annotate DEPENDENCIES/generic/include/boost/graph/r_c_shortest_paths.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 // r_c_shortest_paths.hpp header file
Chris@16 2
Chris@16 3 // Copyright Michael Drexl 2005, 2006.
Chris@16 4 // Distributed under the Boost Software License, Version 1.0.
Chris@16 5 // (See accompanying file LICENSE_1_0.txt or copy at
Chris@16 6 // http://boost.org/LICENSE_1_0.txt)
Chris@16 7
Chris@16 8 #ifndef BOOST_GRAPH_R_C_SHORTEST_PATHS_HPP
Chris@16 9 #define BOOST_GRAPH_R_C_SHORTEST_PATHS_HPP
Chris@16 10
Chris@16 11 #include <map>
Chris@16 12 #include <queue>
Chris@16 13 #include <vector>
Chris@16 14
Chris@16 15 #include <boost/graph/graph_traits.hpp>
Chris@101 16 #include <boost/graph/iteration_macros.hpp>
Chris@101 17 #include <boost/property_map/property_map.hpp>
Chris@16 18
Chris@16 19 namespace boost {
Chris@16 20
Chris@16 21 // r_c_shortest_paths_label struct
Chris@16 22 template<class Graph, class Resource_Container>
Chris@16 23 struct r_c_shortest_paths_label
Chris@16 24 {
Chris@16 25 r_c_shortest_paths_label
Chris@16 26 ( const unsigned long n,
Chris@16 27 const Resource_Container& rc = Resource_Container(),
Chris@16 28 const r_c_shortest_paths_label* const pl = 0,
Chris@16 29 const typename graph_traits<Graph>::edge_descriptor& ed =
Chris@16 30 graph_traits<Graph>::edge_descriptor(),
Chris@16 31 const typename graph_traits<Graph>::vertex_descriptor& vd =
Chris@16 32 graph_traits<Graph>::vertex_descriptor() )
Chris@16 33 : num( n ),
Chris@16 34 cumulated_resource_consumption( rc ),
Chris@16 35 p_pred_label( pl ),
Chris@16 36 pred_edge( ed ),
Chris@16 37 resident_vertex( vd ),
Chris@16 38 b_is_dominated( false ),
Chris@101 39 b_is_processed( false ),
Chris@101 40 b_is_valid( true )
Chris@16 41 {}
Chris@16 42 r_c_shortest_paths_label& operator=( const r_c_shortest_paths_label& other )
Chris@16 43 {
Chris@16 44 if( this == &other )
Chris@16 45 return *this;
Chris@16 46 this->~r_c_shortest_paths_label();
Chris@16 47 new( this ) r_c_shortest_paths_label( other );
Chris@16 48 return *this;
Chris@16 49 }
Chris@16 50 const unsigned long num;
Chris@16 51 Resource_Container cumulated_resource_consumption;
Chris@16 52 const r_c_shortest_paths_label* const p_pred_label;
Chris@16 53 const typename graph_traits<Graph>::edge_descriptor pred_edge;
Chris@16 54 const typename graph_traits<Graph>::vertex_descriptor resident_vertex;
Chris@16 55 bool b_is_dominated;
Chris@16 56 bool b_is_processed;
Chris@101 57 bool b_is_valid;
Chris@16 58 }; // r_c_shortest_paths_label
Chris@16 59
Chris@16 60 template<class Graph, class Resource_Container>
Chris@16 61 inline bool operator==
Chris@16 62 ( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
Chris@16 63 const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
Chris@16 64 {
Chris@101 65 assert (l1.b_is_valid && l2.b_is_valid);
Chris@16 66 return
Chris@16 67 l1.cumulated_resource_consumption == l2.cumulated_resource_consumption;
Chris@16 68 }
Chris@16 69
Chris@16 70 template<class Graph, class Resource_Container>
Chris@16 71 inline bool operator!=
Chris@16 72 ( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
Chris@16 73 const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
Chris@16 74 {
Chris@101 75 assert (l1.b_is_valid && l2.b_is_valid);
Chris@16 76 return
Chris@16 77 !( l1 == l2 );
Chris@16 78 }
Chris@16 79
Chris@16 80 template<class Graph, class Resource_Container>
Chris@16 81 inline bool operator<
Chris@16 82 ( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
Chris@16 83 const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
Chris@16 84 {
Chris@101 85 assert (l1.b_is_valid && l2.b_is_valid);
Chris@16 86 return
Chris@16 87 l1.cumulated_resource_consumption < l2.cumulated_resource_consumption;
Chris@16 88 }
Chris@16 89
Chris@16 90 template<class Graph, class Resource_Container>
Chris@16 91 inline bool operator>
Chris@16 92 ( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
Chris@16 93 const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
Chris@16 94 {
Chris@101 95 assert (l1.b_is_valid && l2.b_is_valid);
Chris@16 96 return
Chris@16 97 l2.cumulated_resource_consumption < l1.cumulated_resource_consumption;
Chris@16 98 }
Chris@16 99
Chris@16 100 template<class Graph, class Resource_Container>
Chris@16 101 inline bool operator<=
Chris@16 102 ( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
Chris@16 103 const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
Chris@16 104 {
Chris@101 105 assert (l1.b_is_valid && l2.b_is_valid);
Chris@16 106 return
Chris@16 107 l1 < l2 || l1 == l2;
Chris@16 108 }
Chris@16 109
Chris@16 110 template<class Graph, class Resource_Container>
Chris@16 111 inline bool operator>=
Chris@16 112 ( const r_c_shortest_paths_label<Graph, Resource_Container>& l1,
Chris@16 113 const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
Chris@16 114 {
Chris@101 115 assert (l1.b_is_valid && l2.b_is_valid);
Chris@16 116 return l2 < l1 || l1 == l2;
Chris@16 117 }
Chris@16 118
Chris@16 119 namespace detail {
Chris@16 120
Chris@16 121 // ks_smart_pointer class
Chris@16 122 // from:
Chris@16 123 // Kuhlins, S.; Schader, M. (1999):
Chris@16 124 // Die C++-Standardbibliothek
Chris@16 125 // Springer, Berlin
Chris@16 126 // p. 333 f.
Chris@16 127 template<class T>
Chris@16 128 class ks_smart_pointer
Chris@16 129 {
Chris@16 130 public:
Chris@16 131 ks_smart_pointer( T* ptt = 0 ) : pt( ptt ) {}
Chris@16 132 ks_smart_pointer( const ks_smart_pointer& other ) : pt( other.pt ) {}
Chris@16 133 ks_smart_pointer& operator=( const ks_smart_pointer& other )
Chris@16 134 { pt = other.pt; return *this; }
Chris@16 135 ~ks_smart_pointer() {}
Chris@16 136 T& operator*() const { return *pt; }
Chris@16 137 T* operator->() const { return pt; }
Chris@16 138 T* get() const { return pt; }
Chris@16 139 operator T*() const { return pt; }
Chris@16 140 friend bool operator==( const ks_smart_pointer& t,
Chris@16 141 const ks_smart_pointer& u )
Chris@16 142 { return *t.pt == *u.pt; }
Chris@16 143 friend bool operator!=( const ks_smart_pointer& t,
Chris@16 144 const ks_smart_pointer& u )
Chris@16 145 { return *t.pt != *u.pt; }
Chris@16 146 friend bool operator<( const ks_smart_pointer& t,
Chris@16 147 const ks_smart_pointer& u )
Chris@16 148 { return *t.pt < *u.pt; }
Chris@16 149 friend bool operator>( const ks_smart_pointer& t,
Chris@16 150 const ks_smart_pointer& u )
Chris@16 151 { return *t.pt > *u.pt; }
Chris@16 152 friend bool operator<=( const ks_smart_pointer& t,
Chris@16 153 const ks_smart_pointer& u )
Chris@16 154 { return *t.pt <= *u.pt; }
Chris@16 155 friend bool operator>=( const ks_smart_pointer& t,
Chris@16 156 const ks_smart_pointer& u )
Chris@16 157 { return *t.pt >= *u.pt; }
Chris@16 158 private:
Chris@16 159 T* pt;
Chris@16 160 }; // ks_smart_pointer
Chris@16 161
Chris@16 162
Chris@16 163 // r_c_shortest_paths_dispatch function (body/implementation)
Chris@16 164 template<class Graph,
Chris@16 165 class VertexIndexMap,
Chris@16 166 class EdgeIndexMap,
Chris@16 167 class Resource_Container,
Chris@16 168 class Resource_Extension_Function,
Chris@16 169 class Dominance_Function,
Chris@16 170 class Label_Allocator,
Chris@16 171 class Visitor>
Chris@16 172 void r_c_shortest_paths_dispatch
Chris@16 173 ( const Graph& g,
Chris@16 174 const VertexIndexMap& vertex_index_map,
Chris@16 175 const EdgeIndexMap& /*edge_index_map*/,
Chris@16 176 typename graph_traits<Graph>::vertex_descriptor s,
Chris@16 177 typename graph_traits<Graph>::vertex_descriptor t,
Chris@16 178 // each inner vector corresponds to a pareto-optimal path
Chris@16 179 std::vector
Chris@16 180 <std::vector
Chris@16 181 <typename graph_traits
Chris@16 182 <Graph>::edge_descriptor> >& pareto_optimal_solutions,
Chris@16 183 std::vector
Chris@16 184 <Resource_Container>& pareto_optimal_resource_containers,
Chris@16 185 bool b_all_pareto_optimal_solutions,
Chris@16 186 // to initialize the first label/resource container
Chris@16 187 // and to carry the type information
Chris@16 188 const Resource_Container& rc,
Chris@16 189 Resource_Extension_Function& ref,
Chris@16 190 Dominance_Function& dominance,
Chris@16 191 // to specify the memory management strategy for the labels
Chris@16 192 Label_Allocator /*la*/,
Chris@16 193 Visitor vis )
Chris@16 194 {
Chris@16 195 pareto_optimal_resource_containers.clear();
Chris@16 196 pareto_optimal_solutions.clear();
Chris@16 197
Chris@16 198 size_t i_label_num = 0;
Chris@16 199 typedef
Chris@16 200 typename
Chris@16 201 Label_Allocator::template rebind
Chris@16 202 <r_c_shortest_paths_label
Chris@16 203 <Graph, Resource_Container> >::other LAlloc;
Chris@16 204 LAlloc l_alloc;
Chris@16 205 typedef
Chris@16 206 ks_smart_pointer
Chris@16 207 <r_c_shortest_paths_label<Graph, Resource_Container> > Splabel;
Chris@16 208 std::priority_queue<Splabel, std::vector<Splabel>, std::greater<Splabel> >
Chris@16 209 unprocessed_labels;
Chris@16 210
Chris@16 211 bool b_feasible = true;
Chris@16 212 r_c_shortest_paths_label<Graph, Resource_Container>* first_label =
Chris@16 213 l_alloc.allocate( 1 );
Chris@16 214 l_alloc.construct
Chris@16 215 ( first_label,
Chris@16 216 r_c_shortest_paths_label
Chris@16 217 <Graph, Resource_Container>( i_label_num++,
Chris@16 218 rc,
Chris@16 219 0,
Chris@16 220 typename graph_traits<Graph>::
Chris@16 221 edge_descriptor(),
Chris@16 222 s ) );
Chris@16 223
Chris@16 224 Splabel splabel_first_label = Splabel( first_label );
Chris@16 225 unprocessed_labels.push( splabel_first_label );
Chris@101 226 std::vector<std::list<Splabel> > vec_vertex_labels_data( num_vertices( g ) );
Chris@101 227 iterator_property_map<typename std::vector<std::list<Splabel> >::iterator,
Chris@101 228 VertexIndexMap>
Chris@101 229 vec_vertex_labels(vec_vertex_labels_data.begin(), vertex_index_map);
Chris@101 230 vec_vertex_labels[s].push_back( splabel_first_label );
Chris@101 231 typedef
Chris@101 232 std::vector<typename std::list<Splabel>::iterator>
Chris@101 233 vec_last_valid_positions_for_dominance_data_type;
Chris@101 234 vec_last_valid_positions_for_dominance_data_type
Chris@101 235 vec_last_valid_positions_for_dominance_data( num_vertices( g ) );
Chris@101 236 iterator_property_map<
Chris@101 237 typename vec_last_valid_positions_for_dominance_data_type::iterator,
Chris@101 238 VertexIndexMap>
Chris@101 239 vec_last_valid_positions_for_dominance
Chris@101 240 (vec_last_valid_positions_for_dominance_data.begin(),
Chris@101 241 vertex_index_map);
Chris@101 242 BGL_FORALL_VERTICES_T(v, g, Graph) {
Chris@101 243 put(vec_last_valid_positions_for_dominance, v, vec_vertex_labels[v].begin());
Chris@101 244 }
Chris@101 245 std::vector<size_t> vec_last_valid_index_for_dominance_data( num_vertices( g ), 0 );
Chris@101 246 iterator_property_map<std::vector<size_t>::iterator, VertexIndexMap>
Chris@101 247 vec_last_valid_index_for_dominance
Chris@101 248 (vec_last_valid_index_for_dominance_data.begin(), vertex_index_map);
Chris@16 249 std::vector<bool>
Chris@101 250 b_vec_vertex_already_checked_for_dominance_data( num_vertices( g ), false );
Chris@101 251 iterator_property_map<std::vector<bool>::iterator, VertexIndexMap>
Chris@101 252 b_vec_vertex_already_checked_for_dominance
Chris@101 253 (b_vec_vertex_already_checked_for_dominance_data.begin(),
Chris@101 254 vertex_index_map);
Chris@101 255
Chris@16 256 while( !unprocessed_labels.empty() && vis.on_enter_loop(unprocessed_labels, g) )
Chris@16 257 {
Chris@16 258 Splabel cur_label = unprocessed_labels.top();
Chris@101 259 assert (cur_label->b_is_valid);
Chris@16 260 unprocessed_labels.pop();
Chris@16 261 vis.on_label_popped( *cur_label, g );
Chris@16 262 // an Splabel object in unprocessed_labels and the respective Splabel
Chris@16 263 // object in the respective list<Splabel> of vec_vertex_labels share their
Chris@16 264 // embedded r_c_shortest_paths_label object
Chris@16 265 // to avoid memory leaks, dominated
Chris@16 266 // r_c_shortest_paths_label objects are marked and deleted when popped
Chris@16 267 // from unprocessed_labels, as they can no longer be deleted at the end of
Chris@16 268 // the function; only the Splabel object in unprocessed_labels still
Chris@16 269 // references the r_c_shortest_paths_label object
Chris@16 270 // this is also for efficiency, because the else branch is executed only
Chris@16 271 // if there is a chance that extending the
Chris@16 272 // label leads to new undominated labels, which in turn is possible only
Chris@16 273 // if the label to be extended is undominated
Chris@101 274 assert (cur_label->b_is_valid);
Chris@16 275 if( !cur_label->b_is_dominated )
Chris@16 276 {
Chris@101 277 typename boost::graph_traits<Graph>::vertex_descriptor
Chris@101 278 i_cur_resident_vertex = cur_label->resident_vertex;
Chris@16 279 std::list<Splabel>& list_labels_cur_vertex =
Chris@101 280 get(vec_vertex_labels, i_cur_resident_vertex);
Chris@16 281 if( list_labels_cur_vertex.size() >= 2
Chris@101 282 && vec_last_valid_index_for_dominance[i_cur_resident_vertex]
Chris@16 283 < list_labels_cur_vertex.size() )
Chris@16 284 {
Chris@16 285 typename std::list<Splabel>::iterator outer_iter =
Chris@16 286 list_labels_cur_vertex.begin();
Chris@16 287 bool b_outer_iter_at_or_beyond_last_valid_pos_for_dominance = false;
Chris@16 288 while( outer_iter != list_labels_cur_vertex.end() )
Chris@16 289 {
Chris@16 290 Splabel cur_outer_splabel = *outer_iter;
Chris@101 291 assert (cur_outer_splabel->b_is_valid);
Chris@16 292 typename std::list<Splabel>::iterator inner_iter = outer_iter;
Chris@16 293 if( !b_outer_iter_at_or_beyond_last_valid_pos_for_dominance
Chris@16 294 && outer_iter ==
Chris@101 295 get(vec_last_valid_positions_for_dominance,
Chris@101 296 i_cur_resident_vertex) )
Chris@16 297 b_outer_iter_at_or_beyond_last_valid_pos_for_dominance = true;
Chris@101 298 if( !get(b_vec_vertex_already_checked_for_dominance, i_cur_resident_vertex)
Chris@16 299 || b_outer_iter_at_or_beyond_last_valid_pos_for_dominance )
Chris@16 300 {
Chris@16 301 ++inner_iter;
Chris@16 302 }
Chris@16 303 else
Chris@16 304 {
Chris@16 305 inner_iter =
Chris@101 306 get(vec_last_valid_positions_for_dominance,
Chris@101 307 i_cur_resident_vertex);
Chris@16 308 ++inner_iter;
Chris@16 309 }
Chris@16 310 bool b_outer_iter_erased = false;
Chris@16 311 while( inner_iter != list_labels_cur_vertex.end() )
Chris@16 312 {
Chris@16 313 Splabel cur_inner_splabel = *inner_iter;
Chris@101 314 assert (cur_inner_splabel->b_is_valid);
Chris@16 315 if( dominance( cur_outer_splabel->
Chris@16 316 cumulated_resource_consumption,
Chris@16 317 cur_inner_splabel->
Chris@16 318 cumulated_resource_consumption ) )
Chris@16 319 {
Chris@16 320 typename std::list<Splabel>::iterator buf = inner_iter;
Chris@16 321 ++inner_iter;
Chris@16 322 list_labels_cur_vertex.erase( buf );
Chris@16 323 if( cur_inner_splabel->b_is_processed )
Chris@16 324 {
Chris@101 325 cur_inner_splabel->b_is_valid = false;
Chris@16 326 l_alloc.destroy( cur_inner_splabel.get() );
Chris@16 327 l_alloc.deallocate( cur_inner_splabel.get(), 1 );
Chris@16 328 }
Chris@16 329 else
Chris@16 330 cur_inner_splabel->b_is_dominated = true;
Chris@16 331 continue;
Chris@16 332 }
Chris@16 333 else
Chris@16 334 ++inner_iter;
Chris@16 335 if( dominance( cur_inner_splabel->
Chris@16 336 cumulated_resource_consumption,
Chris@16 337 cur_outer_splabel->
Chris@16 338 cumulated_resource_consumption ) )
Chris@16 339 {
Chris@16 340 typename std::list<Splabel>::iterator buf = outer_iter;
Chris@16 341 ++outer_iter;
Chris@16 342 list_labels_cur_vertex.erase( buf );
Chris@16 343 b_outer_iter_erased = true;
Chris@101 344 assert (cur_outer_splabel->b_is_valid);
Chris@16 345 if( cur_outer_splabel->b_is_processed )
Chris@16 346 {
Chris@101 347 cur_outer_splabel->b_is_valid = false;
Chris@16 348 l_alloc.destroy( cur_outer_splabel.get() );
Chris@16 349 l_alloc.deallocate( cur_outer_splabel.get(), 1 );
Chris@16 350 }
Chris@16 351 else
Chris@16 352 cur_outer_splabel->b_is_dominated = true;
Chris@16 353 break;
Chris@16 354 }
Chris@16 355 }
Chris@16 356 if( !b_outer_iter_erased )
Chris@16 357 ++outer_iter;
Chris@16 358 }
Chris@16 359 if( list_labels_cur_vertex.size() > 1 )
Chris@101 360 put(vec_last_valid_positions_for_dominance, i_cur_resident_vertex,
Chris@101 361 (--(list_labels_cur_vertex.end())));
Chris@16 362 else
Chris@101 363 put(vec_last_valid_positions_for_dominance, i_cur_resident_vertex,
Chris@101 364 list_labels_cur_vertex.begin());
Chris@101 365 put(b_vec_vertex_already_checked_for_dominance,
Chris@101 366 i_cur_resident_vertex, true);
Chris@101 367 put(vec_last_valid_index_for_dominance, i_cur_resident_vertex,
Chris@101 368 list_labels_cur_vertex.size() - 1);
Chris@16 369 }
Chris@16 370 }
Chris@101 371 assert (b_all_pareto_optimal_solutions || cur_label->b_is_valid);
Chris@16 372 if( !b_all_pareto_optimal_solutions && cur_label->resident_vertex == t )
Chris@16 373 {
Chris@16 374 // the devil don't sleep
Chris@16 375 if( cur_label->b_is_dominated )
Chris@16 376 {
Chris@101 377 cur_label->b_is_valid = false;
Chris@16 378 l_alloc.destroy( cur_label.get() );
Chris@16 379 l_alloc.deallocate( cur_label.get(), 1 );
Chris@16 380 }
Chris@16 381 while( unprocessed_labels.size() )
Chris@16 382 {
Chris@16 383 Splabel l = unprocessed_labels.top();
Chris@101 384 assert (l->b_is_valid);
Chris@16 385 unprocessed_labels.pop();
Chris@16 386 // delete only dominated labels, because nondominated labels are
Chris@16 387 // deleted at the end of the function
Chris@16 388 if( l->b_is_dominated )
Chris@16 389 {
Chris@101 390 l->b_is_valid = false;
Chris@16 391 l_alloc.destroy( l.get() );
Chris@16 392 l_alloc.deallocate( l.get(), 1 );
Chris@16 393 }
Chris@16 394 }
Chris@16 395 break;
Chris@16 396 }
Chris@16 397 if( !cur_label->b_is_dominated )
Chris@16 398 {
Chris@16 399 cur_label->b_is_processed = true;
Chris@16 400 vis.on_label_not_dominated( *cur_label, g );
Chris@16 401 typename graph_traits<Graph>::vertex_descriptor cur_vertex =
Chris@16 402 cur_label->resident_vertex;
Chris@16 403 typename graph_traits<Graph>::out_edge_iterator oei, oei_end;
Chris@16 404 for( boost::tie( oei, oei_end ) = out_edges( cur_vertex, g );
Chris@16 405 oei != oei_end;
Chris@16 406 ++oei )
Chris@16 407 {
Chris@16 408 b_feasible = true;
Chris@16 409 r_c_shortest_paths_label<Graph, Resource_Container>* new_label =
Chris@16 410 l_alloc.allocate( 1 );
Chris@16 411 l_alloc.construct( new_label,
Chris@16 412 r_c_shortest_paths_label
Chris@16 413 <Graph, Resource_Container>
Chris@16 414 ( i_label_num++,
Chris@16 415 cur_label->cumulated_resource_consumption,
Chris@16 416 cur_label.get(),
Chris@16 417 *oei,
Chris@16 418 target( *oei, g ) ) );
Chris@16 419 b_feasible =
Chris@16 420 ref( g,
Chris@16 421 new_label->cumulated_resource_consumption,
Chris@16 422 new_label->p_pred_label->cumulated_resource_consumption,
Chris@16 423 new_label->pred_edge );
Chris@16 424
Chris@16 425 if( !b_feasible )
Chris@16 426 {
Chris@16 427 vis.on_label_not_feasible( *new_label, g );
Chris@101 428 new_label->b_is_valid = false;
Chris@16 429 l_alloc.destroy( new_label );
Chris@16 430 l_alloc.deallocate( new_label, 1 );
Chris@16 431 }
Chris@16 432 else
Chris@16 433 {
Chris@16 434 const r_c_shortest_paths_label<Graph, Resource_Container>&
Chris@16 435 ref_new_label = *new_label;
Chris@16 436 vis.on_label_feasible( ref_new_label, g );
Chris@16 437 Splabel new_sp_label( new_label );
Chris@101 438 vec_vertex_labels[new_sp_label->resident_vertex].
Chris@16 439 push_back( new_sp_label );
Chris@16 440 unprocessed_labels.push( new_sp_label );
Chris@16 441 }
Chris@16 442 }
Chris@16 443 }
Chris@16 444 else
Chris@16 445 {
Chris@101 446 assert (cur_label->b_is_valid);
Chris@16 447 vis.on_label_dominated( *cur_label, g );
Chris@101 448 cur_label->b_is_valid = false;
Chris@16 449 l_alloc.destroy( cur_label.get() );
Chris@16 450 l_alloc.deallocate( cur_label.get(), 1 );
Chris@16 451 }
Chris@16 452 }
Chris@101 453 std::list<Splabel> dsplabels = get(vec_vertex_labels, t);
Chris@16 454 typename std::list<Splabel>::const_iterator csi = dsplabels.begin();
Chris@16 455 typename std::list<Splabel>::const_iterator csi_end = dsplabels.end();
Chris@16 456 // if d could be reached from o
Chris@16 457 if( !dsplabels.empty() )
Chris@16 458 {
Chris@16 459 for( ; csi != csi_end; ++csi )
Chris@16 460 {
Chris@16 461 std::vector<typename graph_traits<Graph>::edge_descriptor>
Chris@16 462 cur_pareto_optimal_path;
Chris@16 463 const r_c_shortest_paths_label<Graph, Resource_Container>* p_cur_label =
Chris@16 464 (*csi).get();
Chris@101 465 assert (p_cur_label->b_is_valid);
Chris@16 466 pareto_optimal_resource_containers.
Chris@16 467 push_back( p_cur_label->cumulated_resource_consumption );
Chris@16 468 while( p_cur_label->num != 0 )
Chris@16 469 {
Chris@16 470 cur_pareto_optimal_path.push_back( p_cur_label->pred_edge );
Chris@16 471 p_cur_label = p_cur_label->p_pred_label;
Chris@101 472 assert (p_cur_label->b_is_valid);
Chris@16 473 }
Chris@16 474 pareto_optimal_solutions.push_back( cur_pareto_optimal_path );
Chris@16 475 if( !b_all_pareto_optimal_solutions )
Chris@16 476 break;
Chris@16 477 }
Chris@16 478 }
Chris@16 479
Chris@101 480 BGL_FORALL_VERTICES_T(i, g, Graph) {
Chris@16 481 const std::list<Splabel>& list_labels_cur_vertex = vec_vertex_labels[i];
Chris@16 482 csi_end = list_labels_cur_vertex.end();
Chris@16 483 for( csi = list_labels_cur_vertex.begin(); csi != csi_end; ++csi )
Chris@16 484 {
Chris@101 485 assert ((*csi)->b_is_valid);
Chris@101 486 (*csi)->b_is_valid = false;
Chris@16 487 l_alloc.destroy( (*csi).get() );
Chris@16 488 l_alloc.deallocate( (*csi).get(), 1 );
Chris@16 489 }
Chris@16 490 }
Chris@16 491 } // r_c_shortest_paths_dispatch
Chris@16 492
Chris@16 493 } // detail
Chris@16 494
Chris@16 495 // default_r_c_shortest_paths_visitor struct
Chris@16 496 struct default_r_c_shortest_paths_visitor
Chris@16 497 {
Chris@16 498 template<class Label, class Graph>
Chris@16 499 void on_label_popped( const Label&, const Graph& ) {}
Chris@16 500 template<class Label, class Graph>
Chris@16 501 void on_label_feasible( const Label&, const Graph& ) {}
Chris@16 502 template<class Label, class Graph>
Chris@16 503 void on_label_not_feasible( const Label&, const Graph& ) {}
Chris@16 504 template<class Label, class Graph>
Chris@16 505 void on_label_dominated( const Label&, const Graph& ) {}
Chris@16 506 template<class Label, class Graph>
Chris@16 507 void on_label_not_dominated( const Label&, const Graph& ) {}
Chris@16 508 template<class Queue, class Graph>
Chris@16 509 bool on_enter_loop(const Queue& queue, const Graph& graph) {return true;}
Chris@16 510 }; // default_r_c_shortest_paths_visitor
Chris@16 511
Chris@16 512
Chris@16 513 // default_r_c_shortest_paths_allocator
Chris@16 514 typedef
Chris@16 515 std::allocator<int> default_r_c_shortest_paths_allocator;
Chris@16 516 // default_r_c_shortest_paths_allocator
Chris@16 517
Chris@16 518
Chris@16 519 // r_c_shortest_paths functions (handle/interface)
Chris@16 520 // first overload:
Chris@16 521 // - return all pareto-optimal solutions
Chris@16 522 // - specify Label_Allocator and Visitor arguments
Chris@16 523 template<class Graph,
Chris@16 524 class VertexIndexMap,
Chris@16 525 class EdgeIndexMap,
Chris@16 526 class Resource_Container,
Chris@16 527 class Resource_Extension_Function,
Chris@16 528 class Dominance_Function,
Chris@16 529 class Label_Allocator,
Chris@16 530 class Visitor>
Chris@16 531 void r_c_shortest_paths
Chris@16 532 ( const Graph& g,
Chris@16 533 const VertexIndexMap& vertex_index_map,
Chris@16 534 const EdgeIndexMap& edge_index_map,
Chris@16 535 typename graph_traits<Graph>::vertex_descriptor s,
Chris@16 536 typename graph_traits<Graph>::vertex_descriptor t,
Chris@16 537 // each inner vector corresponds to a pareto-optimal path
Chris@16 538 std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> >&
Chris@16 539 pareto_optimal_solutions,
Chris@16 540 std::vector<Resource_Container>& pareto_optimal_resource_containers,
Chris@16 541 // to initialize the first label/resource container
Chris@16 542 // and to carry the type information
Chris@16 543 const Resource_Container& rc,
Chris@16 544 const Resource_Extension_Function& ref,
Chris@16 545 const Dominance_Function& dominance,
Chris@16 546 // to specify the memory management strategy for the labels
Chris@16 547 Label_Allocator la,
Chris@16 548 Visitor vis )
Chris@16 549 {
Chris@16 550 r_c_shortest_paths_dispatch( g,
Chris@16 551 vertex_index_map,
Chris@16 552 edge_index_map,
Chris@16 553 s,
Chris@16 554 t,
Chris@16 555 pareto_optimal_solutions,
Chris@16 556 pareto_optimal_resource_containers,
Chris@16 557 true,
Chris@16 558 rc,
Chris@16 559 ref,
Chris@16 560 dominance,
Chris@16 561 la,
Chris@16 562 vis );
Chris@16 563 }
Chris@16 564
Chris@16 565 // second overload:
Chris@16 566 // - return only one pareto-optimal solution
Chris@16 567 // - specify Label_Allocator and Visitor arguments
Chris@16 568 template<class Graph,
Chris@16 569 class VertexIndexMap,
Chris@16 570 class EdgeIndexMap,
Chris@16 571 class Resource_Container,
Chris@16 572 class Resource_Extension_Function,
Chris@16 573 class Dominance_Function,
Chris@16 574 class Label_Allocator,
Chris@16 575 class Visitor>
Chris@16 576 void r_c_shortest_paths
Chris@16 577 ( const Graph& g,
Chris@16 578 const VertexIndexMap& vertex_index_map,
Chris@16 579 const EdgeIndexMap& edge_index_map,
Chris@16 580 typename graph_traits<Graph>::vertex_descriptor s,
Chris@16 581 typename graph_traits<Graph>::vertex_descriptor t,
Chris@16 582 std::vector<typename graph_traits<Graph>::edge_descriptor>&
Chris@16 583 pareto_optimal_solution,
Chris@16 584 Resource_Container& pareto_optimal_resource_container,
Chris@16 585 // to initialize the first label/resource container
Chris@16 586 // and to carry the type information
Chris@16 587 const Resource_Container& rc,
Chris@16 588 const Resource_Extension_Function& ref,
Chris@16 589 const Dominance_Function& dominance,
Chris@16 590 // to specify the memory management strategy for the labels
Chris@16 591 Label_Allocator la,
Chris@16 592 Visitor vis )
Chris@16 593 {
Chris@16 594 // each inner vector corresponds to a pareto-optimal path
Chris@16 595 std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> >
Chris@16 596 pareto_optimal_solutions;
Chris@16 597 std::vector<Resource_Container> pareto_optimal_resource_containers;
Chris@16 598 r_c_shortest_paths_dispatch( g,
Chris@16 599 vertex_index_map,
Chris@16 600 edge_index_map,
Chris@16 601 s,
Chris@16 602 t,
Chris@16 603 pareto_optimal_solutions,
Chris@16 604 pareto_optimal_resource_containers,
Chris@16 605 false,
Chris@16 606 rc,
Chris@16 607 ref,
Chris@16 608 dominance,
Chris@16 609 la,
Chris@16 610 vis );
Chris@16 611 if (!pareto_optimal_solutions.empty()) {
Chris@16 612 pareto_optimal_solution = pareto_optimal_solutions[0];
Chris@16 613 pareto_optimal_resource_container = pareto_optimal_resource_containers[0];
Chris@16 614 }
Chris@16 615 }
Chris@16 616
Chris@16 617 // third overload:
Chris@16 618 // - return all pareto-optimal solutions
Chris@16 619 // - use default Label_Allocator and Visitor
Chris@16 620 template<class Graph,
Chris@16 621 class VertexIndexMap,
Chris@16 622 class EdgeIndexMap,
Chris@16 623 class Resource_Container,
Chris@16 624 class Resource_Extension_Function,
Chris@16 625 class Dominance_Function>
Chris@16 626 void r_c_shortest_paths
Chris@16 627 ( const Graph& g,
Chris@16 628 const VertexIndexMap& vertex_index_map,
Chris@16 629 const EdgeIndexMap& edge_index_map,
Chris@16 630 typename graph_traits<Graph>::vertex_descriptor s,
Chris@16 631 typename graph_traits<Graph>::vertex_descriptor t,
Chris@16 632 // each inner vector corresponds to a pareto-optimal path
Chris@16 633 std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> >&
Chris@16 634 pareto_optimal_solutions,
Chris@16 635 std::vector<Resource_Container>& pareto_optimal_resource_containers,
Chris@16 636 // to initialize the first label/resource container
Chris@16 637 // and to carry the type information
Chris@16 638 const Resource_Container& rc,
Chris@16 639 const Resource_Extension_Function& ref,
Chris@16 640 const Dominance_Function& dominance )
Chris@16 641 {
Chris@16 642 r_c_shortest_paths_dispatch( g,
Chris@16 643 vertex_index_map,
Chris@16 644 edge_index_map,
Chris@16 645 s,
Chris@16 646 t,
Chris@16 647 pareto_optimal_solutions,
Chris@16 648 pareto_optimal_resource_containers,
Chris@16 649 true,
Chris@16 650 rc,
Chris@16 651 ref,
Chris@16 652 dominance,
Chris@16 653 default_r_c_shortest_paths_allocator(),
Chris@16 654 default_r_c_shortest_paths_visitor() );
Chris@16 655 }
Chris@16 656
Chris@16 657 // fourth overload:
Chris@16 658 // - return only one pareto-optimal solution
Chris@16 659 // - use default Label_Allocator and Visitor
Chris@16 660 template<class Graph,
Chris@16 661 class VertexIndexMap,
Chris@16 662 class EdgeIndexMap,
Chris@16 663 class Resource_Container,
Chris@16 664 class Resource_Extension_Function,
Chris@16 665 class Dominance_Function>
Chris@16 666 void r_c_shortest_paths
Chris@16 667 ( const Graph& g,
Chris@16 668 const VertexIndexMap& vertex_index_map,
Chris@16 669 const EdgeIndexMap& edge_index_map,
Chris@16 670 typename graph_traits<Graph>::vertex_descriptor s,
Chris@16 671 typename graph_traits<Graph>::vertex_descriptor t,
Chris@16 672 std::vector<typename graph_traits<Graph>::edge_descriptor>&
Chris@16 673 pareto_optimal_solution,
Chris@16 674 Resource_Container& pareto_optimal_resource_container,
Chris@16 675 // to initialize the first label/resource container
Chris@16 676 // and to carry the type information
Chris@16 677 const Resource_Container& rc,
Chris@16 678 const Resource_Extension_Function& ref,
Chris@16 679 const Dominance_Function& dominance )
Chris@16 680 {
Chris@16 681 // each inner vector corresponds to a pareto-optimal path
Chris@16 682 std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> >
Chris@16 683 pareto_optimal_solutions;
Chris@16 684 std::vector<Resource_Container> pareto_optimal_resource_containers;
Chris@16 685 r_c_shortest_paths_dispatch( g,
Chris@16 686 vertex_index_map,
Chris@16 687 edge_index_map,
Chris@16 688 s,
Chris@16 689 t,
Chris@16 690 pareto_optimal_solutions,
Chris@16 691 pareto_optimal_resource_containers,
Chris@16 692 false,
Chris@16 693 rc,
Chris@16 694 ref,
Chris@16 695 dominance,
Chris@16 696 default_r_c_shortest_paths_allocator(),
Chris@16 697 default_r_c_shortest_paths_visitor() );
Chris@16 698 if (!pareto_optimal_solutions.empty()) {
Chris@16 699 pareto_optimal_solution = pareto_optimal_solutions[0];
Chris@16 700 pareto_optimal_resource_container = pareto_optimal_resource_containers[0];
Chris@16 701 }
Chris@16 702 }
Chris@16 703 // r_c_shortest_paths
Chris@16 704
Chris@16 705
Chris@16 706 // check_r_c_path function
Chris@16 707 template<class Graph,
Chris@16 708 class Resource_Container,
Chris@16 709 class Resource_Extension_Function>
Chris@16 710 void check_r_c_path( const Graph& g,
Chris@16 711 const std::vector
Chris@16 712 <typename graph_traits
Chris@16 713 <Graph>::edge_descriptor>& ed_vec_path,
Chris@16 714 const Resource_Container& initial_resource_levels,
Chris@16 715 // if true, computed accumulated final resource levels must
Chris@16 716 // be equal to desired_final_resource_levels
Chris@16 717 // if false, computed accumulated final resource levels must
Chris@16 718 // be less than or equal to desired_final_resource_levels
Chris@16 719 bool b_result_must_be_equal_to_desired_final_resource_levels,
Chris@16 720 const Resource_Container& desired_final_resource_levels,
Chris@16 721 Resource_Container& actual_final_resource_levels,
Chris@16 722 const Resource_Extension_Function& ref,
Chris@16 723 bool& b_is_a_path_at_all,
Chris@16 724 bool& b_feasible,
Chris@16 725 bool& b_correctly_extended,
Chris@16 726 typename graph_traits<Graph>::edge_descriptor&
Chris@16 727 ed_last_extended_arc )
Chris@16 728 {
Chris@16 729 size_t i_size_ed_vec_path = ed_vec_path.size();
Chris@16 730 std::vector<typename graph_traits<Graph>::edge_descriptor> buf_path;
Chris@16 731 if( i_size_ed_vec_path == 0 )
Chris@16 732 b_feasible = true;
Chris@16 733 else
Chris@16 734 {
Chris@16 735 if( i_size_ed_vec_path == 1
Chris@16 736 || target( ed_vec_path[0], g ) == source( ed_vec_path[1], g ) )
Chris@16 737 buf_path = ed_vec_path;
Chris@16 738 else
Chris@16 739 for( size_t i = i_size_ed_vec_path ; i > 0; --i )
Chris@16 740 buf_path.push_back( ed_vec_path[i - 1] );
Chris@16 741 for( size_t i = 0; i < i_size_ed_vec_path - 1; ++i )
Chris@16 742 {
Chris@16 743 if( target( buf_path[i], g ) != source( buf_path[i + 1], g ) )
Chris@16 744 {
Chris@16 745 b_is_a_path_at_all = false;
Chris@16 746 b_feasible = false;
Chris@16 747 b_correctly_extended = false;
Chris@16 748 return;
Chris@16 749 }
Chris@16 750 }
Chris@16 751 }
Chris@16 752 b_is_a_path_at_all = true;
Chris@16 753 b_feasible = true;
Chris@16 754 b_correctly_extended = false;
Chris@16 755 Resource_Container current_resource_levels = initial_resource_levels;
Chris@16 756 actual_final_resource_levels = current_resource_levels;
Chris@16 757 for( size_t i = 0; i < i_size_ed_vec_path; ++i )
Chris@16 758 {
Chris@16 759 ed_last_extended_arc = buf_path[i];
Chris@16 760 b_feasible = ref( g,
Chris@16 761 actual_final_resource_levels,
Chris@16 762 current_resource_levels,
Chris@16 763 buf_path[i] );
Chris@16 764 current_resource_levels = actual_final_resource_levels;
Chris@16 765 if( !b_feasible )
Chris@16 766 return;
Chris@16 767 }
Chris@16 768 if( b_result_must_be_equal_to_desired_final_resource_levels )
Chris@16 769 b_correctly_extended =
Chris@16 770 actual_final_resource_levels == desired_final_resource_levels ?
Chris@16 771 true : false;
Chris@16 772 else
Chris@16 773 {
Chris@16 774 if( actual_final_resource_levels < desired_final_resource_levels
Chris@16 775 || actual_final_resource_levels == desired_final_resource_levels )
Chris@16 776 b_correctly_extended = true;
Chris@16 777 }
Chris@16 778 } // check_path
Chris@16 779
Chris@16 780 } // namespace
Chris@16 781
Chris@16 782 #endif // BOOST_GRAPH_R_C_SHORTEST_PATHS_HPP