annotate DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/random/__init__.py @ 118:770eb830ec19 emscripten

Typo fix
author Chris Cannam
date Wed, 18 May 2016 16:14:08 +0100
parents 2a2c65a20a8b
children
rev   line source
Chris@87 1 """
Chris@87 2 ========================
Chris@87 3 Random Number Generation
Chris@87 4 ========================
Chris@87 5
Chris@87 6 ==================== =========================================================
Chris@87 7 Utility functions
Chris@87 8 ==============================================================================
Chris@87 9 random Uniformly distributed values of a given shape.
Chris@87 10 bytes Uniformly distributed random bytes.
Chris@87 11 random_integers Uniformly distributed integers in a given range.
Chris@87 12 random_sample Uniformly distributed floats in a given range.
Chris@87 13 random Alias for random_sample
Chris@87 14 ranf Alias for random_sample
Chris@87 15 sample Alias for random_sample
Chris@87 16 choice Generate a weighted random sample from a given array-like
Chris@87 17 permutation Randomly permute a sequence / generate a random sequence.
Chris@87 18 shuffle Randomly permute a sequence in place.
Chris@87 19 seed Seed the random number generator.
Chris@87 20 ==================== =========================================================
Chris@87 21
Chris@87 22 ==================== =========================================================
Chris@87 23 Compatibility functions
Chris@87 24 ==============================================================================
Chris@87 25 rand Uniformly distributed values.
Chris@87 26 randn Normally distributed values.
Chris@87 27 ranf Uniformly distributed floating point numbers.
Chris@87 28 randint Uniformly distributed integers in a given range.
Chris@87 29 ==================== =========================================================
Chris@87 30
Chris@87 31 ==================== =========================================================
Chris@87 32 Univariate distributions
Chris@87 33 ==============================================================================
Chris@87 34 beta Beta distribution over ``[0, 1]``.
Chris@87 35 binomial Binomial distribution.
Chris@87 36 chisquare :math:`\\chi^2` distribution.
Chris@87 37 exponential Exponential distribution.
Chris@87 38 f F (Fisher-Snedecor) distribution.
Chris@87 39 gamma Gamma distribution.
Chris@87 40 geometric Geometric distribution.
Chris@87 41 gumbel Gumbel distribution.
Chris@87 42 hypergeometric Hypergeometric distribution.
Chris@87 43 laplace Laplace distribution.
Chris@87 44 logistic Logistic distribution.
Chris@87 45 lognormal Log-normal distribution.
Chris@87 46 logseries Logarithmic series distribution.
Chris@87 47 negative_binomial Negative binomial distribution.
Chris@87 48 noncentral_chisquare Non-central chi-square distribution.
Chris@87 49 noncentral_f Non-central F distribution.
Chris@87 50 normal Normal / Gaussian distribution.
Chris@87 51 pareto Pareto distribution.
Chris@87 52 poisson Poisson distribution.
Chris@87 53 power Power distribution.
Chris@87 54 rayleigh Rayleigh distribution.
Chris@87 55 triangular Triangular distribution.
Chris@87 56 uniform Uniform distribution.
Chris@87 57 vonmises Von Mises circular distribution.
Chris@87 58 wald Wald (inverse Gaussian) distribution.
Chris@87 59 weibull Weibull distribution.
Chris@87 60 zipf Zipf's distribution over ranked data.
Chris@87 61 ==================== =========================================================
Chris@87 62
Chris@87 63 ==================== =========================================================
Chris@87 64 Multivariate distributions
Chris@87 65 ==============================================================================
Chris@87 66 dirichlet Multivariate generalization of Beta distribution.
Chris@87 67 multinomial Multivariate generalization of the binomial distribution.
Chris@87 68 multivariate_normal Multivariate generalization of the normal distribution.
Chris@87 69 ==================== =========================================================
Chris@87 70
Chris@87 71 ==================== =========================================================
Chris@87 72 Standard distributions
Chris@87 73 ==============================================================================
Chris@87 74 standard_cauchy Standard Cauchy-Lorentz distribution.
Chris@87 75 standard_exponential Standard exponential distribution.
Chris@87 76 standard_gamma Standard Gamma distribution.
Chris@87 77 standard_normal Standard normal distribution.
Chris@87 78 standard_t Standard Student's t-distribution.
Chris@87 79 ==================== =========================================================
Chris@87 80
Chris@87 81 ==================== =========================================================
Chris@87 82 Internal functions
Chris@87 83 ==============================================================================
Chris@87 84 get_state Get tuple representing internal state of generator.
Chris@87 85 set_state Set state of generator.
Chris@87 86 ==================== =========================================================
Chris@87 87
Chris@87 88 """
Chris@87 89 from __future__ import division, absolute_import, print_function
Chris@87 90
Chris@87 91 import warnings
Chris@87 92
Chris@87 93 # To get sub-modules
Chris@87 94 from .info import __doc__, __all__
Chris@87 95
Chris@87 96
Chris@87 97 with warnings.catch_warnings():
Chris@87 98 warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
Chris@87 99 from .mtrand import *
Chris@87 100
Chris@87 101 # Some aliases:
Chris@87 102 ranf = random = sample = random_sample
Chris@87 103 __all__.extend(['ranf', 'random', 'sample'])
Chris@87 104
Chris@87 105 def __RandomState_ctor():
Chris@87 106 """Return a RandomState instance.
Chris@87 107
Chris@87 108 This function exists solely to assist (un)pickling.
Chris@87 109
Chris@87 110 Note that the state of the RandomState returned here is irrelevant, as this function's
Chris@87 111 entire purpose is to return a newly allocated RandomState whose state pickle can set.
Chris@87 112 Consequently the RandomState returned by this function is a freshly allocated copy
Chris@87 113 with a seed=0.
Chris@87 114
Chris@87 115 See https://github.com/numpy/numpy/issues/4763 for a detailed discussion
Chris@87 116
Chris@87 117 """
Chris@87 118 return RandomState(seed=0)
Chris@87 119
Chris@87 120 from numpy.testing import Tester
Chris@87 121 test = Tester().test
Chris@87 122 bench = Tester().bench