annotate DEPENDENCIES/generic/include/boost/geometry/algorithms/detail/vincenty_inverse.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents f46d142149f5
children
rev   line source
Chris@102 1 // Boost.Geometry
Chris@102 2
Chris@102 3 // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
Chris@102 4
Chris@102 5 // This file was modified by Oracle on 2014.
Chris@102 6 // Modifications copyright (c) 2014 Oracle and/or its affiliates.
Chris@102 7
Chris@102 8 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
Chris@102 9
Chris@102 10 // Use, modification and distribution is subject to the Boost Software License,
Chris@102 11 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
Chris@102 12 // http://www.boost.org/LICENSE_1_0.txt)
Chris@102 13
Chris@102 14 #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_VINCENTY_INVERSE_HPP
Chris@102 15 #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_VINCENTY_INVERSE_HPP
Chris@102 16
Chris@102 17
Chris@102 18 #include <boost/math/constants/constants.hpp>
Chris@102 19
Chris@102 20 #include <boost/geometry/core/radius.hpp>
Chris@102 21 #include <boost/geometry/core/srs.hpp>
Chris@102 22
Chris@102 23 #include <boost/geometry/util/math.hpp>
Chris@102 24
Chris@102 25 #include <boost/geometry/algorithms/detail/flattening.hpp>
Chris@102 26
Chris@102 27
Chris@102 28 #ifndef BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS
Chris@102 29 #define BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS 1000
Chris@102 30 #endif
Chris@102 31
Chris@102 32
Chris@102 33 namespace boost { namespace geometry { namespace detail
Chris@102 34 {
Chris@102 35
Chris@102 36 /*!
Chris@102 37 \brief The solution of the inverse problem of geodesics on latlong coordinates, after Vincenty, 1975
Chris@102 38 \author See
Chris@102 39 - http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
Chris@102 40 - http://www.icsm.gov.au/gda/gdav2.3.pdf
Chris@102 41 \author Adapted from various implementations to get it close to the original document
Chris@102 42 - http://www.movable-type.co.uk/scripts/LatLongVincenty.html
Chris@102 43 - http://exogen.case.edu/projects/geopy/source/geopy.distance.html
Chris@102 44 - http://futureboy.homeip.net/fsp/colorize.fsp?fileName=navigation.frink
Chris@102 45
Chris@102 46 */
Chris@102 47 template <typename CT>
Chris@102 48 class vincenty_inverse
Chris@102 49 {
Chris@102 50 public:
Chris@102 51 template <typename T1, typename T2, typename Spheroid>
Chris@102 52 vincenty_inverse(T1 const& lon1,
Chris@102 53 T1 const& lat1,
Chris@102 54 T2 const& lon2,
Chris@102 55 T2 const& lat2,
Chris@102 56 Spheroid const& spheroid)
Chris@102 57 : is_result_zero(false)
Chris@102 58 {
Chris@102 59 if (math::equals(lat1, lat2) && math::equals(lon1, lon2))
Chris@102 60 {
Chris@102 61 is_result_zero = true;
Chris@102 62 return;
Chris@102 63 }
Chris@102 64
Chris@102 65 CT const c1 = 1;
Chris@102 66 CT const c2 = 2;
Chris@102 67 CT const c3 = 3;
Chris@102 68 CT const c4 = 4;
Chris@102 69 CT const c16 = 16;
Chris@102 70 CT const c_e_12 = CT(1e-12);
Chris@102 71
Chris@102 72 CT const pi = geometry::math::pi<CT>();
Chris@102 73 CT const two_pi = c2 * pi;
Chris@102 74
Chris@102 75 // lambda: difference in longitude on an auxiliary sphere
Chris@102 76 CT L = lon2 - lon1;
Chris@102 77 CT lambda = L;
Chris@102 78
Chris@102 79 if (L < -pi) L += two_pi;
Chris@102 80 if (L > pi) L -= two_pi;
Chris@102 81
Chris@102 82 radius_a = CT(get_radius<0>(spheroid));
Chris@102 83 radius_b = CT(get_radius<2>(spheroid));
Chris@102 84 CT const flattening = geometry::detail::flattening<CT>(spheroid);
Chris@102 85
Chris@102 86 // U: reduced latitude, defined by tan U = (1-f) tan phi
Chris@102 87 CT const one_min_f = c1 - flattening;
Chris@102 88 CT const tan_U1 = one_min_f * tan(lat1); // above (1)
Chris@102 89 CT const tan_U2 = one_min_f * tan(lat2); // above (1)
Chris@102 90
Chris@102 91 // calculate sin U and cos U using trigonometric identities
Chris@102 92 CT const temp_den_U1 = math::sqrt(c1 + math::sqr(tan_U1));
Chris@102 93 CT const temp_den_U2 = math::sqrt(c1 + math::sqr(tan_U2));
Chris@102 94 // cos = 1 / sqrt(1 + tan^2)
Chris@102 95 cos_U1 = c1 / temp_den_U1;
Chris@102 96 cos_U2 = c1 / temp_den_U2;
Chris@102 97 // sin = tan / sqrt(1 + tan^2)
Chris@102 98 sin_U1 = tan_U1 / temp_den_U1;
Chris@102 99 sin_U2 = tan_U2 / temp_den_U2;
Chris@102 100
Chris@102 101 // calculate sin U and cos U directly
Chris@102 102 //CT const U1 = atan(tan_U1);
Chris@102 103 //CT const U2 = atan(tan_U2);
Chris@102 104 //cos_U1 = cos(U1);
Chris@102 105 //cos_U2 = cos(U2);
Chris@102 106 //sin_U1 = tan_U1 * cos_U1; // sin(U1);
Chris@102 107 //sin_U2 = tan_U2 * cos_U2; // sin(U2);
Chris@102 108
Chris@102 109 CT previous_lambda;
Chris@102 110
Chris@102 111 int counter = 0; // robustness
Chris@102 112
Chris@102 113 do
Chris@102 114 {
Chris@102 115 previous_lambda = lambda; // (13)
Chris@102 116 sin_lambda = sin(lambda);
Chris@102 117 cos_lambda = cos(lambda);
Chris@102 118 sin_sigma = math::sqrt(math::sqr(cos_U2 * sin_lambda) + math::sqr(cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda)); // (14)
Chris@102 119 CT cos_sigma = sin_U1 * sin_U2 + cos_U1 * cos_U2 * cos_lambda; // (15)
Chris@102 120 sin_alpha = cos_U1 * cos_U2 * sin_lambda / sin_sigma; // (17)
Chris@102 121 cos2_alpha = c1 - math::sqr(sin_alpha);
Chris@102 122 cos2_sigma_m = math::equals(cos2_alpha, 0) ? 0 : cos_sigma - c2 * sin_U1 * sin_U2 / cos2_alpha; // (18)
Chris@102 123
Chris@102 124 CT C = flattening/c16 * cos2_alpha * (c4 + flattening * (c4 - c3 * cos2_alpha)); // (10)
Chris@102 125 sigma = atan2(sin_sigma, cos_sigma); // (16)
Chris@102 126 lambda = L + (c1 - C) * flattening * sin_alpha *
Chris@102 127 (sigma + C * sin_sigma * ( cos2_sigma_m + C * cos_sigma * (-c1 + c2 * math::sqr(cos2_sigma_m)))); // (11)
Chris@102 128
Chris@102 129 ++counter; // robustness
Chris@102 130
Chris@102 131 } while ( geometry::math::abs(previous_lambda - lambda) > c_e_12
Chris@102 132 && geometry::math::abs(lambda) < pi
Chris@102 133 && counter < BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS ); // robustness
Chris@102 134 }
Chris@102 135
Chris@102 136 inline CT distance() const
Chris@102 137 {
Chris@102 138 if ( is_result_zero )
Chris@102 139 {
Chris@102 140 return CT(0);
Chris@102 141 }
Chris@102 142
Chris@102 143 // Oops getting hard here
Chris@102 144 // (again, problem is that ttmath cannot divide by doubles, which is OK)
Chris@102 145 CT const c1 = 1;
Chris@102 146 CT const c2 = 2;
Chris@102 147 CT const c3 = 3;
Chris@102 148 CT const c4 = 4;
Chris@102 149 CT const c6 = 6;
Chris@102 150 CT const c47 = 47;
Chris@102 151 CT const c74 = 74;
Chris@102 152 CT const c128 = 128;
Chris@102 153 CT const c256 = 256;
Chris@102 154 CT const c175 = 175;
Chris@102 155 CT const c320 = 320;
Chris@102 156 CT const c768 = 768;
Chris@102 157 CT const c1024 = 1024;
Chris@102 158 CT const c4096 = 4096;
Chris@102 159 CT const c16384 = 16384;
Chris@102 160
Chris@102 161 //CT sqr_u = cos2_alpha * (math::sqr(radius_a) - math::sqr(radius_b)) / math::sqr(radius_b); // above (1)
Chris@102 162 CT sqr_u = cos2_alpha * ( math::sqr(radius_a / radius_b) - c1 ); // above (1)
Chris@102 163
Chris@102 164 CT A = c1 + sqr_u/c16384 * (c4096 + sqr_u * (-c768 + sqr_u * (c320 - c175 * sqr_u))); // (3)
Chris@102 165 CT B = sqr_u/c1024 * (c256 + sqr_u * ( -c128 + sqr_u * (c74 - c47 * sqr_u))); // (4)
Chris@102 166 CT delta_sigma = B * sin_sigma * ( cos2_sigma_m + (B/c4) * (cos(sigma)* (-c1 + c2 * cos2_sigma_m)
Chris@102 167 - (B/c6) * cos2_sigma_m * (-c3 + c4 * math::sqr(sin_sigma)) * (-c3 + c4 * cos2_sigma_m))); // (6)
Chris@102 168
Chris@102 169 return radius_b * A * (sigma - delta_sigma); // (19)
Chris@102 170 }
Chris@102 171
Chris@102 172 inline CT azimuth12() const
Chris@102 173 {
Chris@102 174 return is_result_zero ?
Chris@102 175 CT(0) :
Chris@102 176 atan2(cos_U2 * sin_lambda, cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda); // (20)
Chris@102 177 }
Chris@102 178
Chris@102 179 inline CT azimuth21() const
Chris@102 180 {
Chris@102 181 // NOTE: signs of X and Y are different than in the original paper
Chris@102 182 return is_result_zero ?
Chris@102 183 CT(0) :
Chris@102 184 atan2(-cos_U1 * sin_lambda, sin_U1 * cos_U2 - cos_U1 * sin_U2 * cos_lambda); // (21)
Chris@102 185 }
Chris@102 186
Chris@102 187 private:
Chris@102 188 // alpha: azimuth of the geodesic at the equator
Chris@102 189 CT cos2_alpha;
Chris@102 190 CT sin_alpha;
Chris@102 191
Chris@102 192 // sigma: angular distance p1,p2 on the sphere
Chris@102 193 // sigma1: angular distance on the sphere from the equator to p1
Chris@102 194 // sigma_m: angular distance on the sphere from the equator to the midpoint of the line
Chris@102 195 CT sigma;
Chris@102 196 CT sin_sigma;
Chris@102 197 CT cos2_sigma_m;
Chris@102 198
Chris@102 199 CT sin_lambda;
Chris@102 200 CT cos_lambda;
Chris@102 201
Chris@102 202 // set only once
Chris@102 203 CT cos_U1;
Chris@102 204 CT cos_U2;
Chris@102 205 CT sin_U1;
Chris@102 206 CT sin_U2;
Chris@102 207
Chris@102 208 // set only once
Chris@102 209 CT radius_a;
Chris@102 210 CT radius_b;
Chris@102 211
Chris@102 212 bool is_result_zero;
Chris@102 213 };
Chris@102 214
Chris@102 215 }}} // namespace boost::geometry::detail
Chris@102 216
Chris@102 217
Chris@102 218 #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_VINCENTY_INVERSE_HPP