3 + sqrt(T(8)), n);
|
Chris@16
|
809 d = (d + 1 / d) / 2;
|
Chris@16
|
810 T b = -1;
|
Chris@16
|
811 T c = -d;
|
Chris@16
|
812 T s = 0;
|
Chris@16
|
813 for(int k = 0; k < n; ++k)
|
Chris@16
|
814 {
|
Chris@16
|
815 T a = -log(T(k+1)) / ((k+1) * (k+1));
|
Chris@16
|
816 c = b - c;
|
Chris@16
|
817 s = s + c * a;
|
Chris@16
|
818 b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1));
|
Chris@16
|
819 }
|
Chris@16
|
820 return s / d;
|
Chris@16
|
821 }
|
Chris@16
|
822
|
Chris@16
|
823 template <class T>
|
Chris@16
|
824 T zeta_series_2(unsigned digits)
|
Chris@16
|
825 {
|
Chris@16
|
826 // Series part of zeta at 2:
|
Chris@16
|
827 BOOST_MATH_STD_USING
|
Chris@16
|
828 int n = digits * 301 * 13 / 10000;
|
Chris@16
|
829 T d = pow(3 + sqrt(T(8)), n);
|
Chris@16
|
830 d = (d + 1 / d) / 2;
|
Chris@16
|
831 T b = -1;
|
Chris@16
|
832 T c = -d;
|
Chris@16
|
833 T s = 0;
|
Chris@16
|
834 for(int k = 0; k < n; ++k)
|
Chris@16
|
835 {
|
Chris@16
|
836 T a = T(1) / ((k + 1) * (k + 1));
|
Chris@16
|
837 c = b - c;
|
Chris@16
|
838 s = s + c * a;
|
Chris@16
|
839 b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1));
|
Chris@16
|
840 }
|
Chris@16
|
841 return s / d;
|
Chris@16
|
842 }
|
Chris@16
|
843
|
Chris@16
|
844 template <class T>
|
Chris@16
|
845 inline T zeta_series_lead_2()
|
Chris@16
|
846 {
|
Chris@16
|
847 // lead part at 2:
|
Chris@16
|
848 return 2;
|
Chris@16
|
849 }
|
Chris@16
|
850
|
Chris@16
|
851 template <class T>
|
Chris@16
|
852 inline T zeta_series_derivative_lead_2()
|
Chris@16
|
853 {
|
Chris@16
|
854 // derivative of lead part at 2:
|
Chris@16
|
855 return -2 * boost::math::constants::ln_two<T>();
|
Chris@16
|
856 }
|
Chris@16
|
857
|
Chris@16
|
858 template <class T>
|
Chris@16
|
859 inline T zeta_derivative_2(unsigned n)
|
Chris@16
|
860 {
|
Chris@16
|
861 // zeta derivative at 2:
|
Chris@16
|
862 return zeta_series_derivative_2<T>(n) * zeta_series_lead_2<T>()
|
Chris@16
|
863 + zeta_series_derivative_lead_2<T>() * zeta_series_2<T>(n);
|
Chris@16
|
864 }
|
Chris@16
|
865
|
Chris@16
|
866 } // namespace detail
|
Chris@16
|
867
|
Chris@16
|
868 template <class T>
|
Chris@16
|
869 template<int N>
|
Chris@16
|
870 inline T constant_glaisher<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
871 {
|
Chris@16
|
872
|
Chris@16
|
873 BOOST_MATH_STD_USING
|
Chris@16
|
874 typedef policies::policy<policies::digits2<N> > forwarding_policy;
|
Chris@16
|
875 int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>();
|
Chris@16
|
876 T v = detail::zeta_derivative_2<T>(n);
|
Chris@16
|
877 v *= 6;
|
Chris@16
|
878 v /= boost::math::constants::pi<T, forwarding_policy>() * boost::math::constants::pi<T, forwarding_policy>();
|
Chris@16
|
879 v -= boost::math::constants::euler<T, forwarding_policy>();
|
Chris@16
|
880 v -= log(2 * boost::math::constants::pi<T, forwarding_policy>());
|
Chris@16
|
881 v /= -12;
|
Chris@16
|
882 return exp(v);
|
Chris@16
|
883
|
Chris@16
|
884 /*
|
Chris@16
|
885 // from http://mpmath.googlecode.com/svn/data/glaisher.txt
|
Chris@16
|
886 // 20,000 digits of the Glaisher-Kinkelin constant A = exp(1/2 - zeta'(-1))
|
Chris@16
|
887 // Computed using A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12)
|
Chris@16
|
888 // with Euler-Maclaurin summation for zeta'(2).
|
Chris@16
|
889 T g(
|
Chris@16
|
890 "1.282427129100622636875342568869791727767688927325001192063740021740406308858826"
|
Chris@16
|
891 "46112973649195820237439420646120399000748933157791362775280404159072573861727522"
|
Chris@16
|
892 "14334327143439787335067915257366856907876561146686449997784962754518174312394652"
|
Chris@16
|
893 "76128213808180219264516851546143919901083573730703504903888123418813674978133050"
|
Chris@16
|
894 "93770833682222494115874837348064399978830070125567001286994157705432053927585405"
|
Chris@16
|
895 "81731588155481762970384743250467775147374600031616023046613296342991558095879293"
|
Chris@16
|
896 "36343887288701988953460725233184702489001091776941712153569193674967261270398013"
|
Chris@16
|
897 "52652668868978218897401729375840750167472114895288815996668743164513890306962645"
|
Chris@16
|
898 "59870469543740253099606800842447417554061490189444139386196089129682173528798629"
|
Chris@16
|
899 "88434220366989900606980888785849587494085307347117090132667567503310523405221054"
|
Chris@16
|
900 "14176776156308191919997185237047761312315374135304725819814797451761027540834943"
|
Chris@16
|
901 "14384965234139453373065832325673954957601692256427736926358821692159870775858274"
|
Chris@16
|
902 "69575162841550648585890834128227556209547002918593263079373376942077522290940187");
|
Chris@16
|
903
|
Chris@16
|
904 return g;
|
Chris@16
|
905 */
|
Chris@16
|
906 }
|
Chris@16
|
907
|
Chris@16
|
908 template <class T>
|
Chris@16
|
909 template<int N>
|
Chris@16
|
910 inline T constant_rayleigh_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
911 { // From e_float
|
Chris@16
|
912 // 1100 digits of the Rayleigh distribution skewness
|
Chris@16
|
913 // Mathematica: N[2 Sqrt[Pi] (Pi - 3)/((4 - Pi)^(3/2)), 1100]
|
Chris@16
|
914
|
Chris@16
|
915 BOOST_MATH_STD_USING
|
Chris@16
|
916 T rs(2 * root_pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
917 * pi_minus_three<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
918 / pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(3./2))
|
Chris@16
|
919 );
|
Chris@16
|
920 // 6.31110657818937138191899351544227779844042203134719497658094585692926819617473725459905027032537306794400047264,
|
Chris@16
|
921
|
Chris@16
|
922 //"0.6311106578189371381918993515442277798440422031347194976580945856929268196174737254599050270325373067"
|
Chris@16
|
923 //"9440004726436754739597525250317640394102954301685809920213808351450851396781817932734836994829371322"
|
Chris@16
|
924 //"5797376021347531983451654130317032832308462278373358624120822253764532674177325950686466133508511968"
|
Chris@16
|
925 //"2389168716630349407238090652663422922072397393006683401992961569208109477307776249225072042971818671"
|
Chris@16
|
926 //"4058887072693437217879039875871765635655476241624825389439481561152126886932506682176611183750503553"
|
Chris@16
|
927 //"1218982627032068396407180216351425758181396562859085306247387212297187006230007438534686340210168288"
|
Chris@16
|
928 //"8956816965453815849613622117088096547521391672977226658826566757207615552041767516828171274858145957"
|
Chris@16
|
929 //"6137539156656005855905288420585194082284972984285863898582313048515484073396332610565441264220790791"
|
Chris@16
|
930 //"0194897267890422924599776483890102027823328602965235306539844007677157873140562950510028206251529523"
|
Chris@16
|
931 //"7428049693650605954398446899724157486062545281504433364675815915402937209673727753199567661561209251"
|
Chris@16
|
932 //"4695589950526053470201635372590001578503476490223746511106018091907936826431407434894024396366284848"); ;
|
Chris@16
|
933 return rs;
|
Chris@16
|
934 }
|
Chris@16
|
935
|
Chris@16
|
936 template <class T>
|
Chris@16
|
937 template<int N>
|
Chris@16
|
938 inline T constant_rayleigh_kurtosis_excess<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
939 { // - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2)
|
Chris@16
|
940 // Might provide and calculate this using pi_minus_four.
|
Chris@16
|
941 BOOST_MATH_STD_USING
|
Chris@16
|
942 return - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
943 * pi<T, policies::policy<policies::digits2<N> > >())
|
Chris@16
|
944 - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) )
|
Chris@16
|
945 /
|
Chris@16
|
946 ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))
|
Chris@16
|
947 * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)))
|
Chris@16
|
948 );
|
Chris@16
|
949 }
|
Chris@16
|
950
|
Chris@16
|
951 template <class T>
|
Chris@16
|
952 template<int N>
|
Chris@16
|
953 inline T constant_rayleigh_kurtosis<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
|
Chris@16
|
954 { // 3 - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2)
|
Chris@16
|
955 // Might provide and calculate this using pi_minus_four.
|
Chris@16
|
956 BOOST_MATH_STD_USING
|
Chris@16
|
957 return static_cast<T>(3) - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >()
|
Chris@16
|
958 * pi<T, policies::policy<policies::digits2<N> > >())
|
Chris@16
|
959 - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) )
|
Chris@16
|
960 /
|
Chris@16
|
961 ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))
|
Chris@16
|
962 * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)))
|
Chris@16
|
963 );
|
Chris@16
|
964 }
|
Chris@16
|
965
|
Chris@16
|
966 }}}} // namespaces
|
Chris@16
|
967
|
Chris@16
|
968 #endif // BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED
|