annotate DEPENDENCIES/generic/include/boost/lambda/closures.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 /*=============================================================================
Chris@16 2 Adaptable closures
Chris@16 3
Chris@16 4 Phoenix V0.9
Chris@16 5 Copyright (c) 2001-2002 Joel de Guzman
Chris@16 6
Chris@16 7 Distributed under the Boost Software License, Version 1.0. (See
Chris@16 8 accompanying file LICENSE_1_0.txt or copy at
Chris@16 9 http://www.boost.org/LICENSE_1_0.txt)
Chris@16 10
Chris@16 11 URL: http://spirit.sourceforge.net/
Chris@16 12
Chris@16 13 ==============================================================================*/
Chris@16 14 #ifndef PHOENIX_CLOSURES_HPP
Chris@16 15 #define PHOENIX_CLOSURES_HPP
Chris@16 16
Chris@16 17 ///////////////////////////////////////////////////////////////////////////////
Chris@16 18 #include "boost/lambda/core.hpp"
Chris@16 19 ///////////////////////////////////////////////////////////////////////////////
Chris@16 20 namespace boost {
Chris@16 21 namespace lambda {
Chris@16 22
Chris@16 23 ///////////////////////////////////////////////////////////////////////////////
Chris@16 24 //
Chris@16 25 // Adaptable closures
Chris@16 26 //
Chris@16 27 // The framework will not be complete without some form of closures
Chris@16 28 // support. Closures encapsulate a stack frame where local
Chris@16 29 // variables are created upon entering a function and destructed
Chris@16 30 // upon exiting. Closures provide an environment for local
Chris@16 31 // variables to reside. Closures can hold heterogeneous types.
Chris@16 32 //
Chris@16 33 // Phoenix closures are true hardware stack based closures. At the
Chris@16 34 // very least, closures enable true reentrancy in lambda functions.
Chris@16 35 // A closure provides access to a function stack frame where local
Chris@16 36 // variables reside. Modeled after Pascal nested stack frames,
Chris@16 37 // closures can be nested just like nested functions where code in
Chris@16 38 // inner closures may access local variables from in-scope outer
Chris@16 39 // closures (accessing inner scopes from outer scopes is an error
Chris@16 40 // and will cause a run-time assertion failure).
Chris@16 41 //
Chris@16 42 // There are three (3) interacting classes:
Chris@16 43 //
Chris@16 44 // 1) closure:
Chris@16 45 //
Chris@16 46 // At the point of declaration, a closure does not yet create a
Chris@16 47 // stack frame nor instantiate any variables. A closure declaration
Chris@16 48 // declares the types and names[note] of the local variables. The
Chris@16 49 // closure class is meant to be subclassed. It is the
Chris@16 50 // responsibility of a closure subclass to supply the names for
Chris@16 51 // each of the local variable in the closure. Example:
Chris@16 52 //
Chris@16 53 // struct my_closure : closure<int, string, double> {
Chris@16 54 //
Chris@16 55 // member1 num; // names the 1st (int) local variable
Chris@16 56 // member2 message; // names the 2nd (string) local variable
Chris@16 57 // member3 real; // names the 3rd (double) local variable
Chris@16 58 // };
Chris@16 59 //
Chris@16 60 // my_closure clos;
Chris@16 61 //
Chris@16 62 // Now that we have a closure 'clos', its local variables can be
Chris@16 63 // accessed lazily using the dot notation. Each qualified local
Chris@16 64 // variable can be used just like any primitive actor (see
Chris@16 65 // primitives.hpp). Examples:
Chris@16 66 //
Chris@16 67 // clos.num = 30
Chris@16 68 // clos.message = arg1
Chris@16 69 // clos.real = clos.num * 1e6
Chris@16 70 //
Chris@16 71 // The examples above are lazily evaluated. As usual, these
Chris@16 72 // expressions return composite actors that will be evaluated
Chris@16 73 // through a second function call invocation (see operators.hpp).
Chris@16 74 // Each of the members (clos.xxx) is an actor. As such, applying
Chris@16 75 // the operator() will reveal its identity:
Chris@16 76 //
Chris@16 77 // clos.num() // will return the current value of clos.num
Chris@16 78 //
Chris@16 79 // *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)
Chris@16 80 // introduced and initilally implemented the closure member names
Chris@16 81 // that uses the dot notation.
Chris@16 82 //
Chris@16 83 // 2) closure_member
Chris@16 84 //
Chris@16 85 // The named local variables of closure 'clos' above are actually
Chris@16 86 // closure members. The closure_member class is an actor and
Chris@16 87 // conforms to its conceptual interface. member1..memberN are
Chris@16 88 // predefined typedefs that correspond to each of the listed types
Chris@16 89 // in the closure template parameters.
Chris@16 90 //
Chris@16 91 // 3) closure_frame
Chris@16 92 //
Chris@16 93 // When a closure member is finally evaluated, it should refer to
Chris@16 94 // an actual instance of the variable in the hardware stack.
Chris@16 95 // Without doing so, the process is not complete and the evaluated
Chris@16 96 // member will result to an assertion failure. Remember that the
Chris@16 97 // closure is just a declaration. The local variables that a
Chris@16 98 // closure refers to must still be instantiated.
Chris@16 99 //
Chris@16 100 // The closure_frame class does the actual instantiation of the
Chris@16 101 // local variables and links these variables with the closure and
Chris@16 102 // all its members. There can be multiple instances of
Chris@16 103 // closure_frames typically situated in the stack inside a
Chris@16 104 // function. Each closure_frame instance initiates a stack frame
Chris@16 105 // with a new set of closure local variables. Example:
Chris@16 106 //
Chris@16 107 // void foo()
Chris@16 108 // {
Chris@16 109 // closure_frame<my_closure> frame(clos);
Chris@16 110 // /* do something */
Chris@16 111 // }
Chris@16 112 //
Chris@16 113 // where 'clos' is an instance of our closure 'my_closure' above.
Chris@16 114 // Take note that the usage above precludes locally declared
Chris@16 115 // classes. If my_closure is a locally declared type, we can still
Chris@16 116 // use its self_type as a paramater to closure_frame:
Chris@16 117 //
Chris@16 118 // closure_frame<my_closure::self_type> frame(clos);
Chris@16 119 //
Chris@16 120 // Upon instantiation, the closure_frame links the local variables
Chris@16 121 // to the closure. The previous link to another closure_frame
Chris@16 122 // instance created before is saved. Upon destruction, the
Chris@16 123 // closure_frame unlinks itself from the closure and relinks the
Chris@16 124 // preceding closure_frame prior to this instance.
Chris@16 125 //
Chris@16 126 // The local variables in the closure 'clos' above is default
Chris@16 127 // constructed in the stack inside function 'foo'. Once 'foo' is
Chris@16 128 // exited, all of these local variables are destructed. In some
Chris@16 129 // cases, default construction is not desirable and we need to
Chris@16 130 // initialize the local closure variables with some values. This
Chris@16 131 // can be done by passing in the initializers in a compatible
Chris@16 132 // tuple. A compatible tuple is one with the same number of
Chris@16 133 // elements as the destination and where each element from the
Chris@16 134 // destination can be constructed from each corresponding element
Chris@16 135 // in the source. Example:
Chris@16 136 //
Chris@16 137 // tuple<int, char const*, int> init(123, "Hello", 1000);
Chris@16 138 // closure_frame<my_closure> frame(clos, init);
Chris@16 139 //
Chris@16 140 // Here now, our closure_frame's variables are initialized with
Chris@16 141 // int: 123, char const*: "Hello" and int: 1000.
Chris@16 142 //
Chris@16 143 ///////////////////////////////////////////////////////////////////////////////
Chris@16 144
Chris@16 145
Chris@16 146
Chris@16 147 ///////////////////////////////////////////////////////////////////////////////
Chris@16 148 //
Chris@16 149 // closure_frame class
Chris@16 150 //
Chris@16 151 ///////////////////////////////////////////////////////////////////////////////
Chris@16 152 template <typename ClosureT>
Chris@16 153 class closure_frame : public ClosureT::tuple_t {
Chris@16 154
Chris@16 155 public:
Chris@16 156
Chris@16 157 closure_frame(ClosureT& clos)
Chris@16 158 : ClosureT::tuple_t(), save(clos.frame), frame(clos.frame)
Chris@16 159 { clos.frame = this; }
Chris@16 160
Chris@16 161 template <typename TupleT>
Chris@16 162 closure_frame(ClosureT& clos, TupleT const& init)
Chris@16 163 : ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame)
Chris@16 164 { clos.frame = this; }
Chris@16 165
Chris@16 166 ~closure_frame()
Chris@16 167 { frame = save; }
Chris@16 168
Chris@16 169 private:
Chris@16 170
Chris@16 171 closure_frame(closure_frame const&); // no copy
Chris@16 172 closure_frame& operator=(closure_frame const&); // no assign
Chris@16 173
Chris@16 174 closure_frame* save;
Chris@16 175 closure_frame*& frame;
Chris@16 176 };
Chris@16 177
Chris@16 178 ///////////////////////////////////////////////////////////////////////////////
Chris@16 179 //
Chris@16 180 // closure_member class
Chris@16 181 //
Chris@16 182 ///////////////////////////////////////////////////////////////////////////////
Chris@16 183 template <int N, typename ClosureT>
Chris@16 184 class closure_member {
Chris@16 185
Chris@16 186 public:
Chris@16 187
Chris@16 188 typedef typename ClosureT::tuple_t tuple_t;
Chris@16 189
Chris@16 190 closure_member()
Chris@16 191 : frame(ClosureT::closure_frame_ref()) {}
Chris@16 192
Chris@16 193 template <typename TupleT>
Chris@16 194 struct sig {
Chris@16 195
Chris@16 196 typedef typename detail::tuple_element_as_reference<
Chris@16 197 N, typename ClosureT::tuple_t
Chris@16 198 >::type type;
Chris@16 199 };
Chris@16 200
Chris@16 201 template <class Ret, class A, class B, class C>
Chris@16 202 // typename detail::tuple_element_as_reference
Chris@16 203 // <N, typename ClosureT::tuple_t>::type
Chris@16 204 Ret
Chris@16 205 call(A&, B&, C&) const
Chris@16 206 {
Chris@16 207 assert(frame);
Chris@16 208 return boost::tuples::get<N>(*frame);
Chris@16 209 }
Chris@16 210
Chris@16 211
Chris@16 212 private:
Chris@16 213
Chris@16 214 typename ClosureT::closure_frame_t*& frame;
Chris@16 215 };
Chris@16 216
Chris@16 217 ///////////////////////////////////////////////////////////////////////////////
Chris@16 218 //
Chris@16 219 // closure class
Chris@16 220 //
Chris@16 221 ///////////////////////////////////////////////////////////////////////////////
Chris@16 222 template <
Chris@16 223 typename T0 = null_type,
Chris@16 224 typename T1 = null_type,
Chris@16 225 typename T2 = null_type,
Chris@16 226 typename T3 = null_type,
Chris@16 227 typename T4 = null_type
Chris@16 228 >
Chris@16 229 class closure {
Chris@16 230
Chris@16 231 public:
Chris@16 232
Chris@16 233 typedef tuple<T0, T1, T2, T3, T4> tuple_t;
Chris@16 234 typedef closure<T0, T1, T2, T3, T4> self_t;
Chris@16 235 typedef closure_frame<self_t> closure_frame_t;
Chris@16 236
Chris@16 237 closure()
Chris@16 238 : frame(0) { closure_frame_ref(&frame); }
Chris@16 239 closure_frame_t& context() { assert(frame); return frame; }
Chris@16 240 closure_frame_t const& context() const { assert(frame); return frame; }
Chris@16 241
Chris@16 242 typedef lambda_functor<closure_member<0, self_t> > member1;
Chris@16 243 typedef lambda_functor<closure_member<1, self_t> > member2;
Chris@16 244 typedef lambda_functor<closure_member<2, self_t> > member3;
Chris@16 245 typedef lambda_functor<closure_member<3, self_t> > member4;
Chris@16 246 typedef lambda_functor<closure_member<4, self_t> > member5;
Chris@16 247
Chris@16 248 private:
Chris@16 249
Chris@16 250 closure(closure const&); // no copy
Chris@16 251 closure& operator=(closure const&); // no assign
Chris@16 252
Chris@16 253 template <int N, typename ClosureT>
Chris@16 254 friend class closure_member;
Chris@16 255
Chris@16 256 template <typename ClosureT>
Chris@16 257 friend class closure_frame;
Chris@16 258
Chris@16 259 static closure_frame_t*&
Chris@16 260 closure_frame_ref(closure_frame_t** frame_ = 0)
Chris@16 261 {
Chris@16 262 static closure_frame_t** frame = 0;
Chris@16 263 if (frame_ != 0)
Chris@16 264 frame = frame_;
Chris@16 265 return *frame;
Chris@16 266 }
Chris@16 267
Chris@16 268 closure_frame_t* frame;
Chris@16 269 };
Chris@16 270
Chris@16 271 }}
Chris@16 272 // namespace
Chris@16 273
Chris@16 274 #endif