annotate DEPENDENCIES/generic/include/boost/accumulators/statistics/rolling_variance.hpp @ 133:4acb5d8d80b6 tip

Don't fail environmental check if README.md exists (but .txt and no-suffix don't)
author Chris Cannam
date Tue, 30 Jul 2019 12:25:44 +0100
parents f46d142149f5
children
rev   line source
Chris@102 1 ///////////////////////////////////////////////////////////////////////////////
Chris@102 2 // rolling_variance.hpp
Chris@102 3 // Copyright (C) 2005 Eric Niebler
Chris@102 4 // Copyright (C) 2014 Pieter Bastiaan Ober (Integricom).
Chris@102 5 // Distributed under the Boost Software License, Version 1.0.
Chris@102 6 // (See accompanying file LICENSE_1_0.txt or copy at
Chris@102 7 // http://www.boost.org/LICENSE_1_0.txt)
Chris@102 8
Chris@102 9 #ifndef BOOST_ACCUMULATORS_STATISTICS_ROLLING_VARIANCE_HPP_EAN_15_11_2011
Chris@102 10 #define BOOST_ACCUMULATORS_STATISTICS_ROLLING_VARIANCE_HPP_EAN_15_11_2011
Chris@102 11
Chris@102 12 #include <boost/accumulators/accumulators.hpp>
Chris@102 13 #include <boost/accumulators/statistics/stats.hpp>
Chris@102 14
Chris@102 15 #include <boost/mpl/placeholders.hpp>
Chris@102 16 #include <boost/accumulators/framework/accumulator_base.hpp>
Chris@102 17 #include <boost/accumulators/framework/extractor.hpp>
Chris@102 18 #include <boost/accumulators/numeric/functional.hpp>
Chris@102 19 #include <boost/accumulators/framework/parameters/sample.hpp>
Chris@102 20 #include <boost/accumulators/framework/depends_on.hpp>
Chris@102 21 #include <boost/accumulators/statistics_fwd.hpp>
Chris@102 22 #include <boost/accumulators/statistics/rolling_mean.hpp>
Chris@102 23 #include <boost/accumulators/statistics/rolling_moment.hpp>
Chris@102 24
Chris@102 25 #include <boost/type_traits/is_arithmetic.hpp>
Chris@102 26 #include <boost/utility/enable_if.hpp>
Chris@102 27
Chris@102 28 namespace boost { namespace accumulators
Chris@102 29 {
Chris@102 30 namespace impl
Chris@102 31 {
Chris@102 32 //! Immediate (lazy) calculation of the rolling variance.
Chris@102 33 /*!
Chris@102 34 Calculation of sample variance \f$\sigma_n^2\f$ is done as follows, see also
Chris@102 35 http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
Chris@102 36 For a rolling window of size \f$N\f$, when \f$n <= N\f$, the variance is computed according to the formula
Chris@102 37 \f[
Chris@102 38 \sigma_n^2 = \frac{1}{n-1} \sum_{i = 1}^n (x_i - \mu_n)^2.
Chris@102 39 \f]
Chris@102 40 When \f$n > N\f$, the sample variance over the window becomes:
Chris@102 41 \f[
Chris@102 42 \sigma_n^2 = \frac{1}{N-1} \sum_{i = n-N+1}^n (x_i - \mu_n)^2.
Chris@102 43 \f]
Chris@102 44 */
Chris@102 45 ///////////////////////////////////////////////////////////////////////////////
Chris@102 46 // lazy_rolling_variance_impl
Chris@102 47 //
Chris@102 48 template<typename Sample>
Chris@102 49 struct lazy_rolling_variance_impl
Chris@102 50 : accumulator_base
Chris@102 51 {
Chris@102 52 // for boost::result_of
Chris@102 53 typedef typename numeric::functional::fdiv<Sample, std::size_t,void,void>::result_type result_type;
Chris@102 54
Chris@102 55 lazy_rolling_variance_impl(dont_care) {}
Chris@102 56
Chris@102 57 template<typename Args>
Chris@102 58 result_type result(Args const &args) const
Chris@102 59 {
Chris@102 60 result_type mean = rolling_mean(args);
Chris@102 61 size_t nr_samples = rolling_count(args);
Chris@102 62 if (nr_samples < 2) return result_type();
Chris@102 63 return nr_samples*(rolling_moment<2>(args) - mean*mean)/(nr_samples-1);
Chris@102 64 }
Chris@102 65 };
Chris@102 66
Chris@102 67 //! Iterative calculation of the rolling variance.
Chris@102 68 /*!
Chris@102 69 Iterative calculation of sample variance \f$\sigma_n^2\f$ is done as follows, see also
Chris@102 70 http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
Chris@102 71 For a rolling window of size \f$N\f$, for the first \f$N\f$ samples, the variance is computed according to the formula
Chris@102 72 \f[
Chris@102 73 \sigma_n^2 = \frac{1}{n-1} \sum_{i = 1}^n (x_i - \mu_n)^2 = \frac{1}{n-1}M_{2,n},
Chris@102 74 \f]
Chris@102 75 where the sum of squares \f$M_{2,n}\f$ can be recursively computed as:
Chris@102 76 \f[
Chris@102 77 M_{2,n} = \sum_{i = 1}^n (x_i - \mu_n)^2 = M_{2,n-1} + (x_n - \mu_n)(x_n - \mu_{n-1}),
Chris@102 78 \f]
Chris@102 79 and the estimate of the sample mean as:
Chris@102 80 \f[
Chris@102 81 \mu_n = \frac{1}{n} \sum_{i = 1}^n x_i = \mu_{n-1} + \frac{1}{n}(x_n - \mu_{n-1}).
Chris@102 82 \f]
Chris@102 83 For further samples, when the rolling window is fully filled with data, one has to take into account that the oldest
Chris@102 84 sample \f$x_{n-N}\f$ is dropped from the window. The sample variance over the window now becomes:
Chris@102 85 \f[
Chris@102 86 \sigma_n^2 = \frac{1}{N-1} \sum_{i = n-N+1}^n (x_i - \mu_n)^2 = \frac{1}{n-1}M_{2,n},
Chris@102 87 \f]
Chris@102 88 where the sum of squares \f$M_{2,n}\f$ now equals:
Chris@102 89 \f[
Chris@102 90 M_{2,n} = \sum_{i = n-N+1}^n (x_i - \mu_n)^2 = M_{2,n-1} + (x_n - \mu_n)(x_n - \mu_{n-1}) - (x_{n-N} - \mu_n)(x_{n-N} - \mu_{n-1}),
Chris@102 91 \f]
Chris@102 92 and the estimated mean is:
Chris@102 93 \f[
Chris@102 94 \mu_n = \frac{1}{N} \sum_{i = n-N+1}^n x_i = \mu_{n-1} + \frac{1}{n}(x_n - x_{n-N}).
Chris@102 95 \f]
Chris@102 96
Chris@102 97 Note that the sample variance is not defined for \f$n <= 1\f$.
Chris@102 98
Chris@102 99 */
Chris@102 100 ///////////////////////////////////////////////////////////////////////////////
Chris@102 101 // immediate_rolling_variance_impl
Chris@102 102 //
Chris@102 103 template<typename Sample>
Chris@102 104 struct immediate_rolling_variance_impl
Chris@102 105 : accumulator_base
Chris@102 106 {
Chris@102 107 // for boost::result_of
Chris@102 108 typedef typename numeric::functional::fdiv<Sample, std::size_t>::result_type result_type;
Chris@102 109
Chris@102 110 template<typename Args>
Chris@102 111 immediate_rolling_variance_impl(Args const &args)
Chris@102 112 : previous_mean_(numeric::fdiv(args[sample | Sample()], numeric::one<std::size_t>::value))
Chris@102 113 , sum_of_squares_(numeric::fdiv(args[sample | Sample()], numeric::one<std::size_t>::value))
Chris@102 114 {
Chris@102 115 }
Chris@102 116
Chris@102 117 template<typename Args>
Chris@102 118 void operator()(Args const &args)
Chris@102 119 {
Chris@102 120 Sample added_sample = args[sample];
Chris@102 121
Chris@102 122 result_type mean = immediate_rolling_mean(args);
Chris@102 123 sum_of_squares_ += (added_sample-mean)*(added_sample-previous_mean_);
Chris@102 124
Chris@102 125 if(is_rolling_window_plus1_full(args))
Chris@102 126 {
Chris@102 127 Sample removed_sample = rolling_window_plus1(args).front();
Chris@102 128 sum_of_squares_ -= (removed_sample-mean)*(removed_sample-previous_mean_);
Chris@102 129 prevent_underflow(sum_of_squares_);
Chris@102 130 }
Chris@102 131 previous_mean_ = mean;
Chris@102 132 }
Chris@102 133
Chris@102 134 template<typename Args>
Chris@102 135 result_type result(Args const &args) const
Chris@102 136 {
Chris@102 137 size_t nr_samples = rolling_count(args);
Chris@102 138 if (nr_samples < 2) return result_type();
Chris@102 139 return numeric::fdiv(sum_of_squares_,(nr_samples-1));
Chris@102 140 }
Chris@102 141
Chris@102 142 private:
Chris@102 143
Chris@102 144 result_type previous_mean_;
Chris@102 145 result_type sum_of_squares_;
Chris@102 146
Chris@102 147 template<typename T>
Chris@102 148 void prevent_underflow(T &non_negative_number,typename boost::enable_if<boost::is_arithmetic<T>,T>::type* = 0)
Chris@102 149 {
Chris@102 150 if (non_negative_number < T(0)) non_negative_number = T(0);
Chris@102 151 }
Chris@102 152 template<typename T>
Chris@102 153 void prevent_underflow(T &non_arithmetic_quantity,typename boost::disable_if<boost::is_arithmetic<T>,T>::type* = 0)
Chris@102 154 {
Chris@102 155 }
Chris@102 156 };
Chris@102 157 } // namespace impl
Chris@102 158
Chris@102 159 ///////////////////////////////////////////////////////////////////////////////
Chris@102 160 // tag:: lazy_rolling_variance
Chris@102 161 // tag:: immediate_rolling_variance
Chris@102 162 // tag:: rolling_variance
Chris@102 163 //
Chris@102 164 namespace tag
Chris@102 165 {
Chris@102 166 struct lazy_rolling_variance
Chris@102 167 : depends_on< rolling_count, rolling_mean, rolling_moment<2> >
Chris@102 168 {
Chris@102 169 /// INTERNAL ONLY
Chris@102 170 ///
Chris@102 171 typedef accumulators::impl::lazy_rolling_variance_impl< mpl::_1 > impl;
Chris@102 172
Chris@102 173 #ifdef BOOST_ACCUMULATORS_DOXYGEN_INVOKED
Chris@102 174 /// tag::rolling_window::window_size named parameter
Chris@102 175 static boost::parameter::keyword<tag::rolling_window_size> const window_size;
Chris@102 176 #endif
Chris@102 177 };
Chris@102 178
Chris@102 179 struct immediate_rolling_variance
Chris@102 180 : depends_on< rolling_window_plus1, rolling_count, immediate_rolling_mean>
Chris@102 181 {
Chris@102 182 /// INTERNAL ONLY
Chris@102 183 ///
Chris@102 184 typedef accumulators::impl::immediate_rolling_variance_impl< mpl::_1> impl;
Chris@102 185
Chris@102 186 #ifdef BOOST_ACCUMULATORS_DOXYGEN_INVOKED
Chris@102 187 /// tag::rolling_window::window_size named parameter
Chris@102 188 static boost::parameter::keyword<tag::rolling_window_size> const window_size;
Chris@102 189 #endif
Chris@102 190 };
Chris@102 191
Chris@102 192 // make immediate_rolling_variance the default implementation
Chris@102 193 struct rolling_variance : immediate_rolling_variance {};
Chris@102 194 } // namespace tag
Chris@102 195
Chris@102 196 ///////////////////////////////////////////////////////////////////////////////
Chris@102 197 // extract::lazy_rolling_variance
Chris@102 198 // extract::immediate_rolling_variance
Chris@102 199 // extract::rolling_variance
Chris@102 200 //
Chris@102 201 namespace extract
Chris@102 202 {
Chris@102 203 extractor<tag::lazy_rolling_variance> const lazy_rolling_variance = {};
Chris@102 204 extractor<tag::immediate_rolling_variance> const immediate_rolling_variance = {};
Chris@102 205 extractor<tag::rolling_variance> const rolling_variance = {};
Chris@102 206
Chris@102 207 BOOST_ACCUMULATORS_IGNORE_GLOBAL(lazy_rolling_variance)
Chris@102 208 BOOST_ACCUMULATORS_IGNORE_GLOBAL(immediate_rolling_variance)
Chris@102 209 BOOST_ACCUMULATORS_IGNORE_GLOBAL(rolling_variance)
Chris@102 210 }
Chris@102 211
Chris@102 212 using extract::lazy_rolling_variance;
Chris@102 213 using extract::immediate_rolling_variance;
Chris@102 214 using extract::rolling_variance;
Chris@102 215
Chris@102 216 // rolling_variance(lazy) -> lazy_rolling_variance
Chris@102 217 template<>
Chris@102 218 struct as_feature<tag::rolling_variance(lazy)>
Chris@102 219 {
Chris@102 220 typedef tag::lazy_rolling_variance type;
Chris@102 221 };
Chris@102 222
Chris@102 223 // rolling_variance(immediate) -> immediate_rolling_variance
Chris@102 224 template<>
Chris@102 225 struct as_feature<tag::rolling_variance(immediate)>
Chris@102 226 {
Chris@102 227 typedef tag::immediate_rolling_variance type;
Chris@102 228 };
Chris@102 229
Chris@102 230 // for the purposes of feature-based dependency resolution,
Chris@102 231 // lazy_rolling_variance provides the same feature as rolling_variance
Chris@102 232 template<>
Chris@102 233 struct feature_of<tag::lazy_rolling_variance>
Chris@102 234 : feature_of<tag::rolling_variance>
Chris@102 235 {
Chris@102 236 };
Chris@102 237
Chris@102 238 // for the purposes of feature-based dependency resolution,
Chris@102 239 // immediate_rolling_variance provides the same feature as rolling_variance
Chris@102 240 template<>
Chris@102 241 struct feature_of<tag::immediate_rolling_variance>
Chris@102 242 : feature_of<tag::rolling_variance>
Chris@102 243 {
Chris@102 244 };
Chris@102 245 }} // namespace boost::accumulators
Chris@102 246
Chris@102 247 #endif