annotate DEPENDENCIES/generic/include/boost/math/constants/calculate_constants.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // Copyright John Maddock 2010, 2012.
Chris@16 2 // Copyright Paul A. Bristow 2011, 2012.
Chris@16 3
Chris@16 4 // Use, modification and distribution are subject to the
Chris@16 5 // Boost Software License, Version 1.0. (See accompanying file
Chris@16 6 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Chris@16 7
Chris@16 8 #ifndef BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED
Chris@16 9 #define BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED
Chris@16 10
Chris@16 11 #include <boost/math/special_functions/trunc.hpp>
Chris@16 12
Chris@16 13 namespace boost{ namespace math{ namespace constants{ namespace detail{
Chris@16 14
Chris@16 15 template <class T>
Chris@16 16 template<int N>
Chris@16 17 inline T constant_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 18 {
Chris@16 19 BOOST_MATH_STD_USING
Chris@16 20
Chris@16 21 return ldexp(acos(T(0)), 1);
Chris@16 22
Chris@16 23 /*
Chris@16 24 // Although this code works well, it's usually more accurate to just call acos
Chris@16 25 // and access the number types own representation of PI which is usually calculated
Chris@16 26 // at slightly higher precision...
Chris@16 27
Chris@16 28 T result;
Chris@16 29 T a = 1;
Chris@16 30 T b;
Chris@16 31 T A(a);
Chris@16 32 T B = 0.5f;
Chris@16 33 T D = 0.25f;
Chris@16 34
Chris@16 35 T lim;
Chris@16 36 lim = boost::math::tools::epsilon<T>();
Chris@16 37
Chris@16 38 unsigned k = 1;
Chris@16 39
Chris@16 40 do
Chris@16 41 {
Chris@16 42 result = A + B;
Chris@16 43 result = ldexp(result, -2);
Chris@16 44 b = sqrt(B);
Chris@16 45 a += b;
Chris@16 46 a = ldexp(a, -1);
Chris@16 47 A = a * a;
Chris@16 48 B = A - result;
Chris@16 49 B = ldexp(B, 1);
Chris@16 50 result = A - B;
Chris@16 51 bool neg = boost::math::sign(result) < 0;
Chris@16 52 if(neg)
Chris@16 53 result = -result;
Chris@16 54 if(result <= lim)
Chris@16 55 break;
Chris@16 56 if(neg)
Chris@16 57 result = -result;
Chris@16 58 result = ldexp(result, k - 1);
Chris@16 59 D -= result;
Chris@16 60 ++k;
Chris@16 61 lim = ldexp(lim, 1);
Chris@16 62 }
Chris@16 63 while(true);
Chris@16 64
Chris@16 65 result = B / D;
Chris@16 66 return result;
Chris@16 67 */
Chris@16 68 }
Chris@16 69
Chris@16 70 template <class T>
Chris@16 71 template<int N>
Chris@16 72 inline T constant_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 73 {
Chris@16 74 return 2 * pi<T, policies::policy<policies::digits2<N> > >();
Chris@16 75 }
Chris@16 76
Chris@16 77 template <class T> // 2 / pi
Chris@16 78 template<int N>
Chris@16 79 inline T constant_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 80 {
Chris@16 81 return 2 / pi<T, policies::policy<policies::digits2<N> > >();
Chris@16 82 }
Chris@16 83
Chris@16 84 template <class T> // sqrt(2/pi)
Chris@16 85 template <int N>
Chris@16 86 inline T constant_root_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 87 {
Chris@16 88 BOOST_MATH_STD_USING
Chris@16 89 return sqrt((2 / pi<T, policies::policy<policies::digits2<N> > >()));
Chris@16 90 }
Chris@16 91
Chris@16 92 template <class T>
Chris@16 93 template<int N>
Chris@16 94 inline T constant_one_div_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 95 {
Chris@16 96 return 1 / two_pi<T, policies::policy<policies::digits2<N> > >();
Chris@16 97 }
Chris@16 98
Chris@16 99 template <class T>
Chris@16 100 template<int N>
Chris@16 101 inline T constant_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 102 {
Chris@16 103 BOOST_MATH_STD_USING
Chris@16 104 return sqrt(pi<T, policies::policy<policies::digits2<N> > >());
Chris@16 105 }
Chris@16 106
Chris@16 107 template <class T>
Chris@16 108 template<int N>
Chris@16 109 inline T constant_root_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 110 {
Chris@16 111 BOOST_MATH_STD_USING
Chris@16 112 return sqrt(pi<T, policies::policy<policies::digits2<N> > >() / 2);
Chris@16 113 }
Chris@16 114
Chris@16 115 template <class T>
Chris@16 116 template<int N>
Chris@16 117 inline T constant_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 118 {
Chris@16 119 BOOST_MATH_STD_USING
Chris@16 120 return sqrt(two_pi<T, policies::policy<policies::digits2<N> > >());
Chris@16 121 }
Chris@16 122
Chris@16 123 template <class T>
Chris@16 124 template<int N>
Chris@16 125 inline T constant_log_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 126 {
Chris@16 127 BOOST_MATH_STD_USING
Chris@16 128 return log(root_two_pi<T, policies::policy<policies::digits2<N> > >());
Chris@16 129 }
Chris@16 130
Chris@16 131 template <class T>
Chris@16 132 template<int N>
Chris@16 133 inline T constant_root_ln_four<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 134 {
Chris@16 135 BOOST_MATH_STD_USING
Chris@16 136 return sqrt(log(static_cast<T>(4)));
Chris@16 137 }
Chris@16 138
Chris@16 139 template <class T>
Chris@16 140 template<int N>
Chris@16 141 inline T constant_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 142 {
Chris@16 143 //
Chris@16 144 // Although we can clearly calculate this from first principles, this hooks into
Chris@16 145 // T's own notion of e, which hopefully will more accurate than one calculated to
Chris@16 146 // a few epsilon:
Chris@16 147 //
Chris@16 148 BOOST_MATH_STD_USING
Chris@16 149 return exp(static_cast<T>(1));
Chris@16 150 }
Chris@16 151
Chris@16 152 template <class T>
Chris@16 153 template<int N>
Chris@16 154 inline T constant_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 155 {
Chris@16 156 return static_cast<T>(1) / static_cast<T>(2);
Chris@16 157 }
Chris@16 158
Chris@16 159 template <class T>
Chris@16 160 template<int M>
Chris@16 161 inline T constant_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<M>))
Chris@16 162 {
Chris@16 163 BOOST_MATH_STD_USING
Chris@16 164 //
Chris@16 165 // This is the method described in:
Chris@16 166 // "Some New Algorithms for High-Precision Computation of Euler's Constant"
Chris@16 167 // Richard P Brent and Edwin M McMillan.
Chris@16 168 // Mathematics of Computation, Volume 34, Number 149, Jan 1980, pages 305-312.
Chris@16 169 // See equation 17 with p = 2.
Chris@16 170 //
Chris@16 171 T n = 3 + (M ? (std::min)(M, tools::digits<T>()) : tools::digits<T>()) / 4;
Chris@16 172 T lim = M ? ldexp(T(1), 1 - (std::min)(M, tools::digits<T>())) : tools::epsilon<T>();
Chris@16 173 T lnn = log(n);
Chris@16 174 T term = 1;
Chris@16 175 T N = -lnn;
Chris@16 176 T D = 1;
Chris@16 177 T Hk = 0;
Chris@16 178 T one = 1;
Chris@16 179
Chris@16 180 for(unsigned k = 1;; ++k)
Chris@16 181 {
Chris@16 182 term *= n * n;
Chris@16 183 term /= k * k;
Chris@16 184 Hk += one / k;
Chris@16 185 N += term * (Hk - lnn);
Chris@16 186 D += term;
Chris@16 187
Chris@16 188 if(term < D * lim)
Chris@16 189 break;
Chris@16 190 }
Chris@16 191 return N / D;
Chris@16 192 }
Chris@16 193
Chris@16 194 template <class T>
Chris@16 195 template<int N>
Chris@16 196 inline T constant_euler_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 197 {
Chris@16 198 BOOST_MATH_STD_USING
Chris@16 199 return euler<T, policies::policy<policies::digits2<N> > >()
Chris@16 200 * euler<T, policies::policy<policies::digits2<N> > >();
Chris@16 201 }
Chris@16 202
Chris@16 203 template <class T>
Chris@16 204 template<int N>
Chris@16 205 inline T constant_one_div_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 206 {
Chris@16 207 BOOST_MATH_STD_USING
Chris@16 208 return static_cast<T>(1)
Chris@16 209 / euler<T, policies::policy<policies::digits2<N> > >();
Chris@16 210 }
Chris@16 211
Chris@16 212
Chris@16 213 template <class T>
Chris@16 214 template<int N>
Chris@16 215 inline T constant_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 216 {
Chris@16 217 BOOST_MATH_STD_USING
Chris@16 218 return sqrt(static_cast<T>(2));
Chris@16 219 }
Chris@16 220
Chris@16 221
Chris@16 222 template <class T>
Chris@16 223 template<int N>
Chris@16 224 inline T constant_root_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 225 {
Chris@16 226 BOOST_MATH_STD_USING
Chris@16 227 return sqrt(static_cast<T>(3));
Chris@16 228 }
Chris@16 229
Chris@16 230 template <class T>
Chris@16 231 template<int N>
Chris@16 232 inline T constant_half_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 233 {
Chris@16 234 BOOST_MATH_STD_USING
Chris@16 235 return sqrt(static_cast<T>(2)) / 2;
Chris@16 236 }
Chris@16 237
Chris@16 238 template <class T>
Chris@16 239 template<int N>
Chris@16 240 inline T constant_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 241 {
Chris@16 242 //
Chris@16 243 // Although there are good ways to calculate this from scratch, this hooks into
Chris@16 244 // T's own notion of log(2) which will hopefully be accurate to the full precision
Chris@16 245 // of T:
Chris@16 246 //
Chris@16 247 BOOST_MATH_STD_USING
Chris@16 248 return log(static_cast<T>(2));
Chris@16 249 }
Chris@16 250
Chris@16 251 template <class T>
Chris@16 252 template<int N>
Chris@16 253 inline T constant_ln_ten<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 254 {
Chris@16 255 BOOST_MATH_STD_USING
Chris@16 256 return log(static_cast<T>(10));
Chris@16 257 }
Chris@16 258
Chris@16 259 template <class T>
Chris@16 260 template<int N>
Chris@16 261 inline T constant_ln_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 262 {
Chris@16 263 BOOST_MATH_STD_USING
Chris@16 264 return log(log(static_cast<T>(2)));
Chris@16 265 }
Chris@16 266
Chris@16 267 template <class T>
Chris@16 268 template<int N>
Chris@16 269 inline T constant_third<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 270 {
Chris@16 271 BOOST_MATH_STD_USING
Chris@16 272 return static_cast<T>(1) / static_cast<T>(3);
Chris@16 273 }
Chris@16 274
Chris@16 275 template <class T>
Chris@16 276 template<int N>
Chris@16 277 inline T constant_twothirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 278 {
Chris@16 279 BOOST_MATH_STD_USING
Chris@16 280 return static_cast<T>(2) / static_cast<T>(3);
Chris@16 281 }
Chris@16 282
Chris@16 283 template <class T>
Chris@16 284 template<int N>
Chris@16 285 inline T constant_two_thirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 286 {
Chris@16 287 BOOST_MATH_STD_USING
Chris@16 288 return static_cast<T>(2) / static_cast<T>(3);
Chris@16 289 }
Chris@16 290
Chris@16 291 template <class T>
Chris@16 292 template<int N>
Chris@16 293 inline T constant_three_quarters<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 294 {
Chris@16 295 BOOST_MATH_STD_USING
Chris@16 296 return static_cast<T>(3) / static_cast<T>(4);
Chris@16 297 }
Chris@16 298
Chris@16 299 template <class T>
Chris@16 300 template<int N>
Chris@16 301 inline T constant_pi_minus_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 302 {
Chris@16 303 return pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(3);
Chris@16 304 }
Chris@16 305
Chris@16 306 template <class T>
Chris@16 307 template<int N>
Chris@16 308 inline T constant_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 309 {
Chris@16 310 return static_cast<T>(4) - pi<T, policies::policy<policies::digits2<N> > >();
Chris@16 311 }
Chris@16 312
Chris@101 313 //template <class T>
Chris@101 314 //template<int N>
Chris@101 315 //inline T constant_pow23_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@101 316 //{
Chris@101 317 // BOOST_MATH_STD_USING
Chris@101 318 // return pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1.5));
Chris@101 319 //}
Chris@16 320
Chris@16 321 template <class T>
Chris@16 322 template<int N>
Chris@16 323 inline T constant_exp_minus_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 324 {
Chris@16 325 BOOST_MATH_STD_USING
Chris@16 326 return exp(static_cast<T>(-0.5));
Chris@16 327 }
Chris@16 328
Chris@16 329 // Pi
Chris@16 330 template <class T>
Chris@16 331 template<int N>
Chris@16 332 inline T constant_one_div_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 333 {
Chris@16 334 return static_cast<T>(1) / root_two<T, policies::policy<policies::digits2<N> > >();
Chris@16 335 }
Chris@16 336
Chris@16 337 template <class T>
Chris@16 338 template<int N>
Chris@16 339 inline T constant_one_div_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 340 {
Chris@16 341 return static_cast<T>(1) / root_pi<T, policies::policy<policies::digits2<N> > >();
Chris@16 342 }
Chris@16 343
Chris@16 344 template <class T>
Chris@16 345 template<int N>
Chris@16 346 inline T constant_one_div_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 347 {
Chris@16 348 return static_cast<T>(1) / root_two_pi<T, policies::policy<policies::digits2<N> > >();
Chris@16 349 }
Chris@16 350
Chris@16 351 template <class T>
Chris@16 352 template<int N>
Chris@16 353 inline T constant_root_one_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 354 {
Chris@16 355 BOOST_MATH_STD_USING
Chris@16 356 return sqrt(static_cast<T>(1) / pi<T, policies::policy<policies::digits2<N> > >());
Chris@16 357 }
Chris@16 358
Chris@16 359
Chris@16 360 template <class T>
Chris@16 361 template<int N>
Chris@16 362 inline T constant_four_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 363 {
Chris@16 364 BOOST_MATH_STD_USING
Chris@16 365 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(4) / static_cast<T>(3);
Chris@16 366 }
Chris@16 367
Chris@16 368 template <class T>
Chris@16 369 template<int N>
Chris@16 370 inline T constant_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 371 {
Chris@16 372 BOOST_MATH_STD_USING
Chris@16 373 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(2);
Chris@16 374 }
Chris@16 375
Chris@16 376
Chris@16 377 template <class T>
Chris@16 378 template<int N>
Chris@16 379 inline T constant_third_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 380 {
Chris@16 381 BOOST_MATH_STD_USING
Chris@16 382 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(3);
Chris@16 383 }
Chris@16 384
Chris@16 385 template <class T>
Chris@16 386 template<int N>
Chris@16 387 inline T constant_sixth_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 388 {
Chris@16 389 BOOST_MATH_STD_USING
Chris@16 390 return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(6);
Chris@16 391 }
Chris@16 392
Chris@16 393 template <class T>
Chris@16 394 template<int N>
Chris@16 395 inline T constant_two_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 396 {
Chris@16 397 BOOST_MATH_STD_USING
Chris@16 398 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(2) / static_cast<T>(3);
Chris@16 399 }
Chris@16 400
Chris@16 401 template <class T>
Chris@16 402 template<int N>
Chris@16 403 inline T constant_three_quarters_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 404 {
Chris@16 405 BOOST_MATH_STD_USING
Chris@16 406 return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(3) / static_cast<T>(4);
Chris@16 407 }
Chris@16 408
Chris@16 409 template <class T>
Chris@16 410 template<int N>
Chris@16 411 inline T constant_pi_pow_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 412 {
Chris@16 413 BOOST_MATH_STD_USING
Chris@16 414 return pow(pi<T, policies::policy<policies::digits2<N> > >(), e<T, policies::policy<policies::digits2<N> > >()); //
Chris@16 415 }
Chris@16 416
Chris@16 417 template <class T>
Chris@16 418 template<int N>
Chris@16 419 inline T constant_pi_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 420 {
Chris@16 421 BOOST_MATH_STD_USING
Chris@16 422 return pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 423 * pi<T, policies::policy<policies::digits2<N> > >() ; //
Chris@16 424 }
Chris@16 425
Chris@16 426 template <class T>
Chris@16 427 template<int N>
Chris@16 428 inline T constant_pi_sqr_div_six<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 429 {
Chris@16 430 BOOST_MATH_STD_USING
Chris@16 431 return pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 432 * pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 433 / static_cast<T>(6); //
Chris@16 434 }
Chris@16 435
Chris@16 436
Chris@16 437 template <class T>
Chris@16 438 template<int N>
Chris@16 439 inline T constant_pi_cubed<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 440 {
Chris@16 441 BOOST_MATH_STD_USING
Chris@16 442 return pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 443 * pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 444 * pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 445 ; //
Chris@16 446 }
Chris@16 447
Chris@16 448 template <class T>
Chris@16 449 template<int N>
Chris@16 450 inline T constant_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 451 {
Chris@16 452 BOOST_MATH_STD_USING
Chris@16 453 return pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3));
Chris@16 454 }
Chris@16 455
Chris@16 456 template <class T>
Chris@16 457 template<int N>
Chris@16 458 inline T constant_one_div_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 459 {
Chris@16 460 BOOST_MATH_STD_USING
Chris@16 461 return static_cast<T>(1)
Chris@16 462 / pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3));
Chris@16 463 }
Chris@16 464
Chris@16 465 // Euler's e
Chris@16 466
Chris@16 467 template <class T>
Chris@16 468 template<int N>
Chris@16 469 inline T constant_e_pow_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 470 {
Chris@16 471 BOOST_MATH_STD_USING
Chris@16 472 return pow(e<T, policies::policy<policies::digits2<N> > >(), pi<T, policies::policy<policies::digits2<N> > >()); //
Chris@16 473 }
Chris@16 474
Chris@16 475 template <class T>
Chris@16 476 template<int N>
Chris@16 477 inline T constant_root_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 478 {
Chris@16 479 BOOST_MATH_STD_USING
Chris@16 480 return sqrt(e<T, policies::policy<policies::digits2<N> > >());
Chris@16 481 }
Chris@16 482
Chris@16 483 template <class T>
Chris@16 484 template<int N>
Chris@16 485 inline T constant_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 486 {
Chris@16 487 BOOST_MATH_STD_USING
Chris@16 488 return log10(e<T, policies::policy<policies::digits2<N> > >());
Chris@16 489 }
Chris@16 490
Chris@16 491 template <class T>
Chris@16 492 template<int N>
Chris@16 493 inline T constant_one_div_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 494 {
Chris@16 495 BOOST_MATH_STD_USING
Chris@16 496 return static_cast<T>(1) /
Chris@16 497 log10(e<T, policies::policy<policies::digits2<N> > >());
Chris@16 498 }
Chris@16 499
Chris@16 500 // Trigonometric
Chris@16 501
Chris@16 502 template <class T>
Chris@16 503 template<int N>
Chris@16 504 inline T constant_degree<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 505 {
Chris@16 506 BOOST_MATH_STD_USING
Chris@16 507 return pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 508 / static_cast<T>(180)
Chris@16 509 ; //
Chris@16 510 }
Chris@16 511
Chris@16 512 template <class T>
Chris@16 513 template<int N>
Chris@16 514 inline T constant_radian<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 515 {
Chris@16 516 BOOST_MATH_STD_USING
Chris@16 517 return static_cast<T>(180)
Chris@16 518 / pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 519 ; //
Chris@16 520 }
Chris@16 521
Chris@16 522 template <class T>
Chris@16 523 template<int N>
Chris@16 524 inline T constant_sin_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 525 {
Chris@16 526 BOOST_MATH_STD_USING
Chris@16 527 return sin(static_cast<T>(1)) ; //
Chris@16 528 }
Chris@16 529
Chris@16 530 template <class T>
Chris@16 531 template<int N>
Chris@16 532 inline T constant_cos_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 533 {
Chris@16 534 BOOST_MATH_STD_USING
Chris@16 535 return cos(static_cast<T>(1)) ; //
Chris@16 536 }
Chris@16 537
Chris@16 538 template <class T>
Chris@16 539 template<int N>
Chris@16 540 inline T constant_sinh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 541 {
Chris@16 542 BOOST_MATH_STD_USING
Chris@16 543 return sinh(static_cast<T>(1)) ; //
Chris@16 544 }
Chris@16 545
Chris@16 546 template <class T>
Chris@16 547 template<int N>
Chris@16 548 inline T constant_cosh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 549 {
Chris@16 550 BOOST_MATH_STD_USING
Chris@16 551 return cosh(static_cast<T>(1)) ; //
Chris@16 552 }
Chris@16 553
Chris@16 554 template <class T>
Chris@16 555 template<int N>
Chris@16 556 inline T constant_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 557 {
Chris@16 558 BOOST_MATH_STD_USING
Chris@16 559 return (static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ; //
Chris@16 560 }
Chris@16 561
Chris@16 562 template <class T>
Chris@16 563 template<int N>
Chris@16 564 inline T constant_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 565 {
Chris@16 566 BOOST_MATH_STD_USING
Chris@16 567 //return log(phi<T, policies::policy<policies::digits2<N> > >()); // ???
Chris@16 568 return log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) );
Chris@16 569 }
Chris@16 570 template <class T>
Chris@16 571 template<int N>
Chris@16 572 inline T constant_one_div_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 573 {
Chris@16 574 BOOST_MATH_STD_USING
Chris@16 575 return static_cast<T>(1) /
Chris@16 576 log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) );
Chris@16 577 }
Chris@16 578
Chris@16 579 // Zeta
Chris@16 580
Chris@16 581 template <class T>
Chris@16 582 template<int N>
Chris@16 583 inline T constant_zeta_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 584 {
Chris@16 585 BOOST_MATH_STD_USING
Chris@16 586
Chris@16 587 return pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 588 * pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 589 /static_cast<T>(6);
Chris@16 590 }
Chris@16 591
Chris@16 592 template <class T>
Chris@16 593 template<int N>
Chris@16 594 inline T constant_zeta_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 595 {
Chris@16 596 // http://mathworld.wolfram.com/AperysConstant.html
Chris@16 597 // http://en.wikipedia.org/wiki/Mathematical_constant
Chris@16 598
Chris@16 599 // http://oeis.org/A002117/constant
Chris@16 600 //T zeta3("1.20205690315959428539973816151144999076"
Chris@16 601 // "4986292340498881792271555341838205786313"
Chris@16 602 // "09018645587360933525814619915");
Chris@16 603
Chris@16 604 //"1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915" A002117
Chris@16 605 // 1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915780, +00);
Chris@16 606 //"1.2020569031595942 double
Chris@16 607 // http://www.spaennare.se/SSPROG/ssnum.pdf // section 11, Algorithm for Apery's constant zeta(3).
Chris@16 608 // Programs to Calculate some Mathematical Constants to Large Precision, Document Version 1.50
Chris@16 609
Chris@16 610 // by Stefan Spannare September 19, 2007
Chris@16 611 // zeta(3) = 1/64 * sum
Chris@16 612 BOOST_MATH_STD_USING
Chris@16 613 T n_fact=static_cast<T>(1); // build n! for n = 0.
Chris@16 614 T sum = static_cast<double>(77); // Start with n = 0 case.
Chris@16 615 // for n = 0, (77/1) /64 = 1.203125
Chris@16 616 //double lim = std::numeric_limits<double>::epsilon();
Chris@16 617 T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>();
Chris@16 618 for(unsigned int n = 1; n < 40; ++n)
Chris@16 619 { // three to five decimal digits per term, so 40 should be plenty for 100 decimal digits.
Chris@16 620 //cout << "n = " << n << endl;
Chris@16 621 n_fact *= n; // n!
Chris@16 622 T n_fact_p10 = n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact; // (n!)^10
Chris@16 623 T num = ((205 * n * n) + (250 * n) + 77) * n_fact_p10; // 205n^2 + 250n + 77
Chris@16 624 // int nn = (2 * n + 1);
Chris@16 625 // T d = factorial(nn); // inline factorial.
Chris@16 626 T d = 1;
Chris@16 627 for(unsigned int i = 1; i <= (n+n + 1); ++i) // (2n + 1)
Chris@16 628 {
Chris@16 629 d *= i;
Chris@16 630 }
Chris@16 631 T den = d * d * d * d * d; // [(2n+1)!]^5
Chris@16 632 //cout << "den = " << den << endl;
Chris@16 633 T term = num/den;
Chris@16 634 if (n % 2 != 0)
Chris@16 635 { //term *= -1;
Chris@16 636 sum -= term;
Chris@16 637 }
Chris@16 638 else
Chris@16 639 {
Chris@16 640 sum += term;
Chris@16 641 }
Chris@16 642 //cout << "term = " << term << endl;
Chris@16 643 //cout << "sum/64 = " << sum/64 << endl;
Chris@16 644 if(abs(term) < lim)
Chris@16 645 {
Chris@16 646 break;
Chris@16 647 }
Chris@16 648 }
Chris@16 649 return sum / 64;
Chris@16 650 }
Chris@16 651
Chris@16 652 template <class T>
Chris@16 653 template<int N>
Chris@16 654 inline T constant_catalan<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 655 { // http://oeis.org/A006752/constant
Chris@16 656 //T c("0.915965594177219015054603514932384110774"
Chris@16 657 //"149374281672134266498119621763019776254769479356512926115106248574");
Chris@16 658
Chris@16 659 // 9.159655941772190150546035149323841107, 74149374281672134266498119621763019776254769479356512926115106248574422619, -01);
Chris@16 660
Chris@16 661 // This is equation (entry) 31 from
Chris@16 662 // http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm
Chris@16 663 // See also http://www.mpfr.org/algorithms.pdf
Chris@16 664 BOOST_MATH_STD_USING
Chris@16 665 T k_fact = 1;
Chris@16 666 T tk_fact = 1;
Chris@16 667 T sum = 1;
Chris@16 668 T term;
Chris@16 669 T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>();
Chris@16 670
Chris@16 671 for(unsigned k = 1;; ++k)
Chris@16 672 {
Chris@16 673 k_fact *= k;
Chris@16 674 tk_fact *= (2 * k) * (2 * k - 1);
Chris@16 675 term = k_fact * k_fact / (tk_fact * (2 * k + 1) * (2 * k + 1));
Chris@16 676 sum += term;
Chris@16 677 if(term < lim)
Chris@16 678 {
Chris@16 679 break;
Chris@16 680 }
Chris@16 681 }
Chris@16 682 return boost::math::constants::pi<T, boost::math::policies::policy<> >()
Chris@16 683 * log(2 + boost::math::constants::root_three<T, boost::math::policies::policy<> >())
Chris@16 684 / 8
Chris@16 685 + 3 * sum / 8;
Chris@16 686 }
Chris@16 687
Chris@16 688 namespace khinchin_detail{
Chris@16 689
Chris@16 690 template <class T>
Chris@16 691 T zeta_polynomial_series(T s, T sc, int digits)
Chris@16 692 {
Chris@16 693 BOOST_MATH_STD_USING
Chris@16 694 //
Chris@16 695 // This is algorithm 3 from:
Chris@16 696 //
Chris@16 697 // "An Efficient Algorithm for the Riemann Zeta Function", P. Borwein,
Chris@16 698 // Canadian Mathematical Society, Conference Proceedings, 2000.
Chris@16 699 // See: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf
Chris@16 700 //
Chris@16 701 BOOST_MATH_STD_USING
Chris@16 702 int n = (digits * 19) / 53;
Chris@16 703 T sum = 0;
Chris@16 704 T two_n = ldexp(T(1), n);
Chris@16 705 int ej_sign = 1;
Chris@16 706 for(int j = 0; j < n; ++j)
Chris@16 707 {
Chris@16 708 sum += ej_sign * -two_n / pow(T(j + 1), s);
Chris@16 709 ej_sign = -ej_sign;
Chris@16 710 }
Chris@16 711 T ej_sum = 1;
Chris@16 712 T ej_term = 1;
Chris@16 713 for(int j = n; j <= 2 * n - 1; ++j)
Chris@16 714 {
Chris@16 715 sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s);
Chris@16 716 ej_sign = -ej_sign;
Chris@16 717 ej_term *= 2 * n - j;
Chris@16 718 ej_term /= j - n + 1;
Chris@16 719 ej_sum += ej_term;
Chris@16 720 }
Chris@16 721 return -sum / (two_n * (1 - pow(T(2), sc)));
Chris@16 722 }
Chris@16 723
Chris@16 724 template <class T>
Chris@16 725 T khinchin(int digits)
Chris@16 726 {
Chris@16 727 BOOST_MATH_STD_USING
Chris@16 728 T sum = 0;
Chris@16 729 T term;
Chris@16 730 T lim = ldexp(T(1), 1-digits);
Chris@16 731 T factor = 0;
Chris@16 732 unsigned last_k = 1;
Chris@16 733 T num = 1;
Chris@16 734 for(unsigned n = 1;; ++n)
Chris@16 735 {
Chris@16 736 for(unsigned k = last_k; k <= 2 * n - 1; ++k)
Chris@16 737 {
Chris@16 738 factor += num / k;
Chris@16 739 num = -num;
Chris@16 740 }
Chris@16 741 last_k = 2 * n;
Chris@16 742 term = (zeta_polynomial_series(T(2 * n), T(1 - T(2 * n)), digits) - 1) * factor / n;
Chris@16 743 sum += term;
Chris@16 744 if(term < lim)
Chris@16 745 break;
Chris@16 746 }
Chris@16 747 return exp(sum / boost::math::constants::ln_two<T, boost::math::policies::policy<> >());
Chris@16 748 }
Chris@16 749
Chris@16 750 }
Chris@16 751
Chris@16 752 template <class T>
Chris@16 753 template<int N>
Chris@16 754 inline T constant_khinchin<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 755 {
Chris@16 756 int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>();
Chris@16 757 return khinchin_detail::khinchin<T>(n);
Chris@16 758 }
Chris@16 759
Chris@16 760 template <class T>
Chris@16 761 template<int N>
Chris@16 762 inline T constant_extreme_value_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 763 { // from e_float constants.cpp
Chris@16 764 // Mathematica: N[12 Sqrt[6] Zeta[3]/Pi^3, 1101]
Chris@16 765 BOOST_MATH_STD_USING
Chris@16 766 T ev(12 * sqrt(static_cast<T>(6)) * zeta_three<T, policies::policy<policies::digits2<N> > >()
Chris@16 767 / pi_cubed<T, policies::policy<policies::digits2<N> > >() );
Chris@16 768
Chris@16 769 //T ev(
Chris@16 770 //"1.1395470994046486574927930193898461120875997958365518247216557100852480077060706857071875468869385150"
Chris@16 771 //"1894272048688553376986765366075828644841024041679714157616857834895702411080704529137366329462558680"
Chris@16 772 //"2015498788776135705587959418756809080074611906006528647805347822929577145038743873949415294942796280"
Chris@16 773 //"0895597703063466053535550338267721294164578901640163603544404938283861127819804918174973533694090594"
Chris@16 774 //"3094963822672055237678432023017824416203652657301470473548274848068762500300316769691474974950757965"
Chris@16 775 //"8640779777748741897542093874605477776538884083378029488863880220988107155275203245233994097178778984"
Chris@16 776 //"3488995668362387892097897322246698071290011857605809901090220903955815127463328974447572119951192970"
Chris@16 777 //"3684453635456559086126406960279692862247058250100678008419431185138019869693206366891639436908462809"
Chris@16 778 //"9756051372711251054914491837034685476095423926553367264355374652153595857163724698198860485357368964"
Chris@16 779 //"3807049634423621246870868566707915720704996296083373077647528285782964567312903914752617978405994377"
Chris@16 780 //"9064157147206717895272199736902453130842229559980076472936976287378945035706933650987259357729800315");
Chris@16 781
Chris@16 782 return ev;
Chris@16 783 }
Chris@16 784
Chris@16 785 namespace detail{
Chris@16 786 //
Chris@16 787 // Calculation of the Glaisher constant depends upon calculating the
Chris@16 788 // derivative of the zeta function at 2, we can then use the relation:
Chris@16 789 // zeta'(2) = 1/6 pi^2 [euler + ln(2pi)-12ln(A)]
Chris@16 790 // To get the constant A.
Chris@16 791 // See equation 45 at http://mathworld.wolfram.com/RiemannZetaFunction.html.
Chris@16 792 //
Chris@16 793 // The derivative of the zeta function is computed by direct differentiation
Chris@16 794 // of the relation:
Chris@16 795 // (1-2^(1-s))zeta(s) = SUM(n=0, INF){ (-n)^n / (n+1)^s }
Chris@16 796 // Which gives us 2 slowly converging but alternating sums to compute,
Chris@16 797 // for this we use Algorithm 1 from "Convergent Acceleration of Alternating Series",
Chris@16 798 // Henri Cohen, Fernando Rodriguez Villegas and Don Zagier, Experimental Mathematics 9:1 (1999).
Chris@16 799 // See http://www.math.utexas.edu/users/villegas/publications/conv-accel.pdf
Chris@16 800 //
Chris@16 801 template <class T>
Chris@16 802 T zeta_series_derivative_2(unsigned digits)
Chris@16 803 {
Chris@16 804 // Derivative of the series part, evaluated at 2:
Chris@16 805 BOOST_MATH_STD_USING
Chris@16 806 int n = digits * 301 * 13 / 10000;
Chris@16 807 boost::math::itrunc((std::numeric_limits<T>::digits10 + 1) * 1.3);
Chris@16 808 T d = pow(3 + sqrt(T(8)), n);
Chris@16 809 d = (d + 1 / d) / 2;
Chris@16 810 T b = -1;
Chris@16 811 T c = -d;
Chris@16 812 T s = 0;
Chris@16 813 for(int k = 0; k < n; ++k)
Chris@16 814 {
Chris@16 815 T a = -log(T(k+1)) / ((k+1) * (k+1));
Chris@16 816 c = b - c;
Chris@16 817 s = s + c * a;
Chris@16 818 b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1));
Chris@16 819 }
Chris@16 820 return s / d;
Chris@16 821 }
Chris@16 822
Chris@16 823 template <class T>
Chris@16 824 T zeta_series_2(unsigned digits)
Chris@16 825 {
Chris@16 826 // Series part of zeta at 2:
Chris@16 827 BOOST_MATH_STD_USING
Chris@16 828 int n = digits * 301 * 13 / 10000;
Chris@16 829 T d = pow(3 + sqrt(T(8)), n);
Chris@16 830 d = (d + 1 / d) / 2;
Chris@16 831 T b = -1;
Chris@16 832 T c = -d;
Chris@16 833 T s = 0;
Chris@16 834 for(int k = 0; k < n; ++k)
Chris@16 835 {
Chris@16 836 T a = T(1) / ((k + 1) * (k + 1));
Chris@16 837 c = b - c;
Chris@16 838 s = s + c * a;
Chris@16 839 b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1));
Chris@16 840 }
Chris@16 841 return s / d;
Chris@16 842 }
Chris@16 843
Chris@16 844 template <class T>
Chris@16 845 inline T zeta_series_lead_2()
Chris@16 846 {
Chris@16 847 // lead part at 2:
Chris@16 848 return 2;
Chris@16 849 }
Chris@16 850
Chris@16 851 template <class T>
Chris@16 852 inline T zeta_series_derivative_lead_2()
Chris@16 853 {
Chris@16 854 // derivative of lead part at 2:
Chris@16 855 return -2 * boost::math::constants::ln_two<T>();
Chris@16 856 }
Chris@16 857
Chris@16 858 template <class T>
Chris@16 859 inline T zeta_derivative_2(unsigned n)
Chris@16 860 {
Chris@16 861 // zeta derivative at 2:
Chris@16 862 return zeta_series_derivative_2<T>(n) * zeta_series_lead_2<T>()
Chris@16 863 + zeta_series_derivative_lead_2<T>() * zeta_series_2<T>(n);
Chris@16 864 }
Chris@16 865
Chris@16 866 } // namespace detail
Chris@16 867
Chris@16 868 template <class T>
Chris@16 869 template<int N>
Chris@16 870 inline T constant_glaisher<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 871 {
Chris@16 872
Chris@16 873 BOOST_MATH_STD_USING
Chris@16 874 typedef policies::policy<policies::digits2<N> > forwarding_policy;
Chris@16 875 int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>();
Chris@16 876 T v = detail::zeta_derivative_2<T>(n);
Chris@16 877 v *= 6;
Chris@16 878 v /= boost::math::constants::pi<T, forwarding_policy>() * boost::math::constants::pi<T, forwarding_policy>();
Chris@16 879 v -= boost::math::constants::euler<T, forwarding_policy>();
Chris@16 880 v -= log(2 * boost::math::constants::pi<T, forwarding_policy>());
Chris@16 881 v /= -12;
Chris@16 882 return exp(v);
Chris@16 883
Chris@16 884 /*
Chris@16 885 // from http://mpmath.googlecode.com/svn/data/glaisher.txt
Chris@16 886 // 20,000 digits of the Glaisher-Kinkelin constant A = exp(1/2 - zeta'(-1))
Chris@16 887 // Computed using A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12)
Chris@16 888 // with Euler-Maclaurin summation for zeta'(2).
Chris@16 889 T g(
Chris@16 890 "1.282427129100622636875342568869791727767688927325001192063740021740406308858826"
Chris@16 891 "46112973649195820237439420646120399000748933157791362775280404159072573861727522"
Chris@16 892 "14334327143439787335067915257366856907876561146686449997784962754518174312394652"
Chris@16 893 "76128213808180219264516851546143919901083573730703504903888123418813674978133050"
Chris@16 894 "93770833682222494115874837348064399978830070125567001286994157705432053927585405"
Chris@16 895 "81731588155481762970384743250467775147374600031616023046613296342991558095879293"
Chris@16 896 "36343887288701988953460725233184702489001091776941712153569193674967261270398013"
Chris@16 897 "52652668868978218897401729375840750167472114895288815996668743164513890306962645"
Chris@16 898 "59870469543740253099606800842447417554061490189444139386196089129682173528798629"
Chris@16 899 "88434220366989900606980888785849587494085307347117090132667567503310523405221054"
Chris@16 900 "14176776156308191919997185237047761312315374135304725819814797451761027540834943"
Chris@16 901 "14384965234139453373065832325673954957601692256427736926358821692159870775858274"
Chris@16 902 "69575162841550648585890834128227556209547002918593263079373376942077522290940187");
Chris@16 903
Chris@16 904 return g;
Chris@16 905 */
Chris@16 906 }
Chris@16 907
Chris@16 908 template <class T>
Chris@16 909 template<int N>
Chris@16 910 inline T constant_rayleigh_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 911 { // From e_float
Chris@16 912 // 1100 digits of the Rayleigh distribution skewness
Chris@16 913 // Mathematica: N[2 Sqrt[Pi] (Pi - 3)/((4 - Pi)^(3/2)), 1100]
Chris@16 914
Chris@16 915 BOOST_MATH_STD_USING
Chris@16 916 T rs(2 * root_pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 917 * pi_minus_three<T, policies::policy<policies::digits2<N> > >()
Chris@16 918 / pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(3./2))
Chris@16 919 );
Chris@16 920 // 6.31110657818937138191899351544227779844042203134719497658094585692926819617473725459905027032537306794400047264,
Chris@16 921
Chris@16 922 //"0.6311106578189371381918993515442277798440422031347194976580945856929268196174737254599050270325373067"
Chris@16 923 //"9440004726436754739597525250317640394102954301685809920213808351450851396781817932734836994829371322"
Chris@16 924 //"5797376021347531983451654130317032832308462278373358624120822253764532674177325950686466133508511968"
Chris@16 925 //"2389168716630349407238090652663422922072397393006683401992961569208109477307776249225072042971818671"
Chris@16 926 //"4058887072693437217879039875871765635655476241624825389439481561152126886932506682176611183750503553"
Chris@16 927 //"1218982627032068396407180216351425758181396562859085306247387212297187006230007438534686340210168288"
Chris@16 928 //"8956816965453815849613622117088096547521391672977226658826566757207615552041767516828171274858145957"
Chris@16 929 //"6137539156656005855905288420585194082284972984285863898582313048515484073396332610565441264220790791"
Chris@16 930 //"0194897267890422924599776483890102027823328602965235306539844007677157873140562950510028206251529523"
Chris@16 931 //"7428049693650605954398446899724157486062545281504433364675815915402937209673727753199567661561209251"
Chris@16 932 //"4695589950526053470201635372590001578503476490223746511106018091907936826431407434894024396366284848"); ;
Chris@16 933 return rs;
Chris@16 934 }
Chris@16 935
Chris@16 936 template <class T>
Chris@16 937 template<int N>
Chris@16 938 inline T constant_rayleigh_kurtosis_excess<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 939 { // - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2)
Chris@16 940 // Might provide and calculate this using pi_minus_four.
Chris@16 941 BOOST_MATH_STD_USING
Chris@16 942 return - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 943 * pi<T, policies::policy<policies::digits2<N> > >())
Chris@16 944 - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) )
Chris@16 945 /
Chris@16 946 ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))
Chris@16 947 * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)))
Chris@16 948 );
Chris@16 949 }
Chris@16 950
Chris@16 951 template <class T>
Chris@16 952 template<int N>
Chris@16 953 inline T constant_rayleigh_kurtosis<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))
Chris@16 954 { // 3 - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2)
Chris@16 955 // Might provide and calculate this using pi_minus_four.
Chris@16 956 BOOST_MATH_STD_USING
Chris@16 957 return static_cast<T>(3) - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >()
Chris@16 958 * pi<T, policies::policy<policies::digits2<N> > >())
Chris@16 959 - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) )
Chris@16 960 /
Chris@16 961 ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))
Chris@16 962 * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)))
Chris@16 963 );
Chris@16 964 }
Chris@16 965
Chris@16 966 }}}} // namespaces
Chris@16 967
Chris@16 968 #endif // BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED