annotate DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/doc/constants.py @ 118:770eb830ec19 emscripten

Typo fix
author Chris Cannam
date Wed, 18 May 2016 16:14:08 +0100
parents 2a2c65a20a8b
children
rev   line source
Chris@87 1 """
Chris@87 2 =========
Chris@87 3 Constants
Chris@87 4 =========
Chris@87 5
Chris@87 6 Numpy includes several constants:
Chris@87 7
Chris@87 8 %(constant_list)s
Chris@87 9 """
Chris@87 10 #
Chris@87 11 # Note: the docstring is autogenerated.
Chris@87 12 #
Chris@87 13 from __future__ import division, absolute_import, print_function
Chris@87 14
Chris@87 15 import textwrap, re
Chris@87 16
Chris@87 17 # Maintain same format as in numpy.add_newdocs
Chris@87 18 constants = []
Chris@87 19 def add_newdoc(module, name, doc):
Chris@87 20 constants.append((name, doc))
Chris@87 21
Chris@87 22 add_newdoc('numpy', 'Inf',
Chris@87 23 """
Chris@87 24 IEEE 754 floating point representation of (positive) infinity.
Chris@87 25
Chris@87 26 Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
Chris@87 27 `inf`. For more details, see `inf`.
Chris@87 28
Chris@87 29 See Also
Chris@87 30 --------
Chris@87 31 inf
Chris@87 32
Chris@87 33 """)
Chris@87 34
Chris@87 35 add_newdoc('numpy', 'Infinity',
Chris@87 36 """
Chris@87 37 IEEE 754 floating point representation of (positive) infinity.
Chris@87 38
Chris@87 39 Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
Chris@87 40 `inf`. For more details, see `inf`.
Chris@87 41
Chris@87 42 See Also
Chris@87 43 --------
Chris@87 44 inf
Chris@87 45
Chris@87 46 """)
Chris@87 47
Chris@87 48 add_newdoc('numpy', 'NAN',
Chris@87 49 """
Chris@87 50 IEEE 754 floating point representation of Not a Number (NaN).
Chris@87 51
Chris@87 52 `NaN` and `NAN` are equivalent definitions of `nan`. Please use
Chris@87 53 `nan` instead of `NAN`.
Chris@87 54
Chris@87 55 See Also
Chris@87 56 --------
Chris@87 57 nan
Chris@87 58
Chris@87 59 """)
Chris@87 60
Chris@87 61 add_newdoc('numpy', 'NINF',
Chris@87 62 """
Chris@87 63 IEEE 754 floating point representation of negative infinity.
Chris@87 64
Chris@87 65 Returns
Chris@87 66 -------
Chris@87 67 y : float
Chris@87 68 A floating point representation of negative infinity.
Chris@87 69
Chris@87 70 See Also
Chris@87 71 --------
Chris@87 72 isinf : Shows which elements are positive or negative infinity
Chris@87 73
Chris@87 74 isposinf : Shows which elements are positive infinity
Chris@87 75
Chris@87 76 isneginf : Shows which elements are negative infinity
Chris@87 77
Chris@87 78 isnan : Shows which elements are Not a Number
Chris@87 79
Chris@87 80 isfinite : Shows which elements are finite (not one of Not a Number,
Chris@87 81 positive infinity and negative infinity)
Chris@87 82
Chris@87 83 Notes
Chris@87 84 -----
Chris@87 85 Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
Chris@87 86 (IEEE 754). This means that Not a Number is not equivalent to infinity.
Chris@87 87 Also that positive infinity is not equivalent to negative infinity. But
Chris@87 88 infinity is equivalent to positive infinity.
Chris@87 89
Chris@87 90 Examples
Chris@87 91 --------
Chris@87 92 >>> np.NINF
Chris@87 93 -inf
Chris@87 94 >>> np.log(0)
Chris@87 95 -inf
Chris@87 96
Chris@87 97 """)
Chris@87 98
Chris@87 99 add_newdoc('numpy', 'NZERO',
Chris@87 100 """
Chris@87 101 IEEE 754 floating point representation of negative zero.
Chris@87 102
Chris@87 103 Returns
Chris@87 104 -------
Chris@87 105 y : float
Chris@87 106 A floating point representation of negative zero.
Chris@87 107
Chris@87 108 See Also
Chris@87 109 --------
Chris@87 110 PZERO : Defines positive zero.
Chris@87 111
Chris@87 112 isinf : Shows which elements are positive or negative infinity.
Chris@87 113
Chris@87 114 isposinf : Shows which elements are positive infinity.
Chris@87 115
Chris@87 116 isneginf : Shows which elements are negative infinity.
Chris@87 117
Chris@87 118 isnan : Shows which elements are Not a Number.
Chris@87 119
Chris@87 120 isfinite : Shows which elements are finite - not one of
Chris@87 121 Not a Number, positive infinity and negative infinity.
Chris@87 122
Chris@87 123 Notes
Chris@87 124 -----
Chris@87 125 Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
Chris@87 126 (IEEE 754). Negative zero is considered to be a finite number.
Chris@87 127
Chris@87 128 Examples
Chris@87 129 --------
Chris@87 130 >>> np.NZERO
Chris@87 131 -0.0
Chris@87 132 >>> np.PZERO
Chris@87 133 0.0
Chris@87 134
Chris@87 135 >>> np.isfinite([np.NZERO])
Chris@87 136 array([ True], dtype=bool)
Chris@87 137 >>> np.isnan([np.NZERO])
Chris@87 138 array([False], dtype=bool)
Chris@87 139 >>> np.isinf([np.NZERO])
Chris@87 140 array([False], dtype=bool)
Chris@87 141
Chris@87 142 """)
Chris@87 143
Chris@87 144 add_newdoc('numpy', 'NaN',
Chris@87 145 """
Chris@87 146 IEEE 754 floating point representation of Not a Number (NaN).
Chris@87 147
Chris@87 148 `NaN` and `NAN` are equivalent definitions of `nan`. Please use
Chris@87 149 `nan` instead of `NaN`.
Chris@87 150
Chris@87 151 See Also
Chris@87 152 --------
Chris@87 153 nan
Chris@87 154
Chris@87 155 """)
Chris@87 156
Chris@87 157 add_newdoc('numpy', 'PINF',
Chris@87 158 """
Chris@87 159 IEEE 754 floating point representation of (positive) infinity.
Chris@87 160
Chris@87 161 Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
Chris@87 162 `inf`. For more details, see `inf`.
Chris@87 163
Chris@87 164 See Also
Chris@87 165 --------
Chris@87 166 inf
Chris@87 167
Chris@87 168 """)
Chris@87 169
Chris@87 170 add_newdoc('numpy', 'PZERO',
Chris@87 171 """
Chris@87 172 IEEE 754 floating point representation of positive zero.
Chris@87 173
Chris@87 174 Returns
Chris@87 175 -------
Chris@87 176 y : float
Chris@87 177 A floating point representation of positive zero.
Chris@87 178
Chris@87 179 See Also
Chris@87 180 --------
Chris@87 181 NZERO : Defines negative zero.
Chris@87 182
Chris@87 183 isinf : Shows which elements are positive or negative infinity.
Chris@87 184
Chris@87 185 isposinf : Shows which elements are positive infinity.
Chris@87 186
Chris@87 187 isneginf : Shows which elements are negative infinity.
Chris@87 188
Chris@87 189 isnan : Shows which elements are Not a Number.
Chris@87 190
Chris@87 191 isfinite : Shows which elements are finite - not one of
Chris@87 192 Not a Number, positive infinity and negative infinity.
Chris@87 193
Chris@87 194 Notes
Chris@87 195 -----
Chris@87 196 Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
Chris@87 197 (IEEE 754). Positive zero is considered to be a finite number.
Chris@87 198
Chris@87 199 Examples
Chris@87 200 --------
Chris@87 201 >>> np.PZERO
Chris@87 202 0.0
Chris@87 203 >>> np.NZERO
Chris@87 204 -0.0
Chris@87 205
Chris@87 206 >>> np.isfinite([np.PZERO])
Chris@87 207 array([ True], dtype=bool)
Chris@87 208 >>> np.isnan([np.PZERO])
Chris@87 209 array([False], dtype=bool)
Chris@87 210 >>> np.isinf([np.PZERO])
Chris@87 211 array([False], dtype=bool)
Chris@87 212
Chris@87 213 """)
Chris@87 214
Chris@87 215 add_newdoc('numpy', 'e',
Chris@87 216 """
Chris@87 217 Euler's constant, base of natural logarithms, Napier's constant.
Chris@87 218
Chris@87 219 ``e = 2.71828182845904523536028747135266249775724709369995...``
Chris@87 220
Chris@87 221 See Also
Chris@87 222 --------
Chris@87 223 exp : Exponential function
Chris@87 224 log : Natural logarithm
Chris@87 225
Chris@87 226 References
Chris@87 227 ----------
Chris@87 228 .. [1] http://en.wikipedia.org/wiki/Napier_constant
Chris@87 229
Chris@87 230 """)
Chris@87 231
Chris@87 232 add_newdoc('numpy', 'inf',
Chris@87 233 """
Chris@87 234 IEEE 754 floating point representation of (positive) infinity.
Chris@87 235
Chris@87 236 Returns
Chris@87 237 -------
Chris@87 238 y : float
Chris@87 239 A floating point representation of positive infinity.
Chris@87 240
Chris@87 241 See Also
Chris@87 242 --------
Chris@87 243 isinf : Shows which elements are positive or negative infinity
Chris@87 244
Chris@87 245 isposinf : Shows which elements are positive infinity
Chris@87 246
Chris@87 247 isneginf : Shows which elements are negative infinity
Chris@87 248
Chris@87 249 isnan : Shows which elements are Not a Number
Chris@87 250
Chris@87 251 isfinite : Shows which elements are finite (not one of Not a Number,
Chris@87 252 positive infinity and negative infinity)
Chris@87 253
Chris@87 254 Notes
Chris@87 255 -----
Chris@87 256 Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
Chris@87 257 (IEEE 754). This means that Not a Number is not equivalent to infinity.
Chris@87 258 Also that positive infinity is not equivalent to negative infinity. But
Chris@87 259 infinity is equivalent to positive infinity.
Chris@87 260
Chris@87 261 `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`.
Chris@87 262
Chris@87 263 Examples
Chris@87 264 --------
Chris@87 265 >>> np.inf
Chris@87 266 inf
Chris@87 267 >>> np.array([1]) / 0.
Chris@87 268 array([ Inf])
Chris@87 269
Chris@87 270 """)
Chris@87 271
Chris@87 272 add_newdoc('numpy', 'infty',
Chris@87 273 """
Chris@87 274 IEEE 754 floating point representation of (positive) infinity.
Chris@87 275
Chris@87 276 Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
Chris@87 277 `inf`. For more details, see `inf`.
Chris@87 278
Chris@87 279 See Also
Chris@87 280 --------
Chris@87 281 inf
Chris@87 282
Chris@87 283 """)
Chris@87 284
Chris@87 285 add_newdoc('numpy', 'nan',
Chris@87 286 """
Chris@87 287 IEEE 754 floating point representation of Not a Number (NaN).
Chris@87 288
Chris@87 289 Returns
Chris@87 290 -------
Chris@87 291 y : A floating point representation of Not a Number.
Chris@87 292
Chris@87 293 See Also
Chris@87 294 --------
Chris@87 295 isnan : Shows which elements are Not a Number.
Chris@87 296 isfinite : Shows which elements are finite (not one of
Chris@87 297 Not a Number, positive infinity and negative infinity)
Chris@87 298
Chris@87 299 Notes
Chris@87 300 -----
Chris@87 301 Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
Chris@87 302 (IEEE 754). This means that Not a Number is not equivalent to infinity.
Chris@87 303
Chris@87 304 `NaN` and `NAN` are aliases of `nan`.
Chris@87 305
Chris@87 306 Examples
Chris@87 307 --------
Chris@87 308 >>> np.nan
Chris@87 309 nan
Chris@87 310 >>> np.log(-1)
Chris@87 311 nan
Chris@87 312 >>> np.log([-1, 1, 2])
Chris@87 313 array([ NaN, 0. , 0.69314718])
Chris@87 314
Chris@87 315 """)
Chris@87 316
Chris@87 317 add_newdoc('numpy', 'newaxis',
Chris@87 318 """
Chris@87 319 A convenient alias for None, useful for indexing arrays.
Chris@87 320
Chris@87 321 See Also
Chris@87 322 --------
Chris@87 323 `numpy.doc.indexing`
Chris@87 324
Chris@87 325 Examples
Chris@87 326 --------
Chris@87 327 >>> newaxis is None
Chris@87 328 True
Chris@87 329 >>> x = np.arange(3)
Chris@87 330 >>> x
Chris@87 331 array([0, 1, 2])
Chris@87 332 >>> x[:, newaxis]
Chris@87 333 array([[0],
Chris@87 334 [1],
Chris@87 335 [2]])
Chris@87 336 >>> x[:, newaxis, newaxis]
Chris@87 337 array([[[0]],
Chris@87 338 [[1]],
Chris@87 339 [[2]]])
Chris@87 340 >>> x[:, newaxis] * x
Chris@87 341 array([[0, 0, 0],
Chris@87 342 [0, 1, 2],
Chris@87 343 [0, 2, 4]])
Chris@87 344
Chris@87 345 Outer product, same as ``outer(x, y)``:
Chris@87 346
Chris@87 347 >>> y = np.arange(3, 6)
Chris@87 348 >>> x[:, newaxis] * y
Chris@87 349 array([[ 0, 0, 0],
Chris@87 350 [ 3, 4, 5],
Chris@87 351 [ 6, 8, 10]])
Chris@87 352
Chris@87 353 ``x[newaxis, :]`` is equivalent to ``x[newaxis]`` and ``x[None]``:
Chris@87 354
Chris@87 355 >>> x[newaxis, :].shape
Chris@87 356 (1, 3)
Chris@87 357 >>> x[newaxis].shape
Chris@87 358 (1, 3)
Chris@87 359 >>> x[None].shape
Chris@87 360 (1, 3)
Chris@87 361 >>> x[:, newaxis].shape
Chris@87 362 (3, 1)
Chris@87 363
Chris@87 364 """)
Chris@87 365
Chris@87 366 if __doc__:
Chris@87 367 constants_str = []
Chris@87 368 constants.sort()
Chris@87 369 for name, doc in constants:
Chris@87 370 s = textwrap.dedent(doc).replace("\n", "\n ")
Chris@87 371
Chris@87 372 # Replace sections by rubrics
Chris@87 373 lines = s.split("\n")
Chris@87 374 new_lines = []
Chris@87 375 for line in lines:
Chris@87 376 m = re.match(r'^(\s+)[-=]+\s*$', line)
Chris@87 377 if m and new_lines:
Chris@87 378 prev = textwrap.dedent(new_lines.pop())
Chris@87 379 new_lines.append('%s.. rubric:: %s' % (m.group(1), prev))
Chris@87 380 new_lines.append('')
Chris@87 381 else:
Chris@87 382 new_lines.append(line)
Chris@87 383 s = "\n".join(new_lines)
Chris@87 384
Chris@87 385 # Done.
Chris@87 386 constants_str.append(""".. const:: %s\n %s""" % (name, s))
Chris@87 387 constants_str = "\n".join(constants_str)
Chris@87 388
Chris@87 389 __doc__ = __doc__ % dict(constant_list=constants_str)
Chris@87 390 del constants_str, name, doc
Chris@87 391 del line, lines, new_lines, m, s, prev
Chris@87 392
Chris@87 393 del constants, add_newdoc