annotate DEPENDENCIES/generic/include/boost/graph/bron_kerbosch_all_cliques.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 // (C) Copyright 2007-2009 Andrew Sutton
Chris@16 2 //
Chris@16 3 // Use, modification and distribution are subject to the
Chris@16 4 // Boost Software License, Version 1.0 (See accompanying file
Chris@16 5 // LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
Chris@16 6
Chris@16 7 #ifndef BOOST_GRAPH_CLIQUE_HPP
Chris@16 8 #define BOOST_GRAPH_CLIQUE_HPP
Chris@16 9
Chris@16 10 #include <vector>
Chris@16 11 #include <deque>
Chris@16 12 #include <boost/config.hpp>
Chris@16 13
Chris@16 14 #include <boost/concept/assert.hpp>
Chris@16 15
Chris@16 16 #include <boost/graph/graph_concepts.hpp>
Chris@16 17 #include <boost/graph/lookup_edge.hpp>
Chris@16 18
Chris@16 19 #include <boost/concept/detail/concept_def.hpp>
Chris@16 20 namespace boost {
Chris@16 21 namespace concepts {
Chris@16 22 BOOST_concept(CliqueVisitor,(Visitor)(Clique)(Graph))
Chris@16 23 {
Chris@16 24 BOOST_CONCEPT_USAGE(CliqueVisitor)
Chris@16 25 {
Chris@16 26 vis.clique(k, g);
Chris@16 27 }
Chris@16 28 private:
Chris@16 29 Visitor vis;
Chris@16 30 Graph g;
Chris@16 31 Clique k;
Chris@16 32 };
Chris@16 33 } /* namespace concepts */
Chris@16 34 using concepts::CliqueVisitorConcept;
Chris@16 35 } /* namespace boost */
Chris@16 36 #include <boost/concept/detail/concept_undef.hpp>
Chris@16 37
Chris@16 38 namespace boost
Chris@16 39 {
Chris@16 40 // The algorithm implemented in this paper is based on the so-called
Chris@16 41 // Algorithm 457, published as:
Chris@16 42 //
Chris@16 43 // @article{362367,
Chris@16 44 // author = {Coen Bron and Joep Kerbosch},
Chris@16 45 // title = {Algorithm 457: finding all cliques of an undirected graph},
Chris@16 46 // journal = {Communications of the ACM},
Chris@16 47 // volume = {16},
Chris@16 48 // number = {9},
Chris@16 49 // year = {1973},
Chris@16 50 // issn = {0001-0782},
Chris@16 51 // pages = {575--577},
Chris@16 52 // doi = {http://doi.acm.org/10.1145/362342.362367},
Chris@16 53 // publisher = {ACM Press},
Chris@16 54 // address = {New York, NY, USA},
Chris@16 55 // }
Chris@16 56 //
Chris@16 57 // Sort of. This implementation is adapted from the 1st version of the
Chris@16 58 // algorithm and does not implement the candidate selection optimization
Chris@16 59 // described as published - it could, it just doesn't yet.
Chris@16 60 //
Chris@16 61 // The algorithm is given as proportional to (3.14)^(n/3) power. This is
Chris@16 62 // not the same as O(...), but based on time measures and approximation.
Chris@16 63 //
Chris@16 64 // Unfortunately, this implementation may be less efficient on non-
Chris@16 65 // AdjacencyMatrix modeled graphs due to the non-constant implementation
Chris@16 66 // of the edge(u,v,g) functions.
Chris@16 67 //
Chris@16 68 // TODO: It might be worthwhile to provide functionality for passing
Chris@16 69 // a connectivity matrix to improve the efficiency of those lookups
Chris@16 70 // when needed. This could simply be passed as a BooleanMatrix
Chris@16 71 // s.t. edge(u,v,B) returns true or false. This could easily be
Chris@16 72 // abstracted for adjacency matricies.
Chris@16 73 //
Chris@16 74 // The following paper is interesting for a number of reasons. First,
Chris@16 75 // it lists a number of other such algorithms and second, it describes
Chris@16 76 // a new algorithm (that does not appear to require the edge(u,v,g)
Chris@16 77 // function and appears fairly efficient. It is probably worth investigating.
Chris@16 78 //
Chris@16 79 // @article{DBLP:journals/tcs/TomitaTT06,
Chris@16 80 // author = {Etsuji Tomita and Akira Tanaka and Haruhisa Takahashi},
Chris@16 81 // title = {The worst-case time complexity for generating all maximal cliques and computational experiments},
Chris@16 82 // journal = {Theor. Comput. Sci.},
Chris@16 83 // volume = {363},
Chris@16 84 // number = {1},
Chris@16 85 // year = {2006},
Chris@16 86 // pages = {28-42}
Chris@16 87 // ee = {http://dx.doi.org/10.1016/j.tcs.2006.06.015}
Chris@16 88 // }
Chris@16 89
Chris@16 90 /**
Chris@16 91 * The default clique_visitor supplies an empty visitation function.
Chris@16 92 */
Chris@16 93 struct clique_visitor
Chris@16 94 {
Chris@16 95 template <typename VertexSet, typename Graph>
Chris@16 96 void clique(const VertexSet&, Graph&)
Chris@16 97 { }
Chris@16 98 };
Chris@16 99
Chris@16 100 /**
Chris@16 101 * The max_clique_visitor records the size of the maximum clique (but not the
Chris@16 102 * clique itself).
Chris@16 103 */
Chris@16 104 struct max_clique_visitor
Chris@16 105 {
Chris@16 106 max_clique_visitor(std::size_t& max)
Chris@16 107 : maximum(max)
Chris@16 108 { }
Chris@16 109
Chris@16 110 template <typename Clique, typename Graph>
Chris@16 111 inline void clique(const Clique& p, const Graph& g)
Chris@16 112 {
Chris@16 113 BOOST_USING_STD_MAX();
Chris@16 114 maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION (maximum, p.size());
Chris@16 115 }
Chris@16 116 std::size_t& maximum;
Chris@16 117 };
Chris@16 118
Chris@16 119 inline max_clique_visitor find_max_clique(std::size_t& max)
Chris@16 120 { return max_clique_visitor(max); }
Chris@16 121
Chris@16 122 namespace detail
Chris@16 123 {
Chris@16 124 template <typename Graph>
Chris@16 125 inline bool
Chris@16 126 is_connected_to_clique(const Graph& g,
Chris@16 127 typename graph_traits<Graph>::vertex_descriptor u,
Chris@16 128 typename graph_traits<Graph>::vertex_descriptor v,
Chris@16 129 typename graph_traits<Graph>::undirected_category)
Chris@16 130 {
Chris@16 131 return lookup_edge(u, v, g).second;
Chris@16 132 }
Chris@16 133
Chris@16 134 template <typename Graph>
Chris@16 135 inline bool
Chris@16 136 is_connected_to_clique(const Graph& g,
Chris@16 137 typename graph_traits<Graph>::vertex_descriptor u,
Chris@16 138 typename graph_traits<Graph>::vertex_descriptor v,
Chris@16 139 typename graph_traits<Graph>::directed_category)
Chris@16 140 {
Chris@16 141 // Note that this could alternate between using an || to determine
Chris@16 142 // full connectivity. I believe that this should produce strongly
Chris@16 143 // connected components. Note that using && instead of || will
Chris@16 144 // change the results to a fully connected subgraph (i.e., symmetric
Chris@16 145 // edges between all vertices s.t., if a->b, then b->a.
Chris@16 146 return lookup_edge(u, v, g).second && lookup_edge(v, u, g).second;
Chris@16 147 }
Chris@16 148
Chris@16 149 template <typename Graph, typename Container>
Chris@16 150 inline void
Chris@16 151 filter_unconnected_vertices(const Graph& g,
Chris@16 152 typename graph_traits<Graph>::vertex_descriptor v,
Chris@16 153 const Container& in,
Chris@16 154 Container& out)
Chris@16 155 {
Chris@16 156 BOOST_CONCEPT_ASSERT(( GraphConcept<Graph> ));
Chris@16 157
Chris@16 158 typename graph_traits<Graph>::directed_category cat;
Chris@16 159 typename Container::const_iterator i, end = in.end();
Chris@16 160 for(i = in.begin(); i != end; ++i) {
Chris@16 161 if(is_connected_to_clique(g, v, *i, cat)) {
Chris@16 162 out.push_back(*i);
Chris@16 163 }
Chris@16 164 }
Chris@16 165 }
Chris@16 166
Chris@16 167 template <
Chris@16 168 typename Graph,
Chris@16 169 typename Clique, // compsub type
Chris@16 170 typename Container, // candidates/not type
Chris@16 171 typename Visitor>
Chris@16 172 void extend_clique(const Graph& g,
Chris@16 173 Clique& clique,
Chris@16 174 Container& cands,
Chris@16 175 Container& nots,
Chris@16 176 Visitor vis,
Chris@16 177 std::size_t min)
Chris@16 178 {
Chris@16 179 BOOST_CONCEPT_ASSERT(( GraphConcept<Graph> ));
Chris@16 180 BOOST_CONCEPT_ASSERT(( CliqueVisitorConcept<Visitor,Clique,Graph> ));
Chris@16 181 typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
Chris@16 182
Chris@16 183 // Is there vertex in nots that is connected to all vertices
Chris@16 184 // in the candidate set? If so, no clique can ever be found.
Chris@16 185 // This could be broken out into a separate function.
Chris@16 186 {
Chris@16 187 typename Container::iterator ni, nend = nots.end();
Chris@16 188 typename Container::iterator ci, cend = cands.end();
Chris@16 189 for(ni = nots.begin(); ni != nend; ++ni) {
Chris@16 190 for(ci = cands.begin(); ci != cend; ++ci) {
Chris@16 191 // if we don't find an edge, then we're okay.
Chris@16 192 if(!lookup_edge(*ni, *ci, g).second) break;
Chris@16 193 }
Chris@16 194 // if we iterated all the way to the end, then *ni
Chris@16 195 // is connected to all *ci
Chris@16 196 if(ci == cend) break;
Chris@16 197 }
Chris@16 198 // if we broke early, we found *ni connected to all *ci
Chris@16 199 if(ni != nend) return;
Chris@16 200 }
Chris@16 201
Chris@16 202 // TODO: the original algorithm 457 describes an alternative
Chris@16 203 // (albeit really complicated) mechanism for selecting candidates.
Chris@16 204 // The given optimizaiton seeks to bring about the above
Chris@16 205 // condition sooner (i.e., there is a vertex in the not set
Chris@16 206 // that is connected to all candidates). unfortunately, the
Chris@16 207 // method they give for doing this is fairly unclear.
Chris@16 208
Chris@16 209 // basically, for every vertex in not, we should know how many
Chris@16 210 // vertices it is disconnected from in the candidate set. if
Chris@16 211 // we fix some vertex in the not set, then we want to keep
Chris@16 212 // choosing vertices that are not connected to that fixed vertex.
Chris@16 213 // apparently, by selecting fix point with the minimum number
Chris@16 214 // of disconnections (i.e., the maximum number of connections
Chris@16 215 // within the candidate set), then the previous condition wil
Chris@16 216 // be reached sooner.
Chris@16 217
Chris@16 218 // there's some other stuff about using the number of disconnects
Chris@16 219 // as a counter, but i'm jot really sure i followed it.
Chris@16 220
Chris@16 221 // TODO: If we min-sized cliques to visit, then theoretically, we
Chris@16 222 // should be able to stop recursing if the clique falls below that
Chris@16 223 // size - maybe?
Chris@16 224
Chris@16 225 // otherwise, iterate over candidates and and test
Chris@16 226 // for maxmimal cliquiness.
Chris@16 227 typename Container::iterator i, j;
Chris@16 228 for(i = cands.begin(); i != cands.end(); ) {
Chris@16 229 Vertex candidate = *i;
Chris@16 230
Chris@16 231 // add the candidate to the clique (keeping the iterator!)
Chris@16 232 // typename Clique::iterator ci = clique.insert(clique.end(), candidate);
Chris@16 233 clique.push_back(candidate);
Chris@16 234
Chris@16 235 // remove it from the candidate set
Chris@16 236 i = cands.erase(i);
Chris@16 237
Chris@16 238 // build new candidate and not sets by removing all vertices
Chris@16 239 // that are not connected to the current candidate vertex.
Chris@16 240 // these actually invert the operation, adding them to the new
Chris@16 241 // sets if the vertices are connected. its semantically the same.
Chris@16 242 Container new_cands, new_nots;
Chris@16 243 filter_unconnected_vertices(g, candidate, cands, new_cands);
Chris@16 244 filter_unconnected_vertices(g, candidate, nots, new_nots);
Chris@16 245
Chris@16 246 if(new_cands.empty() && new_nots.empty()) {
Chris@16 247 // our current clique is maximal since there's nothing
Chris@16 248 // that's connected that we haven't already visited. If
Chris@16 249 // the clique is below our radar, then we won't visit it.
Chris@16 250 if(clique.size() >= min) {
Chris@16 251 vis.clique(clique, g);
Chris@16 252 }
Chris@16 253 }
Chris@16 254 else {
Chris@16 255 // recurse to explore the new candidates
Chris@16 256 extend_clique(g, clique, new_cands, new_nots, vis, min);
Chris@16 257 }
Chris@16 258
Chris@16 259 // we're done with this vertex, so we need to move it
Chris@16 260 // to the nots, and remove the candidate from the clique.
Chris@16 261 nots.push_back(candidate);
Chris@16 262 clique.pop_back();
Chris@16 263 }
Chris@16 264 }
Chris@16 265 } /* namespace detail */
Chris@16 266
Chris@16 267 template <typename Graph, typename Visitor>
Chris@16 268 inline void
Chris@16 269 bron_kerbosch_all_cliques(const Graph& g, Visitor vis, std::size_t min)
Chris@16 270 {
Chris@16 271 BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> ));
Chris@16 272 BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> ));
Chris@16 273 BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<Graph> )); // Structural requirement only
Chris@16 274 typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
Chris@16 275 typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
Chris@16 276 typedef std::vector<Vertex> VertexSet;
Chris@16 277 typedef std::deque<Vertex> Clique;
Chris@16 278 BOOST_CONCEPT_ASSERT(( CliqueVisitorConcept<Visitor,Clique,Graph> ));
Chris@16 279
Chris@16 280 // NOTE: We're using a deque to implement the clique, because it provides
Chris@16 281 // constant inserts and removals at the end and also a constant size.
Chris@16 282
Chris@16 283 VertexIterator i, end;
Chris@16 284 boost::tie(i, end) = vertices(g);
Chris@16 285 VertexSet cands(i, end); // start with all vertices as candidates
Chris@16 286 VertexSet nots; // start with no vertices visited
Chris@16 287
Chris@16 288 Clique clique; // the first clique is an empty vertex set
Chris@16 289 detail::extend_clique(g, clique, cands, nots, vis, min);
Chris@16 290 }
Chris@16 291
Chris@16 292 // NOTE: By default the minimum number of vertices per clique is set at 2
Chris@16 293 // because singleton cliques aren't really very interesting.
Chris@16 294 template <typename Graph, typename Visitor>
Chris@16 295 inline void
Chris@16 296 bron_kerbosch_all_cliques(const Graph& g, Visitor vis)
Chris@16 297 { bron_kerbosch_all_cliques(g, vis, 2); }
Chris@16 298
Chris@16 299 template <typename Graph>
Chris@16 300 inline std::size_t
Chris@16 301 bron_kerbosch_clique_number(const Graph& g)
Chris@16 302 {
Chris@16 303 std::size_t ret = 0;
Chris@16 304 bron_kerbosch_all_cliques(g, find_max_clique(ret));
Chris@16 305 return ret;
Chris@16 306 }
Chris@16 307
Chris@16 308 } /* namespace boost */
Chris@16 309
Chris@16 310 #endif