Chris@16
|
1 //=======================================================================
|
Chris@16
|
2 // Copyright (c) Aaron Windsor 2007
|
Chris@16
|
3 //
|
Chris@16
|
4 // Distributed under the Boost Software License, Version 1.0. (See
|
Chris@16
|
5 // accompanying file LICENSE_1_0.txt or copy at
|
Chris@16
|
6 // http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
7 //=======================================================================
|
Chris@16
|
8 #ifndef __BOYER_MYRVOLD_IMPL_HPP__
|
Chris@16
|
9 #define __BOYER_MYRVOLD_IMPL_HPP__
|
Chris@16
|
10
|
Chris@16
|
11 #include <vector>
|
Chris@16
|
12 #include <list>
|
Chris@16
|
13 #include <boost/next_prior.hpp>
|
Chris@16
|
14 #include <boost/config.hpp> //for std::min macros
|
Chris@16
|
15 #include <boost/shared_ptr.hpp>
|
Chris@16
|
16 #include <boost/tuple/tuple.hpp>
|
Chris@16
|
17 #include <boost/property_map/property_map.hpp>
|
Chris@16
|
18 #include <boost/graph/graph_traits.hpp>
|
Chris@16
|
19 #include <boost/graph/depth_first_search.hpp>
|
Chris@16
|
20 #include <boost/graph/planar_detail/face_handles.hpp>
|
Chris@16
|
21 #include <boost/graph/planar_detail/face_iterators.hpp>
|
Chris@16
|
22 #include <boost/graph/planar_detail/bucket_sort.hpp>
|
Chris@16
|
23
|
Chris@16
|
24
|
Chris@16
|
25
|
Chris@16
|
26 namespace boost
|
Chris@16
|
27 {
|
Chris@16
|
28 namespace detail {
|
Chris@16
|
29 enum bm_case_t{BM_NO_CASE_CHOSEN, BM_CASE_A, BM_CASE_B, BM_CASE_C, BM_CASE_D, BM_CASE_E};
|
Chris@16
|
30 }
|
Chris@16
|
31
|
Chris@16
|
32 template<typename LowPointMap, typename DFSParentMap,
|
Chris@16
|
33 typename DFSNumberMap, typename LeastAncestorMap,
|
Chris@16
|
34 typename DFSParentEdgeMap, typename SizeType>
|
Chris@16
|
35 struct planar_dfs_visitor : public dfs_visitor<>
|
Chris@16
|
36 {
|
Chris@16
|
37 planar_dfs_visitor(LowPointMap lpm, DFSParentMap dfs_p,
|
Chris@16
|
38 DFSNumberMap dfs_n, LeastAncestorMap lam,
|
Chris@16
|
39 DFSParentEdgeMap dfs_edge)
|
Chris@16
|
40 : low(lpm),
|
Chris@16
|
41 parent(dfs_p),
|
Chris@16
|
42 df_number(dfs_n),
|
Chris@16
|
43 least_ancestor(lam),
|
Chris@16
|
44 df_edge(dfs_edge),
|
Chris@16
|
45 count(0)
|
Chris@16
|
46 {}
|
Chris@16
|
47
|
Chris@16
|
48
|
Chris@16
|
49 template <typename Vertex, typename Graph>
|
Chris@16
|
50 void start_vertex(const Vertex& u, Graph&)
|
Chris@16
|
51 {
|
Chris@16
|
52 put(parent, u, u);
|
Chris@16
|
53 put(least_ancestor, u, count);
|
Chris@16
|
54 }
|
Chris@16
|
55
|
Chris@16
|
56
|
Chris@16
|
57 template <typename Vertex, typename Graph>
|
Chris@16
|
58 void discover_vertex(const Vertex& u, Graph&)
|
Chris@16
|
59 {
|
Chris@16
|
60 put(low, u, count);
|
Chris@16
|
61 put(df_number, u, count);
|
Chris@16
|
62 ++count;
|
Chris@16
|
63 }
|
Chris@16
|
64
|
Chris@16
|
65 template <typename Edge, typename Graph>
|
Chris@16
|
66 void tree_edge(const Edge& e, Graph& g)
|
Chris@16
|
67 {
|
Chris@16
|
68 typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
|
Chris@16
|
69 vertex_t s(source(e,g));
|
Chris@16
|
70 vertex_t t(target(e,g));
|
Chris@16
|
71
|
Chris@16
|
72 put(parent, t, s);
|
Chris@16
|
73 put(df_edge, t, e);
|
Chris@16
|
74 put(least_ancestor, t, get(df_number, s));
|
Chris@16
|
75 }
|
Chris@16
|
76
|
Chris@16
|
77 template <typename Edge, typename Graph>
|
Chris@16
|
78 void back_edge(const Edge& e, Graph& g)
|
Chris@16
|
79 {
|
Chris@16
|
80 typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
|
Chris@16
|
81 typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
|
Chris@16
|
82
|
Chris@16
|
83 vertex_t s(source(e,g));
|
Chris@16
|
84 vertex_t t(target(e,g));
|
Chris@16
|
85 BOOST_USING_STD_MIN();
|
Chris@16
|
86
|
Chris@16
|
87 if ( t != get(parent, s) ) {
|
Chris@16
|
88 v_size_t s_low_df_number = get(low, s);
|
Chris@16
|
89 v_size_t t_df_number = get(df_number, t);
|
Chris@16
|
90 v_size_t s_least_ancestor_df_number = get(least_ancestor, s);
|
Chris@16
|
91
|
Chris@16
|
92 put(low, s,
|
Chris@16
|
93 min BOOST_PREVENT_MACRO_SUBSTITUTION(s_low_df_number,
|
Chris@16
|
94 t_df_number)
|
Chris@16
|
95 );
|
Chris@16
|
96
|
Chris@16
|
97 put(least_ancestor, s,
|
Chris@16
|
98 min BOOST_PREVENT_MACRO_SUBSTITUTION(s_least_ancestor_df_number,
|
Chris@16
|
99 t_df_number
|
Chris@16
|
100 )
|
Chris@16
|
101 );
|
Chris@16
|
102
|
Chris@16
|
103 }
|
Chris@16
|
104 }
|
Chris@16
|
105
|
Chris@16
|
106 template <typename Vertex, typename Graph>
|
Chris@16
|
107 void finish_vertex(const Vertex& u, Graph&)
|
Chris@16
|
108 {
|
Chris@16
|
109 typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
|
Chris@16
|
110
|
Chris@16
|
111 Vertex u_parent = get(parent, u);
|
Chris@16
|
112 v_size_t u_parent_lowpoint = get(low, u_parent);
|
Chris@16
|
113 v_size_t u_lowpoint = get(low, u);
|
Chris@16
|
114 BOOST_USING_STD_MIN();
|
Chris@16
|
115
|
Chris@16
|
116 if (u_parent != u)
|
Chris@16
|
117 {
|
Chris@16
|
118 put(low, u_parent,
|
Chris@16
|
119 min BOOST_PREVENT_MACRO_SUBSTITUTION(u_lowpoint,
|
Chris@16
|
120 u_parent_lowpoint
|
Chris@16
|
121 )
|
Chris@16
|
122 );
|
Chris@16
|
123 }
|
Chris@16
|
124 }
|
Chris@16
|
125
|
Chris@16
|
126 LowPointMap low;
|
Chris@16
|
127 DFSParentMap parent;
|
Chris@16
|
128 DFSNumberMap df_number;
|
Chris@16
|
129 LeastAncestorMap least_ancestor;
|
Chris@16
|
130 DFSParentEdgeMap df_edge;
|
Chris@16
|
131 SizeType count;
|
Chris@16
|
132
|
Chris@16
|
133 };
|
Chris@16
|
134
|
Chris@16
|
135
|
Chris@16
|
136
|
Chris@16
|
137
|
Chris@16
|
138
|
Chris@16
|
139
|
Chris@16
|
140 template <typename Graph,
|
Chris@16
|
141 typename VertexIndexMap,
|
Chris@16
|
142 typename StoreOldHandlesPolicy = graph::detail::store_old_handles,
|
Chris@16
|
143 typename StoreEmbeddingPolicy = graph::detail::recursive_lazy_list
|
Chris@16
|
144 >
|
Chris@16
|
145 class boyer_myrvold_impl
|
Chris@16
|
146 {
|
Chris@16
|
147
|
Chris@16
|
148 typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
|
Chris@16
|
149 typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
|
Chris@16
|
150 typedef typename graph_traits<Graph>::edge_descriptor edge_t;
|
Chris@16
|
151 typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
|
Chris@16
|
152 typedef typename graph_traits<Graph>::edge_iterator edge_iterator_t;
|
Chris@16
|
153 typedef typename graph_traits<Graph>::out_edge_iterator
|
Chris@16
|
154 out_edge_iterator_t;
|
Chris@16
|
155 typedef graph::detail::face_handle
|
Chris@16
|
156 <Graph, StoreOldHandlesPolicy, StoreEmbeddingPolicy> face_handle_t;
|
Chris@16
|
157 typedef std::vector<vertex_t> vertex_vector_t;
|
Chris@16
|
158 typedef std::vector<edge_t> edge_vector_t;
|
Chris@16
|
159 typedef std::list<vertex_t> vertex_list_t;
|
Chris@16
|
160 typedef std::list< face_handle_t > face_handle_list_t;
|
Chris@16
|
161 typedef boost::shared_ptr< face_handle_list_t > face_handle_list_ptr_t;
|
Chris@16
|
162 typedef boost::shared_ptr< vertex_list_t > vertex_list_ptr_t;
|
Chris@16
|
163 typedef boost::tuple<vertex_t, bool, bool> merge_stack_frame_t;
|
Chris@16
|
164 typedef std::vector<merge_stack_frame_t> merge_stack_t;
|
Chris@16
|
165
|
Chris@16
|
166 template <typename T>
|
Chris@16
|
167 struct map_vertex_to_
|
Chris@16
|
168 {
|
Chris@16
|
169 typedef iterator_property_map
|
Chris@16
|
170 <typename std::vector<T>::iterator, VertexIndexMap> type;
|
Chris@16
|
171 };
|
Chris@16
|
172
|
Chris@16
|
173 typedef typename map_vertex_to_<v_size_t>::type vertex_to_v_size_map_t;
|
Chris@16
|
174 typedef typename map_vertex_to_<vertex_t>::type vertex_to_vertex_map_t;
|
Chris@16
|
175 typedef typename map_vertex_to_<edge_t>::type vertex_to_edge_map_t;
|
Chris@16
|
176 typedef typename map_vertex_to_<vertex_list_ptr_t>::type
|
Chris@16
|
177 vertex_to_vertex_list_ptr_map_t;
|
Chris@16
|
178 typedef typename map_vertex_to_< edge_vector_t >::type
|
Chris@16
|
179 vertex_to_edge_vector_map_t;
|
Chris@16
|
180 typedef typename map_vertex_to_<bool>::type vertex_to_bool_map_t;
|
Chris@16
|
181 typedef typename map_vertex_to_<face_handle_t>::type
|
Chris@16
|
182 vertex_to_face_handle_map_t;
|
Chris@16
|
183 typedef typename map_vertex_to_<face_handle_list_ptr_t>::type
|
Chris@16
|
184 vertex_to_face_handle_list_ptr_map_t;
|
Chris@16
|
185 typedef typename map_vertex_to_<typename vertex_list_t::iterator>::type
|
Chris@16
|
186 vertex_to_separated_node_map_t;
|
Chris@16
|
187
|
Chris@16
|
188 template <typename BicompSideToTraverse = single_side,
|
Chris@16
|
189 typename VisitorType = lead_visitor,
|
Chris@16
|
190 typename Time = current_iteration>
|
Chris@16
|
191 struct face_vertex_iterator
|
Chris@16
|
192 {
|
Chris@16
|
193 typedef face_iterator<Graph,
|
Chris@16
|
194 vertex_to_face_handle_map_t,
|
Chris@16
|
195 vertex_t,
|
Chris@16
|
196 BicompSideToTraverse,
|
Chris@16
|
197 VisitorType,
|
Chris@16
|
198 Time>
|
Chris@16
|
199 type;
|
Chris@16
|
200 };
|
Chris@16
|
201
|
Chris@16
|
202 template <typename BicompSideToTraverse = single_side,
|
Chris@16
|
203 typename Time = current_iteration>
|
Chris@16
|
204 struct face_edge_iterator
|
Chris@16
|
205 {
|
Chris@16
|
206 typedef face_iterator<Graph,
|
Chris@16
|
207 vertex_to_face_handle_map_t,
|
Chris@16
|
208 edge_t,
|
Chris@16
|
209 BicompSideToTraverse,
|
Chris@16
|
210 lead_visitor,
|
Chris@16
|
211 Time>
|
Chris@16
|
212 type;
|
Chris@16
|
213 };
|
Chris@16
|
214
|
Chris@16
|
215
|
Chris@16
|
216
|
Chris@16
|
217 public:
|
Chris@16
|
218
|
Chris@16
|
219
|
Chris@16
|
220
|
Chris@16
|
221 boyer_myrvold_impl(const Graph& arg_g, VertexIndexMap arg_vm):
|
Chris@16
|
222 g(arg_g),
|
Chris@16
|
223 vm(arg_vm),
|
Chris@16
|
224
|
Chris@16
|
225 low_point_vector(num_vertices(g)),
|
Chris@16
|
226 dfs_parent_vector(num_vertices(g)),
|
Chris@16
|
227 dfs_number_vector(num_vertices(g)),
|
Chris@16
|
228 least_ancestor_vector(num_vertices(g)),
|
Chris@16
|
229 pertinent_roots_vector(num_vertices(g)),
|
Chris@16
|
230 backedge_flag_vector(num_vertices(g), num_vertices(g) + 1),
|
Chris@16
|
231 visited_vector(num_vertices(g), num_vertices(g) + 1),
|
Chris@16
|
232 face_handles_vector(num_vertices(g)),
|
Chris@16
|
233 dfs_child_handles_vector(num_vertices(g)),
|
Chris@16
|
234 separated_dfs_child_list_vector(num_vertices(g)),
|
Chris@16
|
235 separated_node_in_parent_list_vector(num_vertices(g)),
|
Chris@16
|
236 canonical_dfs_child_vector(num_vertices(g)),
|
Chris@16
|
237 flipped_vector(num_vertices(g), false),
|
Chris@16
|
238 backedges_vector(num_vertices(g)),
|
Chris@16
|
239 dfs_parent_edge_vector(num_vertices(g)),
|
Chris@16
|
240
|
Chris@16
|
241 vertices_by_dfs_num(num_vertices(g)),
|
Chris@16
|
242
|
Chris@16
|
243 low_point(low_point_vector.begin(), vm),
|
Chris@16
|
244 dfs_parent(dfs_parent_vector.begin(), vm),
|
Chris@16
|
245 dfs_number(dfs_number_vector.begin(), vm),
|
Chris@16
|
246 least_ancestor(least_ancestor_vector.begin(), vm),
|
Chris@16
|
247 pertinent_roots(pertinent_roots_vector.begin(), vm),
|
Chris@16
|
248 backedge_flag(backedge_flag_vector.begin(), vm),
|
Chris@16
|
249 visited(visited_vector.begin(), vm),
|
Chris@16
|
250 face_handles(face_handles_vector.begin(), vm),
|
Chris@16
|
251 dfs_child_handles(dfs_child_handles_vector.begin(), vm),
|
Chris@16
|
252 separated_dfs_child_list(separated_dfs_child_list_vector.begin(), vm),
|
Chris@16
|
253 separated_node_in_parent_list
|
Chris@16
|
254 (separated_node_in_parent_list_vector.begin(), vm),
|
Chris@16
|
255 canonical_dfs_child(canonical_dfs_child_vector.begin(), vm),
|
Chris@16
|
256 flipped(flipped_vector.begin(), vm),
|
Chris@16
|
257 backedges(backedges_vector.begin(), vm),
|
Chris@16
|
258 dfs_parent_edge(dfs_parent_edge_vector.begin(), vm)
|
Chris@16
|
259
|
Chris@16
|
260 {
|
Chris@16
|
261
|
Chris@16
|
262 planar_dfs_visitor
|
Chris@16
|
263 <vertex_to_v_size_map_t, vertex_to_vertex_map_t,
|
Chris@16
|
264 vertex_to_v_size_map_t, vertex_to_v_size_map_t,
|
Chris@16
|
265 vertex_to_edge_map_t, v_size_t> vis
|
Chris@16
|
266 (low_point, dfs_parent, dfs_number, least_ancestor, dfs_parent_edge);
|
Chris@16
|
267
|
Chris@16
|
268 // Perform a depth-first search to find each vertex's low point, least
|
Chris@16
|
269 // ancestor, and dfs tree information
|
Chris@16
|
270 depth_first_search(g, visitor(vis).vertex_index_map(vm));
|
Chris@16
|
271
|
Chris@16
|
272 // Sort vertices by their lowpoint - need this later in the constructor
|
Chris@16
|
273 vertex_vector_t vertices_by_lowpoint(num_vertices(g));
|
Chris@16
|
274 std::copy( vertices(g).first, vertices(g).second,
|
Chris@16
|
275 vertices_by_lowpoint.begin()
|
Chris@16
|
276 );
|
Chris@16
|
277 bucket_sort(vertices_by_lowpoint.begin(),
|
Chris@16
|
278 vertices_by_lowpoint.end(),
|
Chris@16
|
279 low_point,
|
Chris@16
|
280 num_vertices(g)
|
Chris@16
|
281 );
|
Chris@16
|
282
|
Chris@16
|
283 // Sort vertices by their dfs number - need this to iterate by reverse
|
Chris@16
|
284 // DFS number in the main loop.
|
Chris@16
|
285 std::copy( vertices(g).first, vertices(g).second,
|
Chris@16
|
286 vertices_by_dfs_num.begin()
|
Chris@16
|
287 );
|
Chris@16
|
288 bucket_sort(vertices_by_dfs_num.begin(),
|
Chris@16
|
289 vertices_by_dfs_num.end(),
|
Chris@16
|
290 dfs_number,
|
Chris@16
|
291 num_vertices(g)
|
Chris@16
|
292 );
|
Chris@16
|
293
|
Chris@16
|
294 // Initialize face handles. A face handle is an abstraction that serves
|
Chris@16
|
295 // two uses in our implementation - it allows us to efficiently move
|
Chris@16
|
296 // along the outer face of embedded bicomps in a partially embedded
|
Chris@16
|
297 // graph, and it provides storage for the planar embedding. Face
|
Chris@16
|
298 // handles are implemented by a sequence of edges and are associated
|
Chris@16
|
299 // with a particular vertex - the sequence of edges represents the
|
Chris@16
|
300 // current embedding of edges around that vertex, and the first and
|
Chris@16
|
301 // last edges in the sequence represent the pair of edges on the outer
|
Chris@16
|
302 // face that are adjacent to the associated vertex. This lets us embed
|
Chris@16
|
303 // edges in the graph by just pushing them on the front or back of the
|
Chris@16
|
304 // sequence of edges held by the face handles.
|
Chris@16
|
305 //
|
Chris@16
|
306 // Our algorithm starts with a DFS tree of edges (where every vertex is
|
Chris@16
|
307 // an articulation point and every edge is a singleton bicomp) and
|
Chris@16
|
308 // repeatedly merges bicomps by embedding additional edges. Note that
|
Chris@16
|
309 // any bicomp at any point in the algorithm can be associated with a
|
Chris@16
|
310 // unique edge connecting the vertex of that bicomp with the lowest DFS
|
Chris@16
|
311 // number (which we refer to as the "root" of the bicomp) with its DFS
|
Chris@16
|
312 // child in the bicomp: the existence of two such edges would contradict
|
Chris@16
|
313 // the properties of a DFS tree. We refer to the DFS child of the root
|
Chris@16
|
314 // of a bicomp as the "canonical DFS child" of the bicomp. Note that a
|
Chris@16
|
315 // vertex can be the root of more than one bicomp.
|
Chris@16
|
316 //
|
Chris@16
|
317 // We move around the external faces of a bicomp using a few property
|
Chris@16
|
318 // maps, which we'll initialize presently:
|
Chris@16
|
319 //
|
Chris@16
|
320 // - face_handles: maps a vertex to a face handle that can be used to
|
Chris@16
|
321 // move "up" a bicomp. For a vertex that isn't an articulation point,
|
Chris@16
|
322 // this holds the face handles that can be used to move around that
|
Chris@16
|
323 // vertex's unique bicomp. For a vertex that is an articulation point,
|
Chris@16
|
324 // this holds the face handles associated with the unique bicomp that
|
Chris@16
|
325 // the vertex is NOT the root of. These handles can therefore be used
|
Chris@16
|
326 // to move from any point on the outer face of the tree of bicomps
|
Chris@16
|
327 // around the current outer face towards the root of the DFS tree.
|
Chris@16
|
328 //
|
Chris@16
|
329 // - dfs_child_handles: these are used to hold face handles for
|
Chris@16
|
330 // vertices that are articulation points - dfs_child_handles[v] holds
|
Chris@16
|
331 // the face handles corresponding to vertex u in the bicomp with root
|
Chris@16
|
332 // u and canonical DFS child v.
|
Chris@16
|
333 //
|
Chris@16
|
334 // - canonical_dfs_child: this property map allows one to determine the
|
Chris@16
|
335 // canonical DFS child of a bicomp while traversing the outer face.
|
Chris@16
|
336 // This property map is only valid when applied to one of the two
|
Chris@16
|
337 // vertices adjacent to the root of the bicomp on the outer face. To
|
Chris@16
|
338 // be more precise, if v is the canonical DFS child of a bicomp,
|
Chris@16
|
339 // canonical_dfs_child[dfs_child_handles[v].first_vertex()] == v and
|
Chris@16
|
340 // canonical_dfs_child[dfs_child_handles[v].second_vertex()] == v.
|
Chris@16
|
341 //
|
Chris@16
|
342 // - pertinent_roots: given a vertex v, pertinent_roots[v] contains a
|
Chris@16
|
343 // list of face handles pointing to the top of bicomps that need to
|
Chris@16
|
344 // be visited by the current walkdown traversal (since they lead to
|
Chris@16
|
345 // backedges that need to be embedded). These lists are populated by
|
Chris@16
|
346 // the walkup and consumed by the walkdown.
|
Chris@16
|
347
|
Chris@16
|
348 vertex_iterator_t vi, vi_end;
|
Chris@16
|
349 for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
|
Chris@16
|
350 {
|
Chris@16
|
351 vertex_t v(*vi);
|
Chris@16
|
352 vertex_t parent = dfs_parent[v];
|
Chris@16
|
353
|
Chris@16
|
354 if (parent != v)
|
Chris@16
|
355 {
|
Chris@16
|
356 edge_t parent_edge = dfs_parent_edge[v];
|
Chris@16
|
357 add_to_embedded_edges(parent_edge, StoreOldHandlesPolicy());
|
Chris@16
|
358 face_handles[v] = face_handle_t(v, parent_edge, g);
|
Chris@16
|
359 dfs_child_handles[v] = face_handle_t(parent, parent_edge, g);
|
Chris@16
|
360 }
|
Chris@16
|
361 else
|
Chris@16
|
362 {
|
Chris@16
|
363 face_handles[v] = face_handle_t(v);
|
Chris@16
|
364 dfs_child_handles[v] = face_handle_t(parent);
|
Chris@16
|
365 }
|
Chris@16
|
366
|
Chris@16
|
367 canonical_dfs_child[v] = v;
|
Chris@16
|
368 pertinent_roots[v] = face_handle_list_ptr_t(new face_handle_list_t);
|
Chris@16
|
369 separated_dfs_child_list[v] = vertex_list_ptr_t(new vertex_list_t);
|
Chris@16
|
370
|
Chris@16
|
371 }
|
Chris@16
|
372
|
Chris@16
|
373 // We need to create a list of not-yet-merged depth-first children for
|
Chris@16
|
374 // each vertex that will be updated as bicomps get merged. We sort each
|
Chris@16
|
375 // list by ascending lowpoint, which allows the externally_active
|
Chris@16
|
376 // function to run in constant time, and we keep a pointer to each
|
Chris@16
|
377 // vertex's representation in its parent's list, which allows merging
|
Chris@16
|
378 //in constant time.
|
Chris@16
|
379
|
Chris@16
|
380 for(typename vertex_vector_t::iterator itr =
|
Chris@16
|
381 vertices_by_lowpoint.begin();
|
Chris@16
|
382 itr != vertices_by_lowpoint.end(); ++itr)
|
Chris@16
|
383 {
|
Chris@16
|
384 vertex_t v(*itr);
|
Chris@16
|
385 vertex_t parent(dfs_parent[v]);
|
Chris@16
|
386 if (v != parent)
|
Chris@16
|
387 {
|
Chris@16
|
388 separated_node_in_parent_list[v] =
|
Chris@16
|
389 separated_dfs_child_list[parent]->insert
|
Chris@16
|
390 (separated_dfs_child_list[parent]->end(), v);
|
Chris@16
|
391 }
|
Chris@16
|
392 }
|
Chris@16
|
393
|
Chris@16
|
394 // The merge stack holds path information during a walkdown iteration
|
Chris@16
|
395 merge_stack.reserve(num_vertices(g));
|
Chris@16
|
396
|
Chris@16
|
397 }
|
Chris@16
|
398
|
Chris@16
|
399
|
Chris@16
|
400
|
Chris@16
|
401
|
Chris@16
|
402
|
Chris@16
|
403
|
Chris@16
|
404 bool is_planar()
|
Chris@16
|
405 {
|
Chris@16
|
406
|
Chris@16
|
407 // This is the main algorithm: starting with a DFS tree of embedded
|
Chris@16
|
408 // edges (which, since it's a tree, is planar), iterate through all
|
Chris@16
|
409 // vertices by reverse DFS number, attempting to embed all backedges
|
Chris@16
|
410 // connecting the current vertex to vertices with higher DFS numbers.
|
Chris@16
|
411 //
|
Chris@16
|
412 // The walkup is a procedure that examines all such backedges and sets
|
Chris@16
|
413 // up the required data structures so that they can be searched by the
|
Chris@16
|
414 // walkdown in linear time. The walkdown does the actual work of
|
Chris@16
|
415 // embedding edges and flipping bicomps, and can identify when it has
|
Chris@16
|
416 // come across a kuratowski subgraph.
|
Chris@16
|
417 //
|
Chris@16
|
418 // store_old_face_handles caches face handles from the previous
|
Chris@16
|
419 // iteration - this is used only for the kuratowski subgraph isolation,
|
Chris@16
|
420 // and is therefore dispatched based on the StoreOldHandlesPolicy.
|
Chris@16
|
421 //
|
Chris@16
|
422 // clean_up_embedding does some clean-up and fills in values that have
|
Chris@16
|
423 // to be computed lazily during the actual execution of the algorithm
|
Chris@16
|
424 // (for instance, whether or not a bicomp is flipped in the final
|
Chris@16
|
425 // embedding). It's dispatched on the the StoreEmbeddingPolicy, since
|
Chris@16
|
426 // it's not needed if an embedding isn't desired.
|
Chris@16
|
427
|
Chris@16
|
428 typename vertex_vector_t::reverse_iterator vi, vi_end;
|
Chris@16
|
429
|
Chris@16
|
430 vi_end = vertices_by_dfs_num.rend();
|
Chris@16
|
431 for(vi = vertices_by_dfs_num.rbegin(); vi != vi_end; ++vi)
|
Chris@16
|
432 {
|
Chris@16
|
433
|
Chris@16
|
434 store_old_face_handles(StoreOldHandlesPolicy());
|
Chris@16
|
435
|
Chris@16
|
436 vertex_t v(*vi);
|
Chris@16
|
437
|
Chris@16
|
438 walkup(v);
|
Chris@16
|
439
|
Chris@16
|
440 if (!walkdown(v))
|
Chris@16
|
441 return false;
|
Chris@16
|
442
|
Chris@16
|
443 }
|
Chris@16
|
444
|
Chris@16
|
445 clean_up_embedding(StoreEmbeddingPolicy());
|
Chris@16
|
446
|
Chris@16
|
447 return true;
|
Chris@16
|
448
|
Chris@16
|
449 }
|
Chris@16
|
450
|
Chris@16
|
451
|
Chris@16
|
452
|
Chris@16
|
453
|
Chris@16
|
454
|
Chris@16
|
455
|
Chris@16
|
456 private:
|
Chris@16
|
457
|
Chris@16
|
458
|
Chris@16
|
459
|
Chris@16
|
460
|
Chris@16
|
461
|
Chris@16
|
462 void walkup(vertex_t v)
|
Chris@16
|
463 {
|
Chris@16
|
464
|
Chris@16
|
465 // The point of the walkup is to follow all backedges from v to
|
Chris@16
|
466 // vertices with higher DFS numbers, and update pertinent_roots
|
Chris@16
|
467 // for the bicomp roots on the path from backedge endpoints up
|
Chris@16
|
468 // to v. This will set the stage for the walkdown to efficiently
|
Chris@16
|
469 // traverse the graph of bicomps down from v.
|
Chris@16
|
470
|
Chris@16
|
471 typedef typename face_vertex_iterator<both_sides>::type walkup_iterator_t;
|
Chris@16
|
472
|
Chris@16
|
473 out_edge_iterator_t oi, oi_end;
|
Chris@16
|
474 for(boost::tie(oi,oi_end) = out_edges(v,g); oi != oi_end; ++oi)
|
Chris@16
|
475 {
|
Chris@16
|
476 edge_t e(*oi);
|
Chris@16
|
477 vertex_t e_source(source(e,g));
|
Chris@16
|
478 vertex_t e_target(target(e,g));
|
Chris@16
|
479
|
Chris@16
|
480 if (e_source == e_target)
|
Chris@16
|
481 {
|
Chris@16
|
482 self_loops.push_back(e);
|
Chris@16
|
483 continue;
|
Chris@16
|
484 }
|
Chris@16
|
485
|
Chris@16
|
486 vertex_t w(e_source == v ? e_target : e_source);
|
Chris@16
|
487
|
Chris@16
|
488 //continue if not a back edge or already embedded
|
Chris@16
|
489 if (dfs_number[w] < dfs_number[v] || e == dfs_parent_edge[w])
|
Chris@16
|
490 continue;
|
Chris@16
|
491
|
Chris@16
|
492 backedges[w].push_back(e);
|
Chris@16
|
493
|
Chris@16
|
494 v_size_t timestamp = dfs_number[v];
|
Chris@16
|
495 backedge_flag[w] = timestamp;
|
Chris@16
|
496
|
Chris@16
|
497 walkup_iterator_t walkup_itr(w, face_handles);
|
Chris@16
|
498 walkup_iterator_t walkup_end;
|
Chris@16
|
499 vertex_t lead_vertex = w;
|
Chris@16
|
500
|
Chris@16
|
501 while (true)
|
Chris@16
|
502 {
|
Chris@16
|
503
|
Chris@16
|
504 // Move to the root of the current bicomp or the first visited
|
Chris@16
|
505 // vertex on the bicomp by going up each side in parallel
|
Chris@16
|
506
|
Chris@16
|
507 while(walkup_itr != walkup_end &&
|
Chris@16
|
508 visited[*walkup_itr] != timestamp
|
Chris@16
|
509 )
|
Chris@16
|
510 {
|
Chris@16
|
511 lead_vertex = *walkup_itr;
|
Chris@16
|
512 visited[lead_vertex] = timestamp;
|
Chris@16
|
513 ++walkup_itr;
|
Chris@16
|
514 }
|
Chris@16
|
515
|
Chris@16
|
516 // If we've found the root of a bicomp through a path we haven't
|
Chris@16
|
517 // seen before, update pertinent_roots with a handle to the
|
Chris@16
|
518 // current bicomp. Otherwise, we've just seen a path we've been
|
Chris@16
|
519 // up before, so break out of the main while loop.
|
Chris@16
|
520
|
Chris@16
|
521 if (walkup_itr == walkup_end)
|
Chris@16
|
522 {
|
Chris@16
|
523 vertex_t dfs_child = canonical_dfs_child[lead_vertex];
|
Chris@16
|
524 vertex_t parent = dfs_parent[dfs_child];
|
Chris@16
|
525
|
Chris@16
|
526 visited[dfs_child_handles[dfs_child].first_vertex()]
|
Chris@16
|
527 = timestamp;
|
Chris@16
|
528 visited[dfs_child_handles[dfs_child].second_vertex()]
|
Chris@16
|
529 = timestamp;
|
Chris@16
|
530
|
Chris@16
|
531 if (low_point[dfs_child] < dfs_number[v] ||
|
Chris@16
|
532 least_ancestor[dfs_child] < dfs_number[v]
|
Chris@16
|
533 )
|
Chris@16
|
534 {
|
Chris@16
|
535 pertinent_roots[parent]->push_back
|
Chris@16
|
536 (dfs_child_handles[dfs_child]);
|
Chris@16
|
537 }
|
Chris@16
|
538 else
|
Chris@16
|
539 {
|
Chris@16
|
540 pertinent_roots[parent]->push_front
|
Chris@16
|
541 (dfs_child_handles[dfs_child]);
|
Chris@16
|
542 }
|
Chris@16
|
543
|
Chris@16
|
544 if (parent != v && visited[parent] != timestamp)
|
Chris@16
|
545 {
|
Chris@16
|
546 walkup_itr = walkup_iterator_t(parent, face_handles);
|
Chris@16
|
547 lead_vertex = parent;
|
Chris@16
|
548 }
|
Chris@16
|
549 else
|
Chris@16
|
550 break;
|
Chris@16
|
551 }
|
Chris@16
|
552 else
|
Chris@16
|
553 break;
|
Chris@16
|
554 }
|
Chris@16
|
555
|
Chris@16
|
556 }
|
Chris@16
|
557
|
Chris@16
|
558 }
|
Chris@16
|
559
|
Chris@16
|
560
|
Chris@16
|
561
|
Chris@16
|
562
|
Chris@16
|
563
|
Chris@16
|
564
|
Chris@16
|
565
|
Chris@16
|
566 bool walkdown(vertex_t v)
|
Chris@16
|
567 {
|
Chris@16
|
568 // This procedure is where all of the action is - pertinent_roots
|
Chris@16
|
569 // has already been set up by the walkup, so we just need to move
|
Chris@16
|
570 // down bicomps from v until we find vertices that have been
|
Chris@16
|
571 // labeled as backedge endpoints. Once we find such a vertex, we
|
Chris@16
|
572 // embed the corresponding edge and glue together the bicomps on
|
Chris@16
|
573 // the path connecting the two vertices in the edge. This may
|
Chris@16
|
574 // involve flipping bicomps along the way.
|
Chris@16
|
575
|
Chris@16
|
576 vertex_t w; //the other endpoint of the edge we're embedding
|
Chris@16
|
577
|
Chris@16
|
578 while (!pertinent_roots[v]->empty())
|
Chris@16
|
579 {
|
Chris@16
|
580
|
Chris@16
|
581 face_handle_t root_face_handle = pertinent_roots[v]->front();
|
Chris@16
|
582 face_handle_t curr_face_handle = root_face_handle;
|
Chris@16
|
583 pertinent_roots[v]->pop_front();
|
Chris@16
|
584
|
Chris@16
|
585 merge_stack.clear();
|
Chris@16
|
586
|
Chris@16
|
587 while(true)
|
Chris@16
|
588 {
|
Chris@16
|
589
|
Chris@16
|
590 typename face_vertex_iterator<>::type
|
Chris@16
|
591 first_face_itr, second_face_itr, face_end;
|
Chris@16
|
592 vertex_t first_side_vertex
|
Chris@16
|
593 = graph_traits<Graph>::null_vertex();
|
Chris@16
|
594 vertex_t second_side_vertex;
|
Chris@16
|
595 vertex_t first_tail, second_tail;
|
Chris@16
|
596
|
Chris@16
|
597 first_tail = second_tail = curr_face_handle.get_anchor();
|
Chris@16
|
598 first_face_itr = typename face_vertex_iterator<>::type
|
Chris@16
|
599 (curr_face_handle, face_handles, first_side());
|
Chris@16
|
600 second_face_itr = typename face_vertex_iterator<>::type
|
Chris@16
|
601 (curr_face_handle, face_handles, second_side());
|
Chris@16
|
602
|
Chris@16
|
603 for(; first_face_itr != face_end; ++first_face_itr)
|
Chris@16
|
604 {
|
Chris@16
|
605 vertex_t face_vertex(*first_face_itr);
|
Chris@16
|
606 if (pertinent(face_vertex, v) ||
|
Chris@16
|
607 externally_active(face_vertex, v)
|
Chris@16
|
608 )
|
Chris@16
|
609 {
|
Chris@16
|
610 first_side_vertex = face_vertex;
|
Chris@16
|
611 second_side_vertex = face_vertex;
|
Chris@16
|
612 break;
|
Chris@16
|
613 }
|
Chris@16
|
614 first_tail = face_vertex;
|
Chris@16
|
615 }
|
Chris@16
|
616
|
Chris@16
|
617 if (first_side_vertex == graph_traits<Graph>::null_vertex() ||
|
Chris@16
|
618 first_side_vertex == curr_face_handle.get_anchor()
|
Chris@16
|
619 )
|
Chris@16
|
620 break;
|
Chris@16
|
621
|
Chris@16
|
622 for(;second_face_itr != face_end; ++second_face_itr)
|
Chris@16
|
623 {
|
Chris@16
|
624 vertex_t face_vertex(*second_face_itr);
|
Chris@16
|
625 if (pertinent(face_vertex, v) ||
|
Chris@16
|
626 externally_active(face_vertex, v)
|
Chris@16
|
627 )
|
Chris@16
|
628 {
|
Chris@16
|
629 second_side_vertex = face_vertex;
|
Chris@16
|
630 break;
|
Chris@16
|
631 }
|
Chris@16
|
632 second_tail = face_vertex;
|
Chris@16
|
633 }
|
Chris@16
|
634
|
Chris@16
|
635 vertex_t chosen;
|
Chris@16
|
636 bool chose_first_upper_path;
|
Chris@16
|
637 if (internally_active(first_side_vertex, v))
|
Chris@16
|
638 {
|
Chris@16
|
639 chosen = first_side_vertex;
|
Chris@16
|
640 chose_first_upper_path = true;
|
Chris@16
|
641 }
|
Chris@16
|
642 else if (internally_active(second_side_vertex, v))
|
Chris@16
|
643 {
|
Chris@16
|
644 chosen = second_side_vertex;
|
Chris@16
|
645 chose_first_upper_path = false;
|
Chris@16
|
646 }
|
Chris@16
|
647 else if (pertinent(first_side_vertex, v))
|
Chris@16
|
648 {
|
Chris@16
|
649 chosen = first_side_vertex;
|
Chris@16
|
650 chose_first_upper_path = true;
|
Chris@16
|
651 }
|
Chris@16
|
652 else if (pertinent(second_side_vertex, v))
|
Chris@16
|
653 {
|
Chris@16
|
654 chosen = second_side_vertex;
|
Chris@16
|
655 chose_first_upper_path = false;
|
Chris@16
|
656 }
|
Chris@16
|
657 else
|
Chris@16
|
658 {
|
Chris@16
|
659
|
Chris@16
|
660 // If there's a pertinent vertex on the lower face
|
Chris@16
|
661 // between the first_face_itr and the second_face_itr,
|
Chris@16
|
662 // this graph isn't planar.
|
Chris@16
|
663 for(;
|
Chris@16
|
664 *first_face_itr != second_side_vertex;
|
Chris@16
|
665 ++first_face_itr
|
Chris@16
|
666 )
|
Chris@16
|
667 {
|
Chris@16
|
668 vertex_t p(*first_face_itr);
|
Chris@16
|
669 if (pertinent(p,v))
|
Chris@16
|
670 {
|
Chris@16
|
671 //Found a Kuratowski subgraph
|
Chris@16
|
672 kuratowski_v = v;
|
Chris@16
|
673 kuratowski_x = first_side_vertex;
|
Chris@16
|
674 kuratowski_y = second_side_vertex;
|
Chris@16
|
675 return false;
|
Chris@16
|
676 }
|
Chris@16
|
677 }
|
Chris@16
|
678
|
Chris@16
|
679 // Otherwise, the fact that we didn't find a pertinent
|
Chris@16
|
680 // vertex on this face is fine - we should set the
|
Chris@16
|
681 // short-circuit edges and break out of this loop to
|
Chris@16
|
682 // start looking at a different pertinent root.
|
Chris@16
|
683
|
Chris@16
|
684 if (first_side_vertex == second_side_vertex)
|
Chris@16
|
685 {
|
Chris@16
|
686 if (first_tail != v)
|
Chris@16
|
687 {
|
Chris@16
|
688 vertex_t first
|
Chris@16
|
689 = face_handles[first_tail].first_vertex();
|
Chris@16
|
690 vertex_t second
|
Chris@16
|
691 = face_handles[first_tail].second_vertex();
|
Chris@16
|
692 boost::tie(first_side_vertex, first_tail)
|
Chris@16
|
693 = make_tuple(first_tail,
|
Chris@16
|
694 first == first_side_vertex ?
|
Chris@16
|
695 second : first
|
Chris@16
|
696 );
|
Chris@16
|
697 }
|
Chris@16
|
698 else if (second_tail != v)
|
Chris@16
|
699 {
|
Chris@16
|
700 vertex_t first
|
Chris@16
|
701 = face_handles[second_tail].first_vertex();
|
Chris@16
|
702 vertex_t second
|
Chris@16
|
703 = face_handles[second_tail].second_vertex();
|
Chris@16
|
704 boost::tie(second_side_vertex, second_tail)
|
Chris@16
|
705 = make_tuple(second_tail,
|
Chris@16
|
706 first == second_side_vertex ?
|
Chris@16
|
707 second : first);
|
Chris@16
|
708 }
|
Chris@16
|
709 else
|
Chris@16
|
710 break;
|
Chris@16
|
711 }
|
Chris@16
|
712
|
Chris@16
|
713 canonical_dfs_child[first_side_vertex]
|
Chris@16
|
714 = canonical_dfs_child[root_face_handle.first_vertex()];
|
Chris@16
|
715 canonical_dfs_child[second_side_vertex]
|
Chris@16
|
716 = canonical_dfs_child[root_face_handle.second_vertex()];
|
Chris@16
|
717 root_face_handle.set_first_vertex(first_side_vertex);
|
Chris@16
|
718 root_face_handle.set_second_vertex(second_side_vertex);
|
Chris@16
|
719
|
Chris@16
|
720 if (face_handles[first_side_vertex].first_vertex() ==
|
Chris@16
|
721 first_tail
|
Chris@16
|
722 )
|
Chris@16
|
723 face_handles[first_side_vertex].set_first_vertex(v);
|
Chris@16
|
724 else
|
Chris@16
|
725 face_handles[first_side_vertex].set_second_vertex(v);
|
Chris@16
|
726
|
Chris@16
|
727 if (face_handles[second_side_vertex].first_vertex() ==
|
Chris@16
|
728 second_tail
|
Chris@16
|
729 )
|
Chris@16
|
730 face_handles[second_side_vertex].set_first_vertex(v);
|
Chris@16
|
731 else
|
Chris@16
|
732 face_handles[second_side_vertex].set_second_vertex(v);
|
Chris@16
|
733
|
Chris@16
|
734 break;
|
Chris@16
|
735
|
Chris@16
|
736 }
|
Chris@16
|
737
|
Chris@16
|
738
|
Chris@16
|
739 // When we unwind the stack, we need to know which direction
|
Chris@16
|
740 // we came down from on the top face handle
|
Chris@16
|
741
|
Chris@16
|
742 bool chose_first_lower_path =
|
Chris@16
|
743 (chose_first_upper_path &&
|
Chris@16
|
744 face_handles[chosen].first_vertex() == first_tail)
|
Chris@16
|
745 ||
|
Chris@16
|
746 (!chose_first_upper_path &&
|
Chris@16
|
747 face_handles[chosen].first_vertex() == second_tail);
|
Chris@16
|
748
|
Chris@16
|
749 //If there's a backedge at the chosen vertex, embed it now
|
Chris@16
|
750 if (backedge_flag[chosen] == dfs_number[v])
|
Chris@16
|
751 {
|
Chris@16
|
752 w = chosen;
|
Chris@16
|
753
|
Chris@16
|
754 backedge_flag[chosen] = num_vertices(g) + 1;
|
Chris@16
|
755 add_to_merge_points(chosen, StoreOldHandlesPolicy());
|
Chris@16
|
756
|
Chris@16
|
757 typename edge_vector_t::iterator ei, ei_end;
|
Chris@16
|
758 ei_end = backedges[chosen].end();
|
Chris@16
|
759 for(ei = backedges[chosen].begin(); ei != ei_end; ++ei)
|
Chris@16
|
760 {
|
Chris@16
|
761 edge_t e(*ei);
|
Chris@16
|
762 add_to_embedded_edges(e, StoreOldHandlesPolicy());
|
Chris@16
|
763
|
Chris@16
|
764 if (chose_first_lower_path)
|
Chris@16
|
765 face_handles[chosen].push_first(e, g);
|
Chris@16
|
766 else
|
Chris@16
|
767 face_handles[chosen].push_second(e, g);
|
Chris@16
|
768 }
|
Chris@16
|
769
|
Chris@16
|
770 }
|
Chris@16
|
771 else
|
Chris@16
|
772 {
|
Chris@16
|
773 merge_stack.push_back(make_tuple
|
Chris@16
|
774 (chosen, chose_first_upper_path, chose_first_lower_path)
|
Chris@16
|
775 );
|
Chris@16
|
776 curr_face_handle = *pertinent_roots[chosen]->begin();
|
Chris@16
|
777 continue;
|
Chris@16
|
778 }
|
Chris@16
|
779
|
Chris@16
|
780 //Unwind the merge stack to the root, merging all bicomps
|
Chris@16
|
781
|
Chris@16
|
782 bool bottom_path_follows_first;
|
Chris@16
|
783 bool top_path_follows_first;
|
Chris@16
|
784 bool next_bottom_follows_first = chose_first_upper_path;
|
Chris@16
|
785 face_handle_t top_handle, bottom_handle;
|
Chris@16
|
786
|
Chris@16
|
787 vertex_t merge_point = chosen;
|
Chris@16
|
788
|
Chris@16
|
789 while(!merge_stack.empty())
|
Chris@16
|
790 {
|
Chris@16
|
791
|
Chris@16
|
792 bottom_path_follows_first = next_bottom_follows_first;
|
Chris@16
|
793 boost::tie(merge_point,
|
Chris@16
|
794 next_bottom_follows_first,
|
Chris@16
|
795 top_path_follows_first
|
Chris@16
|
796 ) = merge_stack.back();
|
Chris@16
|
797 merge_stack.pop_back();
|
Chris@16
|
798
|
Chris@16
|
799 face_handle_t top_handle(face_handles[merge_point]);
|
Chris@16
|
800 face_handle_t bottom_handle
|
Chris@16
|
801 (*pertinent_roots[merge_point]->begin());
|
Chris@16
|
802
|
Chris@16
|
803 vertex_t bottom_dfs_child = canonical_dfs_child
|
Chris@16
|
804 [pertinent_roots[merge_point]->begin()->first_vertex()];
|
Chris@16
|
805
|
Chris@16
|
806 remove_vertex_from_separated_dfs_child_list(
|
Chris@16
|
807 canonical_dfs_child
|
Chris@16
|
808 [pertinent_roots[merge_point]->begin()->first_vertex()]
|
Chris@16
|
809 );
|
Chris@16
|
810
|
Chris@16
|
811 pertinent_roots[merge_point]->pop_front();
|
Chris@16
|
812
|
Chris@16
|
813 add_to_merge_points(top_handle.get_anchor(),
|
Chris@16
|
814 StoreOldHandlesPolicy()
|
Chris@16
|
815 );
|
Chris@16
|
816
|
Chris@16
|
817 if (top_path_follows_first && bottom_path_follows_first)
|
Chris@16
|
818 {
|
Chris@16
|
819 bottom_handle.flip();
|
Chris@16
|
820 top_handle.glue_first_to_second(bottom_handle);
|
Chris@16
|
821 }
|
Chris@16
|
822 else if (!top_path_follows_first &&
|
Chris@16
|
823 bottom_path_follows_first
|
Chris@16
|
824 )
|
Chris@16
|
825 {
|
Chris@16
|
826 flipped[bottom_dfs_child] = true;
|
Chris@16
|
827 top_handle.glue_second_to_first(bottom_handle);
|
Chris@16
|
828 }
|
Chris@16
|
829 else if (top_path_follows_first &&
|
Chris@16
|
830 !bottom_path_follows_first
|
Chris@16
|
831 )
|
Chris@16
|
832 {
|
Chris@16
|
833 flipped[bottom_dfs_child] = true;
|
Chris@16
|
834 top_handle.glue_first_to_second(bottom_handle);
|
Chris@16
|
835 }
|
Chris@16
|
836 else //!top_path_follows_first && !bottom_path_follows_first
|
Chris@16
|
837 {
|
Chris@16
|
838 bottom_handle.flip();
|
Chris@16
|
839 top_handle.glue_second_to_first(bottom_handle);
|
Chris@16
|
840 }
|
Chris@16
|
841
|
Chris@16
|
842 }
|
Chris@16
|
843
|
Chris@16
|
844 //Finally, embed all edges (v,w) at their upper end points
|
Chris@16
|
845 canonical_dfs_child[w]
|
Chris@16
|
846 = canonical_dfs_child[root_face_handle.first_vertex()];
|
Chris@16
|
847
|
Chris@16
|
848 add_to_merge_points(root_face_handle.get_anchor(),
|
Chris@16
|
849 StoreOldHandlesPolicy()
|
Chris@16
|
850 );
|
Chris@16
|
851
|
Chris@16
|
852 typename edge_vector_t::iterator ei, ei_end;
|
Chris@16
|
853 ei_end = backedges[chosen].end();
|
Chris@16
|
854 for(ei = backedges[chosen].begin(); ei != ei_end; ++ei)
|
Chris@16
|
855 {
|
Chris@16
|
856 if (next_bottom_follows_first)
|
Chris@16
|
857 root_face_handle.push_first(*ei, g);
|
Chris@16
|
858 else
|
Chris@16
|
859 root_face_handle.push_second(*ei, g);
|
Chris@16
|
860 }
|
Chris@16
|
861
|
Chris@16
|
862 backedges[chosen].clear();
|
Chris@16
|
863 curr_face_handle = root_face_handle;
|
Chris@16
|
864
|
Chris@16
|
865 }//while(true)
|
Chris@16
|
866
|
Chris@16
|
867 }//while(!pertinent_roots[v]->empty())
|
Chris@16
|
868
|
Chris@16
|
869 return true;
|
Chris@16
|
870
|
Chris@16
|
871 }
|
Chris@16
|
872
|
Chris@16
|
873
|
Chris@16
|
874
|
Chris@16
|
875
|
Chris@16
|
876
|
Chris@16
|
877
|
Chris@16
|
878 void store_old_face_handles(graph::detail::no_old_handles) {}
|
Chris@16
|
879
|
Chris@16
|
880 void store_old_face_handles(graph::detail::store_old_handles)
|
Chris@16
|
881 {
|
Chris@16
|
882 for(typename std::vector<vertex_t>::iterator mp_itr
|
Chris@16
|
883 = current_merge_points.begin();
|
Chris@16
|
884 mp_itr != current_merge_points.end(); ++mp_itr)
|
Chris@16
|
885 {
|
Chris@16
|
886 face_handles[*mp_itr].store_old_face_handles();
|
Chris@16
|
887 }
|
Chris@16
|
888 current_merge_points.clear();
|
Chris@16
|
889 }
|
Chris@16
|
890
|
Chris@16
|
891
|
Chris@16
|
892 void add_to_merge_points(vertex_t, graph::detail::no_old_handles) {}
|
Chris@16
|
893
|
Chris@16
|
894 void add_to_merge_points(vertex_t v, graph::detail::store_old_handles)
|
Chris@16
|
895 {
|
Chris@16
|
896 current_merge_points.push_back(v);
|
Chris@16
|
897 }
|
Chris@16
|
898
|
Chris@16
|
899
|
Chris@16
|
900 void add_to_embedded_edges(edge_t, graph::detail::no_old_handles) {}
|
Chris@16
|
901
|
Chris@16
|
902 void add_to_embedded_edges(edge_t e, graph::detail::store_old_handles)
|
Chris@16
|
903 {
|
Chris@16
|
904 embedded_edges.push_back(e);
|
Chris@16
|
905 }
|
Chris@16
|
906
|
Chris@16
|
907
|
Chris@16
|
908
|
Chris@16
|
909
|
Chris@16
|
910 void clean_up_embedding(graph::detail::no_embedding) {}
|
Chris@16
|
911
|
Chris@16
|
912 void clean_up_embedding(graph::detail::store_embedding)
|
Chris@16
|
913 {
|
Chris@16
|
914
|
Chris@16
|
915 // If the graph isn't biconnected, we'll still have entries
|
Chris@16
|
916 // in the separated_dfs_child_list for some vertices. Since
|
Chris@16
|
917 // these represent articulation points, we can obtain a
|
Chris@16
|
918 // planar embedding no matter what order we embed them in.
|
Chris@16
|
919
|
Chris@16
|
920 vertex_iterator_t xi, xi_end;
|
Chris@16
|
921 for(boost::tie(xi,xi_end) = vertices(g); xi != xi_end; ++xi)
|
Chris@16
|
922 {
|
Chris@16
|
923 if (!separated_dfs_child_list[*xi]->empty())
|
Chris@16
|
924 {
|
Chris@16
|
925 typename vertex_list_t::iterator yi, yi_end;
|
Chris@16
|
926 yi_end = separated_dfs_child_list[*xi]->end();
|
Chris@16
|
927 for(yi = separated_dfs_child_list[*xi]->begin();
|
Chris@16
|
928 yi != yi_end; ++yi
|
Chris@16
|
929 )
|
Chris@16
|
930 {
|
Chris@16
|
931 dfs_child_handles[*yi].flip();
|
Chris@16
|
932 face_handles[*xi].glue_first_to_second
|
Chris@16
|
933 (dfs_child_handles[*yi]);
|
Chris@16
|
934 }
|
Chris@16
|
935 }
|
Chris@16
|
936 }
|
Chris@16
|
937
|
Chris@16
|
938 // Up until this point, we've flipped bicomps lazily by setting
|
Chris@16
|
939 // flipped[v] to true if the bicomp rooted at v was flipped (the
|
Chris@16
|
940 // lazy aspect of this flip is that all descendents of that vertex
|
Chris@16
|
941 // need to have their orientations reversed as well). Now, we
|
Chris@16
|
942 // traverse the DFS tree by DFS number and perform the actual
|
Chris@16
|
943 // flipping as needed
|
Chris@16
|
944
|
Chris@16
|
945 typedef typename vertex_vector_t::iterator vertex_vector_itr_t;
|
Chris@16
|
946 vertex_vector_itr_t vi_end = vertices_by_dfs_num.end();
|
Chris@16
|
947 for(vertex_vector_itr_t vi = vertices_by_dfs_num.begin();
|
Chris@16
|
948 vi != vi_end; ++vi
|
Chris@16
|
949 )
|
Chris@16
|
950 {
|
Chris@16
|
951 vertex_t v(*vi);
|
Chris@16
|
952 bool v_flipped = flipped[v];
|
Chris@16
|
953 bool p_flipped = flipped[dfs_parent[v]];
|
Chris@16
|
954 if (v_flipped && !p_flipped)
|
Chris@16
|
955 {
|
Chris@16
|
956 face_handles[v].flip();
|
Chris@16
|
957 }
|
Chris@16
|
958 else if (p_flipped && !v_flipped)
|
Chris@16
|
959 {
|
Chris@16
|
960 face_handles[v].flip();
|
Chris@16
|
961 flipped[v] = true;
|
Chris@16
|
962 }
|
Chris@16
|
963 else
|
Chris@16
|
964 {
|
Chris@16
|
965 flipped[v] = false;
|
Chris@16
|
966 }
|
Chris@16
|
967 }
|
Chris@16
|
968
|
Chris@16
|
969 // If there are any self-loops in the graph, they were flagged
|
Chris@16
|
970 // during the walkup, and we should add them to the embedding now.
|
Chris@16
|
971 // Adding a self loop anywhere in the embedding could never
|
Chris@16
|
972 // invalidate the embedding, but they would complicate the traversal
|
Chris@16
|
973 // if they were added during the walkup/walkdown.
|
Chris@16
|
974
|
Chris@16
|
975 typename edge_vector_t::iterator ei, ei_end;
|
Chris@16
|
976 ei_end = self_loops.end();
|
Chris@16
|
977 for(ei = self_loops.begin(); ei != ei_end; ++ei)
|
Chris@16
|
978 {
|
Chris@16
|
979 edge_t e(*ei);
|
Chris@16
|
980 face_handles[source(e,g)].push_second(e,g);
|
Chris@16
|
981 }
|
Chris@16
|
982
|
Chris@16
|
983 }
|
Chris@16
|
984
|
Chris@16
|
985
|
Chris@16
|
986
|
Chris@16
|
987
|
Chris@16
|
988
|
Chris@16
|
989 bool pertinent(vertex_t w, vertex_t v)
|
Chris@16
|
990 {
|
Chris@16
|
991 // w is pertinent with respect to v if there is a backedge (v,w) or if
|
Chris@16
|
992 // w is the root of a bicomp that contains a pertinent vertex.
|
Chris@16
|
993
|
Chris@16
|
994 return backedge_flag[w] == dfs_number[v] || !pertinent_roots[w]->empty();
|
Chris@16
|
995 }
|
Chris@16
|
996
|
Chris@16
|
997
|
Chris@16
|
998
|
Chris@16
|
999 bool externally_active(vertex_t w, vertex_t v)
|
Chris@16
|
1000 {
|
Chris@16
|
1001 // Let a be any proper depth-first search ancestor of v. w is externally
|
Chris@16
|
1002 // active with respect to v if there exists a backedge (a,w) or a
|
Chris@16
|
1003 // backedge (a,w_0) for some w_0 in a descendent bicomp of w.
|
Chris@16
|
1004
|
Chris@16
|
1005 v_size_t dfs_number_of_v = dfs_number[v];
|
Chris@16
|
1006 return (least_ancestor[w] < dfs_number_of_v) ||
|
Chris@16
|
1007 (!separated_dfs_child_list[w]->empty() &&
|
Chris@16
|
1008 low_point[separated_dfs_child_list[w]->front()] < dfs_number_of_v);
|
Chris@16
|
1009 }
|
Chris@16
|
1010
|
Chris@16
|
1011
|
Chris@16
|
1012
|
Chris@16
|
1013 bool internally_active(vertex_t w, vertex_t v)
|
Chris@16
|
1014 {
|
Chris@16
|
1015 return pertinent(w,v) && !externally_active(w,v);
|
Chris@16
|
1016 }
|
Chris@16
|
1017
|
Chris@16
|
1018
|
Chris@16
|
1019
|
Chris@16
|
1020
|
Chris@16
|
1021 void remove_vertex_from_separated_dfs_child_list(vertex_t v)
|
Chris@16
|
1022 {
|
Chris@16
|
1023 typename vertex_list_t::iterator to_delete
|
Chris@16
|
1024 = separated_node_in_parent_list[v];
|
Chris@16
|
1025 garbage.splice(garbage.end(),
|
Chris@16
|
1026 *separated_dfs_child_list[dfs_parent[v]],
|
Chris@16
|
1027 to_delete,
|
Chris@16
|
1028 boost::next(to_delete)
|
Chris@16
|
1029 );
|
Chris@16
|
1030 }
|
Chris@16
|
1031
|
Chris@16
|
1032
|
Chris@16
|
1033
|
Chris@16
|
1034
|
Chris@16
|
1035
|
Chris@16
|
1036 // End of the implementation of the basic Boyer-Myrvold Algorithm. The rest
|
Chris@16
|
1037 // of the code below implements the isolation of a Kuratowski subgraph in
|
Chris@16
|
1038 // the case that the input graph is not planar. This is by far the most
|
Chris@16
|
1039 // complicated part of the implementation.
|
Chris@16
|
1040
|
Chris@16
|
1041
|
Chris@16
|
1042
|
Chris@16
|
1043
|
Chris@16
|
1044 public:
|
Chris@16
|
1045
|
Chris@16
|
1046
|
Chris@16
|
1047
|
Chris@16
|
1048
|
Chris@16
|
1049 template <typename EdgeToBoolPropertyMap, typename EdgeContainer>
|
Chris@16
|
1050 vertex_t kuratowski_walkup(vertex_t v,
|
Chris@16
|
1051 EdgeToBoolPropertyMap forbidden_edge,
|
Chris@16
|
1052 EdgeToBoolPropertyMap goal_edge,
|
Chris@16
|
1053 EdgeToBoolPropertyMap is_embedded,
|
Chris@16
|
1054 EdgeContainer& path_edges
|
Chris@16
|
1055 )
|
Chris@16
|
1056 {
|
Chris@16
|
1057 vertex_t current_endpoint;
|
Chris@16
|
1058 bool seen_goal_edge = false;
|
Chris@16
|
1059 out_edge_iterator_t oi, oi_end;
|
Chris@16
|
1060
|
Chris@16
|
1061 for(boost::tie(oi,oi_end) = out_edges(v,g); oi != oi_end; ++oi)
|
Chris@16
|
1062 forbidden_edge[*oi] = true;
|
Chris@16
|
1063
|
Chris@16
|
1064 for(boost::tie(oi,oi_end) = out_edges(v,g); oi != oi_end; ++oi)
|
Chris@16
|
1065 {
|
Chris@16
|
1066 path_edges.clear();
|
Chris@16
|
1067
|
Chris@16
|
1068 edge_t e(*oi);
|
Chris@16
|
1069 current_endpoint = target(*oi,g) == v ?
|
Chris@16
|
1070 source(*oi,g) : target(*oi,g);
|
Chris@16
|
1071
|
Chris@16
|
1072 if (dfs_number[current_endpoint] < dfs_number[v] ||
|
Chris@16
|
1073 is_embedded[e] ||
|
Chris@16
|
1074 v == current_endpoint //self-loop
|
Chris@16
|
1075 )
|
Chris@16
|
1076 {
|
Chris@16
|
1077 //Not a backedge
|
Chris@16
|
1078 continue;
|
Chris@16
|
1079 }
|
Chris@16
|
1080
|
Chris@16
|
1081 path_edges.push_back(e);
|
Chris@16
|
1082 if (goal_edge[e])
|
Chris@16
|
1083 {
|
Chris@16
|
1084 return current_endpoint;
|
Chris@16
|
1085 }
|
Chris@16
|
1086
|
Chris@16
|
1087 typedef typename face_edge_iterator<>::type walkup_itr_t;
|
Chris@16
|
1088
|
Chris@16
|
1089 walkup_itr_t
|
Chris@16
|
1090 walkup_itr(current_endpoint, face_handles, first_side());
|
Chris@16
|
1091 walkup_itr_t walkup_end;
|
Chris@16
|
1092
|
Chris@16
|
1093 seen_goal_edge = false;
|
Chris@16
|
1094
|
Chris@16
|
1095 while (true)
|
Chris@16
|
1096 {
|
Chris@16
|
1097
|
Chris@16
|
1098 if (walkup_itr != walkup_end && forbidden_edge[*walkup_itr])
|
Chris@16
|
1099 break;
|
Chris@16
|
1100
|
Chris@16
|
1101 while(walkup_itr != walkup_end &&
|
Chris@16
|
1102 !goal_edge[*walkup_itr] &&
|
Chris@16
|
1103 !forbidden_edge[*walkup_itr]
|
Chris@16
|
1104 )
|
Chris@16
|
1105 {
|
Chris@16
|
1106 edge_t f(*walkup_itr);
|
Chris@16
|
1107 forbidden_edge[f] = true;
|
Chris@16
|
1108 path_edges.push_back(f);
|
Chris@16
|
1109 current_endpoint =
|
Chris@16
|
1110 source(f, g) == current_endpoint ?
|
Chris@16
|
1111 target(f, g) :
|
Chris@16
|
1112 source(f,g);
|
Chris@16
|
1113 ++walkup_itr;
|
Chris@16
|
1114 }
|
Chris@16
|
1115
|
Chris@16
|
1116 if (walkup_itr != walkup_end && goal_edge[*walkup_itr])
|
Chris@16
|
1117 {
|
Chris@16
|
1118 path_edges.push_back(*walkup_itr);
|
Chris@16
|
1119 seen_goal_edge = true;
|
Chris@16
|
1120 break;
|
Chris@16
|
1121 }
|
Chris@16
|
1122
|
Chris@16
|
1123 walkup_itr
|
Chris@16
|
1124 = walkup_itr_t(current_endpoint, face_handles, first_side());
|
Chris@16
|
1125
|
Chris@16
|
1126 }
|
Chris@16
|
1127
|
Chris@16
|
1128 if (seen_goal_edge)
|
Chris@16
|
1129 break;
|
Chris@16
|
1130
|
Chris@16
|
1131 }
|
Chris@16
|
1132
|
Chris@16
|
1133 if (seen_goal_edge)
|
Chris@16
|
1134 return current_endpoint;
|
Chris@16
|
1135 else
|
Chris@16
|
1136 return graph_traits<Graph>::null_vertex();
|
Chris@16
|
1137
|
Chris@16
|
1138 }
|
Chris@16
|
1139
|
Chris@16
|
1140
|
Chris@16
|
1141
|
Chris@16
|
1142
|
Chris@16
|
1143
|
Chris@16
|
1144
|
Chris@16
|
1145
|
Chris@16
|
1146
|
Chris@16
|
1147 template <typename OutputIterator, typename EdgeIndexMap>
|
Chris@16
|
1148 void extract_kuratowski_subgraph(OutputIterator o_itr, EdgeIndexMap em)
|
Chris@16
|
1149 {
|
Chris@16
|
1150
|
Chris@16
|
1151 // If the main algorithm has failed to embed one of the back-edges from
|
Chris@16
|
1152 // a vertex v, we can use the current state of the algorithm to isolate
|
Chris@16
|
1153 // a Kuratowksi subgraph. The isolation process breaks down into five
|
Chris@16
|
1154 // cases, A - E. The general configuration of all five cases is shown in
|
Chris@16
|
1155 // figure 1. There is a vertex v from which the planar
|
Chris@16
|
1156 // v embedding process could not proceed. This means that
|
Chris@16
|
1157 // | there exists some bicomp containing three vertices
|
Chris@16
|
1158 // ----- x,y, and z as shown such that x and y are externally
|
Chris@16
|
1159 // | | active with respect to v (which means that there are
|
Chris@16
|
1160 // x y two vertices x_0 and y_0 such that (1) both x_0 and
|
Chris@16
|
1161 // | | y_0 are proper depth-first search ancestors of v and
|
Chris@16
|
1162 // --z-- (2) there are two disjoint paths, one connecting x
|
Chris@16
|
1163 // and x_0 and one connecting y and y_0, both consisting
|
Chris@16
|
1164 // fig. 1 entirely of unembedded edges). Furthermore, there
|
Chris@16
|
1165 // exists a vertex z_0 such that z is a depth-first
|
Chris@16
|
1166 // search ancestor of z_0 and (v,z_0) is an unembedded back-edge from v.
|
Chris@16
|
1167 // x,y and z all exist on the same bicomp, which consists entirely of
|
Chris@16
|
1168 // embedded edges. The five subcases break down as follows, and are
|
Chris@16
|
1169 // handled by the algorithm logically in the order A-E: First, if v is
|
Chris@16
|
1170 // not on the same bicomp as x,y, and z, a K_3_3 can be isolated - this
|
Chris@16
|
1171 // is case A. So, we'll assume that v is on the same bicomp as x,y, and
|
Chris@16
|
1172 // z. If z_0 is on a different bicomp than x,y, and z, a K_3_3 can also
|
Chris@16
|
1173 // be isolated - this is a case B - so we'll assume from now on that v
|
Chris@16
|
1174 // is on the same bicomp as x, y, and z=z_0. In this case, one can use
|
Chris@16
|
1175 // properties of the Boyer-Myrvold algorithm to show the existence of an
|
Chris@16
|
1176 // "x-y path" connecting some vertex on the "left side" of the x,y,z
|
Chris@16
|
1177 // bicomp with some vertex on the "right side" of the bicomp (where the
|
Chris@16
|
1178 // left and right are split by a line drawn through v and z.If either of
|
Chris@16
|
1179 // the endpoints of the x-y path is above x or y on the bicomp, a K_3_3
|
Chris@16
|
1180 // can be isolated - this is a case C. Otherwise, both endpoints are at
|
Chris@16
|
1181 // or below x and y on the bicomp. If there is a vertex alpha on the x-y
|
Chris@16
|
1182 // path such that alpha is not x or y and there's a path from alpha to v
|
Chris@16
|
1183 // that's disjoint from any of the edges on the bicomp and the x-y path,
|
Chris@16
|
1184 // a K_3_3 can be isolated - this is a case D. Otherwise, properties of
|
Chris@16
|
1185 // the Boyer-Myrvold algorithm can be used to show that another vertex
|
Chris@16
|
1186 // w exists on the lower half of the bicomp such that w is externally
|
Chris@16
|
1187 // active with respect to v. w can then be used to isolate a K_5 - this
|
Chris@16
|
1188 // is the configuration of case E.
|
Chris@16
|
1189
|
Chris@16
|
1190 vertex_iterator_t vi, vi_end;
|
Chris@16
|
1191 edge_iterator_t ei, ei_end;
|
Chris@16
|
1192 out_edge_iterator_t oei, oei_end;
|
Chris@16
|
1193 typename std::vector<edge_t>::iterator xi, xi_end;
|
Chris@16
|
1194
|
Chris@16
|
1195 // Clear the short-circuit edges - these are needed for the planar
|
Chris@16
|
1196 // testing/embedding algorithm to run in linear time, but they'll
|
Chris@16
|
1197 // complicate the kuratowski subgraph isolation
|
Chris@16
|
1198 for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
|
Chris@16
|
1199 {
|
Chris@16
|
1200 face_handles[*vi].reset_vertex_cache();
|
Chris@16
|
1201 dfs_child_handles[*vi].reset_vertex_cache();
|
Chris@16
|
1202 }
|
Chris@16
|
1203
|
Chris@16
|
1204 vertex_t v = kuratowski_v;
|
Chris@16
|
1205 vertex_t x = kuratowski_x;
|
Chris@16
|
1206 vertex_t y = kuratowski_y;
|
Chris@16
|
1207
|
Chris@16
|
1208 typedef iterator_property_map
|
Chris@16
|
1209 <typename std::vector<bool>::iterator, EdgeIndexMap>
|
Chris@16
|
1210 edge_to_bool_map_t;
|
Chris@16
|
1211
|
Chris@16
|
1212 std::vector<bool> is_in_subgraph_vector(num_edges(g), false);
|
Chris@16
|
1213 edge_to_bool_map_t is_in_subgraph(is_in_subgraph_vector.begin(), em);
|
Chris@16
|
1214
|
Chris@16
|
1215 std::vector<bool> is_embedded_vector(num_edges(g), false);
|
Chris@16
|
1216 edge_to_bool_map_t is_embedded(is_embedded_vector.begin(), em);
|
Chris@16
|
1217
|
Chris@16
|
1218 typename std::vector<edge_t>::iterator embedded_itr, embedded_end;
|
Chris@16
|
1219 embedded_end = embedded_edges.end();
|
Chris@16
|
1220 for(embedded_itr = embedded_edges.begin();
|
Chris@16
|
1221 embedded_itr != embedded_end; ++embedded_itr
|
Chris@16
|
1222 )
|
Chris@16
|
1223 is_embedded[*embedded_itr] = true;
|
Chris@16
|
1224
|
Chris@16
|
1225 // upper_face_vertex is true for x,y, and all vertices above x and y in
|
Chris@16
|
1226 // the bicomp
|
Chris@16
|
1227 std::vector<bool> upper_face_vertex_vector(num_vertices(g), false);
|
Chris@16
|
1228 vertex_to_bool_map_t upper_face_vertex
|
Chris@16
|
1229 (upper_face_vertex_vector.begin(), vm);
|
Chris@16
|
1230
|
Chris@16
|
1231 std::vector<bool> lower_face_vertex_vector(num_vertices(g), false);
|
Chris@16
|
1232 vertex_to_bool_map_t lower_face_vertex
|
Chris@16
|
1233 (lower_face_vertex_vector.begin(), vm);
|
Chris@16
|
1234
|
Chris@16
|
1235 // These next few variable declarations are all things that we need
|
Chris@16
|
1236 // to find.
|
Chris@16
|
1237 vertex_t z;
|
Chris@16
|
1238 vertex_t bicomp_root;
|
Chris@16
|
1239 vertex_t w = graph_traits<Graph>::null_vertex();
|
Chris@16
|
1240 face_handle_t w_handle;
|
Chris@16
|
1241 face_handle_t v_dfchild_handle;
|
Chris@16
|
1242 vertex_t first_x_y_path_endpoint = graph_traits<Graph>::null_vertex();
|
Chris@16
|
1243 vertex_t second_x_y_path_endpoint = graph_traits<Graph>::null_vertex();
|
Chris@16
|
1244 vertex_t w_ancestor = v;
|
Chris@16
|
1245
|
Chris@16
|
1246 detail::bm_case_t chosen_case = detail::BM_NO_CASE_CHOSEN;
|
Chris@16
|
1247
|
Chris@16
|
1248 std::vector<edge_t> x_external_path;
|
Chris@16
|
1249 std::vector<edge_t> y_external_path;
|
Chris@16
|
1250 std::vector<edge_t> case_d_edges;
|
Chris@16
|
1251
|
Chris@16
|
1252 std::vector<edge_t> z_v_path;
|
Chris@16
|
1253 std::vector<edge_t> w_path;
|
Chris@16
|
1254
|
Chris@16
|
1255 //first, use a walkup to find a path from V that starts with a
|
Chris@16
|
1256 //backedge from V, then goes up until it hits either X or Y
|
Chris@16
|
1257 //(but doesn't find X or Y as the root of a bicomp)
|
Chris@16
|
1258
|
Chris@16
|
1259 typename face_vertex_iterator<>::type
|
Chris@16
|
1260 x_upper_itr(x, face_handles, first_side());
|
Chris@16
|
1261 typename face_vertex_iterator<>::type
|
Chris@16
|
1262 x_lower_itr(x, face_handles, second_side());
|
Chris@16
|
1263 typename face_vertex_iterator<>::type face_itr, face_end;
|
Chris@16
|
1264
|
Chris@16
|
1265 // Don't know which path from x is the upper or lower path -
|
Chris@16
|
1266 // we'll find out here
|
Chris@16
|
1267 for(face_itr = x_upper_itr; face_itr != face_end; ++face_itr)
|
Chris@16
|
1268 {
|
Chris@16
|
1269 if (*face_itr == y)
|
Chris@16
|
1270 {
|
Chris@16
|
1271 std::swap(x_upper_itr, x_lower_itr);
|
Chris@16
|
1272 break;
|
Chris@16
|
1273 }
|
Chris@16
|
1274 }
|
Chris@16
|
1275
|
Chris@16
|
1276 upper_face_vertex[x] = true;
|
Chris@16
|
1277
|
Chris@16
|
1278 vertex_t current_vertex = x;
|
Chris@16
|
1279 vertex_t previous_vertex;
|
Chris@16
|
1280 for(face_itr = x_upper_itr; face_itr != face_end; ++face_itr)
|
Chris@16
|
1281 {
|
Chris@16
|
1282 previous_vertex = current_vertex;
|
Chris@16
|
1283 current_vertex = *face_itr;
|
Chris@16
|
1284 upper_face_vertex[current_vertex] = true;
|
Chris@16
|
1285 }
|
Chris@16
|
1286
|
Chris@16
|
1287 v_dfchild_handle
|
Chris@16
|
1288 = dfs_child_handles[canonical_dfs_child[previous_vertex]];
|
Chris@16
|
1289
|
Chris@16
|
1290 for(face_itr = x_lower_itr; *face_itr != y; ++face_itr)
|
Chris@16
|
1291 {
|
Chris@16
|
1292 vertex_t current_vertex(*face_itr);
|
Chris@16
|
1293 lower_face_vertex[current_vertex] = true;
|
Chris@16
|
1294
|
Chris@16
|
1295 typename face_handle_list_t::iterator roots_itr, roots_end;
|
Chris@16
|
1296
|
Chris@16
|
1297 if (w == graph_traits<Graph>::null_vertex()) //haven't found a w yet
|
Chris@16
|
1298 {
|
Chris@16
|
1299 roots_end = pertinent_roots[current_vertex]->end();
|
Chris@16
|
1300 for(roots_itr = pertinent_roots[current_vertex]->begin();
|
Chris@16
|
1301 roots_itr != roots_end; ++roots_itr
|
Chris@16
|
1302 )
|
Chris@16
|
1303 {
|
Chris@16
|
1304 if (low_point[canonical_dfs_child[roots_itr->first_vertex()]]
|
Chris@16
|
1305 < dfs_number[v]
|
Chris@16
|
1306 )
|
Chris@16
|
1307 {
|
Chris@16
|
1308 w = current_vertex;
|
Chris@16
|
1309 w_handle = *roots_itr;
|
Chris@16
|
1310 break;
|
Chris@16
|
1311 }
|
Chris@16
|
1312 }
|
Chris@16
|
1313 }
|
Chris@16
|
1314
|
Chris@16
|
1315 }
|
Chris@16
|
1316
|
Chris@16
|
1317 for(; face_itr != face_end; ++face_itr)
|
Chris@16
|
1318 {
|
Chris@16
|
1319 vertex_t current_vertex(*face_itr);
|
Chris@16
|
1320 upper_face_vertex[current_vertex] = true;
|
Chris@16
|
1321 bicomp_root = current_vertex;
|
Chris@16
|
1322 }
|
Chris@16
|
1323
|
Chris@16
|
1324 typedef typename face_edge_iterator<>::type walkup_itr_t;
|
Chris@16
|
1325
|
Chris@16
|
1326 std::vector<bool> outer_face_edge_vector(num_edges(g), false);
|
Chris@16
|
1327 edge_to_bool_map_t outer_face_edge(outer_face_edge_vector.begin(), em);
|
Chris@16
|
1328
|
Chris@16
|
1329 walkup_itr_t walkup_end;
|
Chris@16
|
1330 for(walkup_itr_t walkup_itr(x, face_handles, first_side());
|
Chris@16
|
1331 walkup_itr != walkup_end; ++walkup_itr
|
Chris@16
|
1332 )
|
Chris@16
|
1333 {
|
Chris@16
|
1334 outer_face_edge[*walkup_itr] = true;
|
Chris@16
|
1335 is_in_subgraph[*walkup_itr] = true;
|
Chris@16
|
1336 }
|
Chris@16
|
1337
|
Chris@16
|
1338 for(walkup_itr_t walkup_itr(x, face_handles, second_side());
|
Chris@16
|
1339 walkup_itr != walkup_end; ++walkup_itr
|
Chris@16
|
1340 )
|
Chris@16
|
1341 {
|
Chris@16
|
1342 outer_face_edge[*walkup_itr] = true;
|
Chris@16
|
1343 is_in_subgraph[*walkup_itr] = true;
|
Chris@16
|
1344 }
|
Chris@16
|
1345
|
Chris@16
|
1346 std::vector<bool> forbidden_edge_vector(num_edges(g), false);
|
Chris@16
|
1347 edge_to_bool_map_t forbidden_edge(forbidden_edge_vector.begin(), em);
|
Chris@16
|
1348
|
Chris@16
|
1349 std::vector<bool> goal_edge_vector(num_edges(g), false);
|
Chris@16
|
1350 edge_to_bool_map_t goal_edge(goal_edge_vector.begin(), em);
|
Chris@16
|
1351
|
Chris@16
|
1352
|
Chris@16
|
1353 //Find external path to x and to y
|
Chris@16
|
1354
|
Chris@16
|
1355 for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
Chris@16
|
1356 {
|
Chris@16
|
1357 edge_t e(*ei);
|
Chris@16
|
1358 goal_edge[e]
|
Chris@16
|
1359 = !outer_face_edge[e] && (source(e,g) == x || target(e,g) == x);
|
Chris@16
|
1360 forbidden_edge[*ei] = outer_face_edge[*ei];
|
Chris@16
|
1361 }
|
Chris@16
|
1362
|
Chris@16
|
1363 vertex_t x_ancestor = v;
|
Chris@16
|
1364 vertex_t x_endpoint = graph_traits<Graph>::null_vertex();
|
Chris@16
|
1365
|
Chris@16
|
1366 while(x_endpoint == graph_traits<Graph>::null_vertex())
|
Chris@16
|
1367 {
|
Chris@16
|
1368 x_ancestor = dfs_parent[x_ancestor];
|
Chris@16
|
1369 x_endpoint = kuratowski_walkup(x_ancestor,
|
Chris@16
|
1370 forbidden_edge,
|
Chris@16
|
1371 goal_edge,
|
Chris@16
|
1372 is_embedded,
|
Chris@16
|
1373 x_external_path
|
Chris@16
|
1374 );
|
Chris@16
|
1375
|
Chris@16
|
1376 }
|
Chris@16
|
1377
|
Chris@16
|
1378
|
Chris@16
|
1379 for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
Chris@16
|
1380 {
|
Chris@16
|
1381 edge_t e(*ei);
|
Chris@16
|
1382 goal_edge[e]
|
Chris@16
|
1383 = !outer_face_edge[e] && (source(e,g) == y || target(e,g) == y);
|
Chris@16
|
1384 forbidden_edge[*ei] = outer_face_edge[*ei];
|
Chris@16
|
1385 }
|
Chris@16
|
1386
|
Chris@16
|
1387 vertex_t y_ancestor = v;
|
Chris@16
|
1388 vertex_t y_endpoint = graph_traits<Graph>::null_vertex();
|
Chris@16
|
1389
|
Chris@16
|
1390 while(y_endpoint == graph_traits<Graph>::null_vertex())
|
Chris@16
|
1391 {
|
Chris@16
|
1392 y_ancestor = dfs_parent[y_ancestor];
|
Chris@16
|
1393 y_endpoint = kuratowski_walkup(y_ancestor,
|
Chris@16
|
1394 forbidden_edge,
|
Chris@16
|
1395 goal_edge,
|
Chris@16
|
1396 is_embedded,
|
Chris@16
|
1397 y_external_path
|
Chris@16
|
1398 );
|
Chris@16
|
1399
|
Chris@16
|
1400 }
|
Chris@16
|
1401
|
Chris@16
|
1402
|
Chris@16
|
1403 vertex_t parent, child;
|
Chris@16
|
1404
|
Chris@16
|
1405 //If v isn't on the same bicomp as x and y, it's a case A
|
Chris@16
|
1406 if (bicomp_root != v)
|
Chris@16
|
1407 {
|
Chris@16
|
1408 chosen_case = detail::BM_CASE_A;
|
Chris@16
|
1409
|
Chris@16
|
1410 for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
|
Chris@16
|
1411 if (lower_face_vertex[*vi])
|
Chris@16
|
1412 for(boost::tie(oei,oei_end) = out_edges(*vi,g); oei != oei_end; ++oei)
|
Chris@16
|
1413 if(!outer_face_edge[*oei])
|
Chris@16
|
1414 goal_edge[*oei] = true;
|
Chris@16
|
1415
|
Chris@16
|
1416 for(boost::tie(ei,ei_end) = edges(g); ei != ei_end; ++ei)
|
Chris@16
|
1417 forbidden_edge[*ei] = outer_face_edge[*ei];
|
Chris@16
|
1418
|
Chris@16
|
1419 z = kuratowski_walkup
|
Chris@16
|
1420 (v, forbidden_edge, goal_edge, is_embedded, z_v_path);
|
Chris@16
|
1421
|
Chris@16
|
1422 }
|
Chris@16
|
1423 else if (w != graph_traits<Graph>::null_vertex())
|
Chris@16
|
1424 {
|
Chris@16
|
1425 chosen_case = detail::BM_CASE_B;
|
Chris@16
|
1426
|
Chris@16
|
1427 for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
Chris@16
|
1428 {
|
Chris@16
|
1429 edge_t e(*ei);
|
Chris@16
|
1430 goal_edge[e] = false;
|
Chris@16
|
1431 forbidden_edge[e] = outer_face_edge[e];
|
Chris@16
|
1432 }
|
Chris@16
|
1433
|
Chris@16
|
1434 goal_edge[w_handle.first_edge()] = true;
|
Chris@16
|
1435 goal_edge[w_handle.second_edge()] = true;
|
Chris@16
|
1436
|
Chris@16
|
1437 z = kuratowski_walkup(v,
|
Chris@16
|
1438 forbidden_edge,
|
Chris@16
|
1439 goal_edge,
|
Chris@16
|
1440 is_embedded,
|
Chris@16
|
1441 z_v_path
|
Chris@16
|
1442 );
|
Chris@16
|
1443
|
Chris@16
|
1444
|
Chris@16
|
1445 for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
Chris@16
|
1446 {
|
Chris@16
|
1447 forbidden_edge[*ei] = outer_face_edge[*ei];
|
Chris@16
|
1448 }
|
Chris@16
|
1449
|
Chris@16
|
1450 typename std::vector<edge_t>::iterator pi, pi_end;
|
Chris@16
|
1451 pi_end = z_v_path.end();
|
Chris@16
|
1452 for(pi = z_v_path.begin(); pi != pi_end; ++pi)
|
Chris@16
|
1453 {
|
Chris@16
|
1454 goal_edge[*pi] = true;
|
Chris@16
|
1455 }
|
Chris@16
|
1456
|
Chris@16
|
1457 w_ancestor = v;
|
Chris@16
|
1458 vertex_t w_endpoint = graph_traits<Graph>::null_vertex();
|
Chris@16
|
1459
|
Chris@16
|
1460 while(w_endpoint == graph_traits<Graph>::null_vertex())
|
Chris@16
|
1461 {
|
Chris@16
|
1462 w_ancestor = dfs_parent[w_ancestor];
|
Chris@16
|
1463 w_endpoint = kuratowski_walkup(w_ancestor,
|
Chris@16
|
1464 forbidden_edge,
|
Chris@16
|
1465 goal_edge,
|
Chris@16
|
1466 is_embedded,
|
Chris@16
|
1467 w_path
|
Chris@16
|
1468 );
|
Chris@16
|
1469
|
Chris@16
|
1470 }
|
Chris@16
|
1471
|
Chris@16
|
1472 // We really want both the w walkup and the z walkup to finish on
|
Chris@16
|
1473 // exactly the same edge, but for convenience (since we don't have
|
Chris@16
|
1474 // control over which side of a bicomp a walkup moves up) we've
|
Chris@16
|
1475 // defined the walkup to either end at w_handle.first_edge() or
|
Chris@16
|
1476 // w_handle.second_edge(). If both walkups ended at different edges,
|
Chris@16
|
1477 // we'll do a little surgery on the w walkup path to make it follow
|
Chris@16
|
1478 // the other side of the final bicomp.
|
Chris@16
|
1479
|
Chris@16
|
1480 if ((w_path.back() == w_handle.first_edge() &&
|
Chris@16
|
1481 z_v_path.back() == w_handle.second_edge())
|
Chris@16
|
1482 ||
|
Chris@16
|
1483 (w_path.back() == w_handle.second_edge() &&
|
Chris@16
|
1484 z_v_path.back() == w_handle.first_edge())
|
Chris@16
|
1485 )
|
Chris@16
|
1486 {
|
Chris@16
|
1487 walkup_itr_t wi, wi_end;
|
Chris@16
|
1488 edge_t final_edge = w_path.back();
|
Chris@16
|
1489 vertex_t anchor
|
Chris@16
|
1490 = source(final_edge, g) == w_handle.get_anchor() ?
|
Chris@16
|
1491 target(final_edge, g) : source(final_edge, g);
|
Chris@16
|
1492 if (face_handles[anchor].first_edge() == final_edge)
|
Chris@16
|
1493 wi = walkup_itr_t(anchor, face_handles, second_side());
|
Chris@16
|
1494 else
|
Chris@16
|
1495 wi = walkup_itr_t(anchor, face_handles, first_side());
|
Chris@16
|
1496
|
Chris@16
|
1497 w_path.pop_back();
|
Chris@16
|
1498
|
Chris@16
|
1499 for(; wi != wi_end; ++wi)
|
Chris@16
|
1500 {
|
Chris@16
|
1501 edge_t e(*wi);
|
Chris@16
|
1502 if (w_path.back() == e)
|
Chris@16
|
1503 w_path.pop_back();
|
Chris@16
|
1504 else
|
Chris@16
|
1505 w_path.push_back(e);
|
Chris@16
|
1506 }
|
Chris@16
|
1507 }
|
Chris@16
|
1508
|
Chris@16
|
1509
|
Chris@16
|
1510 }
|
Chris@16
|
1511 else
|
Chris@16
|
1512 {
|
Chris@16
|
1513
|
Chris@16
|
1514 //We need to find a valid z, since the x-y path re-defines the lower
|
Chris@16
|
1515 //face, and the z we found earlier may now be on the upper face.
|
Chris@16
|
1516
|
Chris@16
|
1517 chosen_case = detail::BM_CASE_E;
|
Chris@16
|
1518
|
Chris@16
|
1519
|
Chris@16
|
1520 // The z we've used so far is just an externally active vertex on the
|
Chris@16
|
1521 // lower face path, but may not be the z we need for a case C, D, or
|
Chris@16
|
1522 // E subgraph. the z we need now is any externally active vertex on
|
Chris@16
|
1523 // the lower face path with both old_face_handles edges on the outer
|
Chris@16
|
1524 // face. Since we know an x-y path exists, such a z must also exist.
|
Chris@16
|
1525
|
Chris@16
|
1526 //TODO: find this z in the first place.
|
Chris@16
|
1527
|
Chris@16
|
1528 //find the new z
|
Chris@16
|
1529
|
Chris@16
|
1530 for(face_itr = x_lower_itr; *face_itr != y; ++face_itr)
|
Chris@16
|
1531 {
|
Chris@16
|
1532 vertex_t possible_z(*face_itr);
|
Chris@16
|
1533 if (pertinent(possible_z,v) &&
|
Chris@16
|
1534 outer_face_edge[face_handles[possible_z].old_first_edge()] &&
|
Chris@16
|
1535 outer_face_edge[face_handles[possible_z].old_second_edge()]
|
Chris@16
|
1536 )
|
Chris@16
|
1537 {
|
Chris@16
|
1538 z = possible_z;
|
Chris@16
|
1539 break;
|
Chris@16
|
1540 }
|
Chris@16
|
1541 }
|
Chris@16
|
1542
|
Chris@16
|
1543 //find x-y path, and a w if one exists.
|
Chris@16
|
1544
|
Chris@16
|
1545 if (externally_active(z,v))
|
Chris@16
|
1546 w = z;
|
Chris@16
|
1547
|
Chris@16
|
1548
|
Chris@16
|
1549 typedef typename face_edge_iterator
|
Chris@16
|
1550 <single_side, previous_iteration>::type old_face_iterator_t;
|
Chris@16
|
1551
|
Chris@16
|
1552 old_face_iterator_t
|
Chris@16
|
1553 first_old_face_itr(z, face_handles, first_side());
|
Chris@16
|
1554 old_face_iterator_t
|
Chris@16
|
1555 second_old_face_itr(z, face_handles, second_side());
|
Chris@16
|
1556 old_face_iterator_t old_face_itr, old_face_end;
|
Chris@16
|
1557
|
Chris@16
|
1558 std::vector<old_face_iterator_t> old_face_iterators;
|
Chris@16
|
1559 old_face_iterators.push_back(first_old_face_itr);
|
Chris@16
|
1560 old_face_iterators.push_back(second_old_face_itr);
|
Chris@16
|
1561
|
Chris@16
|
1562 std::vector<bool> x_y_path_vertex_vector(num_vertices(g), false);
|
Chris@16
|
1563 vertex_to_bool_map_t x_y_path_vertex
|
Chris@16
|
1564 (x_y_path_vertex_vector.begin(), vm);
|
Chris@16
|
1565
|
Chris@16
|
1566 typename std::vector<old_face_iterator_t>::iterator
|
Chris@16
|
1567 of_itr, of_itr_end;
|
Chris@16
|
1568 of_itr_end = old_face_iterators.end();
|
Chris@16
|
1569 for(of_itr = old_face_iterators.begin();
|
Chris@16
|
1570 of_itr != of_itr_end; ++of_itr
|
Chris@16
|
1571 )
|
Chris@16
|
1572 {
|
Chris@16
|
1573
|
Chris@16
|
1574 old_face_itr = *of_itr;
|
Chris@16
|
1575
|
Chris@16
|
1576 vertex_t previous_vertex;
|
Chris@16
|
1577 bool seen_x_or_y = false;
|
Chris@16
|
1578 vertex_t current_vertex = z;
|
Chris@16
|
1579 for(; old_face_itr != old_face_end; ++old_face_itr)
|
Chris@16
|
1580 {
|
Chris@16
|
1581 edge_t e(*old_face_itr);
|
Chris@16
|
1582 previous_vertex = current_vertex;
|
Chris@16
|
1583 current_vertex = source(e,g) == current_vertex ?
|
Chris@16
|
1584 target(e,g) : source(e,g);
|
Chris@16
|
1585
|
Chris@16
|
1586 if (current_vertex == x || current_vertex == y)
|
Chris@16
|
1587 seen_x_or_y = true;
|
Chris@16
|
1588
|
Chris@16
|
1589 if (w == graph_traits<Graph>::null_vertex() &&
|
Chris@16
|
1590 externally_active(current_vertex,v) &&
|
Chris@16
|
1591 outer_face_edge[e] &&
|
Chris@16
|
1592 outer_face_edge[*boost::next(old_face_itr)] &&
|
Chris@16
|
1593 !seen_x_or_y
|
Chris@16
|
1594 )
|
Chris@16
|
1595 {
|
Chris@16
|
1596 w = current_vertex;
|
Chris@16
|
1597 }
|
Chris@16
|
1598
|
Chris@16
|
1599 if (!outer_face_edge[e])
|
Chris@16
|
1600 {
|
Chris@16
|
1601 if (!upper_face_vertex[current_vertex] &&
|
Chris@16
|
1602 !lower_face_vertex[current_vertex]
|
Chris@16
|
1603 )
|
Chris@16
|
1604 {
|
Chris@16
|
1605 x_y_path_vertex[current_vertex] = true;
|
Chris@16
|
1606 }
|
Chris@16
|
1607
|
Chris@16
|
1608 is_in_subgraph[e] = true;
|
Chris@16
|
1609 if (upper_face_vertex[source(e,g)] ||
|
Chris@16
|
1610 lower_face_vertex[source(e,g)]
|
Chris@16
|
1611 )
|
Chris@16
|
1612 {
|
Chris@16
|
1613 if (first_x_y_path_endpoint ==
|
Chris@16
|
1614 graph_traits<Graph>::null_vertex()
|
Chris@16
|
1615 )
|
Chris@16
|
1616 first_x_y_path_endpoint = source(e,g);
|
Chris@16
|
1617 else
|
Chris@16
|
1618 second_x_y_path_endpoint = source(e,g);
|
Chris@16
|
1619 }
|
Chris@16
|
1620 if (upper_face_vertex[target(e,g)] ||
|
Chris@16
|
1621 lower_face_vertex[target(e,g)]
|
Chris@16
|
1622 )
|
Chris@16
|
1623 {
|
Chris@16
|
1624 if (first_x_y_path_endpoint ==
|
Chris@16
|
1625 graph_traits<Graph>::null_vertex()
|
Chris@16
|
1626 )
|
Chris@16
|
1627 first_x_y_path_endpoint = target(e,g);
|
Chris@16
|
1628 else
|
Chris@16
|
1629 second_x_y_path_endpoint = target(e,g);
|
Chris@16
|
1630 }
|
Chris@16
|
1631
|
Chris@16
|
1632
|
Chris@16
|
1633 }
|
Chris@16
|
1634 else if (previous_vertex == x || previous_vertex == y)
|
Chris@16
|
1635 {
|
Chris@16
|
1636 chosen_case = detail::BM_CASE_C;
|
Chris@16
|
1637 }
|
Chris@16
|
1638
|
Chris@16
|
1639 }
|
Chris@16
|
1640
|
Chris@16
|
1641 }
|
Chris@16
|
1642
|
Chris@16
|
1643 // Look for a case D - one of v's embedded edges will connect to the
|
Chris@16
|
1644 // x-y path along an inner face path.
|
Chris@16
|
1645
|
Chris@16
|
1646 //First, get a list of all of v's embedded child edges
|
Chris@16
|
1647
|
Chris@16
|
1648 out_edge_iterator_t v_edge_itr, v_edge_end;
|
Chris@16
|
1649 for(boost::tie(v_edge_itr,v_edge_end) = out_edges(v,g);
|
Chris@16
|
1650 v_edge_itr != v_edge_end; ++v_edge_itr
|
Chris@16
|
1651 )
|
Chris@16
|
1652 {
|
Chris@16
|
1653 edge_t embedded_edge(*v_edge_itr);
|
Chris@16
|
1654
|
Chris@16
|
1655 if (!is_embedded[embedded_edge] ||
|
Chris@16
|
1656 embedded_edge == dfs_parent_edge[v]
|
Chris@16
|
1657 )
|
Chris@16
|
1658 continue;
|
Chris@16
|
1659
|
Chris@16
|
1660 case_d_edges.push_back(embedded_edge);
|
Chris@16
|
1661
|
Chris@16
|
1662 vertex_t current_vertex
|
Chris@16
|
1663 = source(embedded_edge,g) == v ?
|
Chris@16
|
1664 target(embedded_edge,g) : source(embedded_edge,g);
|
Chris@16
|
1665
|
Chris@16
|
1666 typename face_edge_iterator<>::type
|
Chris@16
|
1667 internal_face_itr, internal_face_end;
|
Chris@16
|
1668 if (face_handles[current_vertex].first_vertex() == v)
|
Chris@16
|
1669 {
|
Chris@16
|
1670 internal_face_itr = typename face_edge_iterator<>::type
|
Chris@16
|
1671 (current_vertex, face_handles, second_side());
|
Chris@16
|
1672 }
|
Chris@16
|
1673 else
|
Chris@16
|
1674 {
|
Chris@16
|
1675 internal_face_itr = typename face_edge_iterator<>::type
|
Chris@16
|
1676 (current_vertex, face_handles, first_side());
|
Chris@16
|
1677 }
|
Chris@16
|
1678
|
Chris@16
|
1679 while(internal_face_itr != internal_face_end &&
|
Chris@16
|
1680 !outer_face_edge[*internal_face_itr] &&
|
Chris@16
|
1681 !x_y_path_vertex[current_vertex]
|
Chris@16
|
1682 )
|
Chris@16
|
1683 {
|
Chris@16
|
1684 edge_t e(*internal_face_itr);
|
Chris@16
|
1685 case_d_edges.push_back(e);
|
Chris@16
|
1686 current_vertex =
|
Chris@16
|
1687 source(e,g) == current_vertex ? target(e,g) : source(e,g);
|
Chris@16
|
1688 ++internal_face_itr;
|
Chris@16
|
1689 }
|
Chris@16
|
1690
|
Chris@16
|
1691 if (x_y_path_vertex[current_vertex])
|
Chris@16
|
1692 {
|
Chris@16
|
1693 chosen_case = detail::BM_CASE_D;
|
Chris@16
|
1694 break;
|
Chris@16
|
1695 }
|
Chris@16
|
1696 else
|
Chris@16
|
1697 {
|
Chris@16
|
1698 case_d_edges.clear();
|
Chris@16
|
1699 }
|
Chris@16
|
1700
|
Chris@16
|
1701 }
|
Chris@16
|
1702
|
Chris@16
|
1703
|
Chris@16
|
1704 }
|
Chris@16
|
1705
|
Chris@16
|
1706
|
Chris@16
|
1707
|
Chris@16
|
1708
|
Chris@16
|
1709 if (chosen_case != detail::BM_CASE_B && chosen_case != detail::BM_CASE_A)
|
Chris@16
|
1710 {
|
Chris@16
|
1711
|
Chris@16
|
1712 //Finding z and w.
|
Chris@16
|
1713
|
Chris@16
|
1714 for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
Chris@16
|
1715 {
|
Chris@16
|
1716 edge_t e(*ei);
|
Chris@16
|
1717 goal_edge[e] = !outer_face_edge[e] &&
|
Chris@16
|
1718 (source(e,g) == z || target(e,g) == z);
|
Chris@16
|
1719 forbidden_edge[e] = outer_face_edge[e];
|
Chris@16
|
1720 }
|
Chris@16
|
1721
|
Chris@16
|
1722 kuratowski_walkup(v,
|
Chris@16
|
1723 forbidden_edge,
|
Chris@16
|
1724 goal_edge,
|
Chris@16
|
1725 is_embedded,
|
Chris@16
|
1726 z_v_path
|
Chris@16
|
1727 );
|
Chris@16
|
1728
|
Chris@16
|
1729 if (chosen_case == detail::BM_CASE_E)
|
Chris@16
|
1730 {
|
Chris@16
|
1731
|
Chris@16
|
1732 for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
Chris@16
|
1733 {
|
Chris@16
|
1734 forbidden_edge[*ei] = outer_face_edge[*ei];
|
Chris@16
|
1735 goal_edge[*ei] = !outer_face_edge[*ei] &&
|
Chris@16
|
1736 (source(*ei,g) == w || target(*ei,g) == w);
|
Chris@16
|
1737 }
|
Chris@16
|
1738
|
Chris@16
|
1739 for(boost::tie(oei, oei_end) = out_edges(w,g); oei != oei_end; ++oei)
|
Chris@16
|
1740 {
|
Chris@16
|
1741 if (!outer_face_edge[*oei])
|
Chris@16
|
1742 goal_edge[*oei] = true;
|
Chris@16
|
1743 }
|
Chris@16
|
1744
|
Chris@16
|
1745 typename std::vector<edge_t>::iterator pi, pi_end;
|
Chris@16
|
1746 pi_end = z_v_path.end();
|
Chris@16
|
1747 for(pi = z_v_path.begin(); pi != pi_end; ++pi)
|
Chris@16
|
1748 {
|
Chris@16
|
1749 goal_edge[*pi] = true;
|
Chris@16
|
1750 }
|
Chris@16
|
1751
|
Chris@16
|
1752 w_ancestor = v;
|
Chris@16
|
1753 vertex_t w_endpoint = graph_traits<Graph>::null_vertex();
|
Chris@16
|
1754
|
Chris@16
|
1755 while(w_endpoint == graph_traits<Graph>::null_vertex())
|
Chris@16
|
1756 {
|
Chris@16
|
1757 w_ancestor = dfs_parent[w_ancestor];
|
Chris@16
|
1758 w_endpoint = kuratowski_walkup(w_ancestor,
|
Chris@16
|
1759 forbidden_edge,
|
Chris@16
|
1760 goal_edge,
|
Chris@16
|
1761 is_embedded,
|
Chris@16
|
1762 w_path
|
Chris@16
|
1763 );
|
Chris@16
|
1764
|
Chris@16
|
1765 }
|
Chris@16
|
1766
|
Chris@16
|
1767 }
|
Chris@16
|
1768
|
Chris@16
|
1769
|
Chris@16
|
1770 }
|
Chris@16
|
1771
|
Chris@16
|
1772
|
Chris@16
|
1773 //We're done isolating the Kuratowski subgraph at this point -
|
Chris@16
|
1774 //but there's still some cleaning up to do.
|
Chris@16
|
1775
|
Chris@16
|
1776 //Update is_in_subgraph with the paths we just found
|
Chris@16
|
1777
|
Chris@16
|
1778 xi_end = x_external_path.end();
|
Chris@16
|
1779 for(xi = x_external_path.begin(); xi != xi_end; ++xi)
|
Chris@16
|
1780 is_in_subgraph[*xi] = true;
|
Chris@16
|
1781
|
Chris@16
|
1782 xi_end = y_external_path.end();
|
Chris@16
|
1783 for(xi = y_external_path.begin(); xi != xi_end; ++xi)
|
Chris@16
|
1784 is_in_subgraph[*xi] = true;
|
Chris@16
|
1785
|
Chris@16
|
1786 xi_end = z_v_path.end();
|
Chris@16
|
1787 for(xi = z_v_path.begin(); xi != xi_end; ++xi)
|
Chris@16
|
1788 is_in_subgraph[*xi] = true;
|
Chris@16
|
1789
|
Chris@16
|
1790 xi_end = case_d_edges.end();
|
Chris@16
|
1791 for(xi = case_d_edges.begin(); xi != xi_end; ++xi)
|
Chris@16
|
1792 is_in_subgraph[*xi] = true;
|
Chris@16
|
1793
|
Chris@16
|
1794 xi_end = w_path.end();
|
Chris@16
|
1795 for(xi = w_path.begin(); xi != xi_end; ++xi)
|
Chris@16
|
1796 is_in_subgraph[*xi] = true;
|
Chris@16
|
1797
|
Chris@16
|
1798 child = bicomp_root;
|
Chris@16
|
1799 parent = dfs_parent[child];
|
Chris@16
|
1800 while(child != parent)
|
Chris@16
|
1801 {
|
Chris@16
|
1802 is_in_subgraph[dfs_parent_edge[child]] = true;
|
Chris@16
|
1803 boost::tie(parent, child) = std::make_pair( dfs_parent[parent], parent );
|
Chris@16
|
1804 }
|
Chris@16
|
1805
|
Chris@16
|
1806
|
Chris@16
|
1807
|
Chris@16
|
1808
|
Chris@16
|
1809 // At this point, we've already isolated the Kuratowski subgraph and
|
Chris@16
|
1810 // collected all of the edges that compose it in the is_in_subgraph
|
Chris@16
|
1811 // property map. But we want the verification of such a subgraph to be
|
Chris@16
|
1812 // a deterministic process, and we can simplify the function
|
Chris@16
|
1813 // is_kuratowski_subgraph by cleaning up some edges here.
|
Chris@16
|
1814
|
Chris@16
|
1815 if (chosen_case == detail::BM_CASE_B)
|
Chris@16
|
1816 {
|
Chris@16
|
1817 is_in_subgraph[dfs_parent_edge[v]] = false;
|
Chris@16
|
1818 }
|
Chris@16
|
1819 else if (chosen_case == detail::BM_CASE_C)
|
Chris@16
|
1820 {
|
Chris@16
|
1821 // In a case C subgraph, at least one of the x-y path endpoints
|
Chris@16
|
1822 // (call it alpha) is above either x or y on the outer face. The
|
Chris@16
|
1823 // other endpoint may be attached at x or y OR above OR below. In
|
Chris@16
|
1824 // any of these three cases, we can form a K_3_3 by removing the
|
Chris@16
|
1825 // edge attached to v on the outer face that is NOT on the path to
|
Chris@16
|
1826 // alpha.
|
Chris@16
|
1827
|
Chris@16
|
1828 typename face_vertex_iterator<single_side, follow_visitor>::type
|
Chris@16
|
1829 face_itr, face_end;
|
Chris@16
|
1830 if (face_handles[v_dfchild_handle.first_vertex()].first_edge() ==
|
Chris@16
|
1831 v_dfchild_handle.first_edge()
|
Chris@16
|
1832 )
|
Chris@16
|
1833 {
|
Chris@16
|
1834 face_itr = typename face_vertex_iterator
|
Chris@16
|
1835 <single_side, follow_visitor>::type
|
Chris@16
|
1836 (v_dfchild_handle.first_vertex(), face_handles, second_side());
|
Chris@16
|
1837 }
|
Chris@16
|
1838 else
|
Chris@16
|
1839 {
|
Chris@16
|
1840 face_itr = typename face_vertex_iterator
|
Chris@16
|
1841 <single_side, follow_visitor>::type
|
Chris@16
|
1842 (v_dfchild_handle.first_vertex(), face_handles, first_side());
|
Chris@16
|
1843 }
|
Chris@16
|
1844
|
Chris@16
|
1845 for(; true; ++face_itr)
|
Chris@16
|
1846 {
|
Chris@16
|
1847 vertex_t current_vertex(*face_itr);
|
Chris@16
|
1848 if (current_vertex == x || current_vertex == y)
|
Chris@16
|
1849 {
|
Chris@16
|
1850 is_in_subgraph[v_dfchild_handle.first_edge()] = false;
|
Chris@16
|
1851 break;
|
Chris@16
|
1852 }
|
Chris@16
|
1853 else if (current_vertex == first_x_y_path_endpoint ||
|
Chris@16
|
1854 current_vertex == second_x_y_path_endpoint)
|
Chris@16
|
1855 {
|
Chris@16
|
1856 is_in_subgraph[v_dfchild_handle.second_edge()] = false;
|
Chris@16
|
1857 break;
|
Chris@16
|
1858 }
|
Chris@16
|
1859 }
|
Chris@16
|
1860
|
Chris@16
|
1861 }
|
Chris@16
|
1862 else if (chosen_case == detail::BM_CASE_D)
|
Chris@16
|
1863 {
|
Chris@16
|
1864 // Need to remove both of the edges adjacent to v on the outer face.
|
Chris@16
|
1865 // remove the connecting edges from v to bicomp, then
|
Chris@16
|
1866 // is_kuratowski_subgraph will shrink vertices of degree 1
|
Chris@16
|
1867 // automatically...
|
Chris@16
|
1868
|
Chris@16
|
1869 is_in_subgraph[v_dfchild_handle.first_edge()] = false;
|
Chris@16
|
1870 is_in_subgraph[v_dfchild_handle.second_edge()] = false;
|
Chris@16
|
1871
|
Chris@16
|
1872 }
|
Chris@16
|
1873 else if (chosen_case == detail::BM_CASE_E)
|
Chris@16
|
1874 {
|
Chris@16
|
1875 // Similarly to case C, if the endpoints of the x-y path are both
|
Chris@16
|
1876 // below x and y, we should remove an edge to allow the subgraph to
|
Chris@16
|
1877 // contract to a K_3_3.
|
Chris@16
|
1878
|
Chris@16
|
1879
|
Chris@16
|
1880 if ((first_x_y_path_endpoint != x && first_x_y_path_endpoint != y) ||
|
Chris@16
|
1881 (second_x_y_path_endpoint != x && second_x_y_path_endpoint != y)
|
Chris@16
|
1882 )
|
Chris@16
|
1883 {
|
Chris@16
|
1884 is_in_subgraph[dfs_parent_edge[v]] = false;
|
Chris@16
|
1885
|
Chris@16
|
1886 vertex_t deletion_endpoint, other_endpoint;
|
Chris@16
|
1887 if (lower_face_vertex[first_x_y_path_endpoint])
|
Chris@16
|
1888 {
|
Chris@16
|
1889 deletion_endpoint = second_x_y_path_endpoint;
|
Chris@16
|
1890 other_endpoint = first_x_y_path_endpoint;
|
Chris@16
|
1891 }
|
Chris@16
|
1892 else
|
Chris@16
|
1893 {
|
Chris@16
|
1894 deletion_endpoint = first_x_y_path_endpoint;
|
Chris@16
|
1895 other_endpoint = second_x_y_path_endpoint;
|
Chris@16
|
1896 }
|
Chris@16
|
1897
|
Chris@16
|
1898 typename face_edge_iterator<>::type face_itr, face_end;
|
Chris@16
|
1899
|
Chris@16
|
1900 bool found_other_endpoint = false;
|
Chris@16
|
1901 for(face_itr = typename face_edge_iterator<>::type
|
Chris@16
|
1902 (deletion_endpoint, face_handles, first_side());
|
Chris@16
|
1903 face_itr != face_end; ++face_itr
|
Chris@16
|
1904 )
|
Chris@16
|
1905 {
|
Chris@16
|
1906 edge_t e(*face_itr);
|
Chris@16
|
1907 if (source(e,g) == other_endpoint ||
|
Chris@16
|
1908 target(e,g) == other_endpoint
|
Chris@16
|
1909 )
|
Chris@16
|
1910 {
|
Chris@16
|
1911 found_other_endpoint = true;
|
Chris@16
|
1912 break;
|
Chris@16
|
1913 }
|
Chris@16
|
1914 }
|
Chris@16
|
1915
|
Chris@16
|
1916 if (found_other_endpoint)
|
Chris@16
|
1917 {
|
Chris@16
|
1918 is_in_subgraph[face_handles[deletion_endpoint].first_edge()]
|
Chris@16
|
1919 = false;
|
Chris@16
|
1920 }
|
Chris@16
|
1921 else
|
Chris@16
|
1922 {
|
Chris@16
|
1923 is_in_subgraph[face_handles[deletion_endpoint].second_edge()]
|
Chris@16
|
1924 = false;
|
Chris@16
|
1925 }
|
Chris@16
|
1926 }
|
Chris@16
|
1927
|
Chris@16
|
1928 }
|
Chris@16
|
1929
|
Chris@16
|
1930
|
Chris@16
|
1931 for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
Chris@16
|
1932 if (is_in_subgraph[*ei])
|
Chris@16
|
1933 *o_itr = *ei;
|
Chris@16
|
1934
|
Chris@16
|
1935 }
|
Chris@16
|
1936
|
Chris@16
|
1937
|
Chris@16
|
1938
|
Chris@16
|
1939 template<typename EdgePermutation>
|
Chris@16
|
1940 void make_edge_permutation(EdgePermutation perm)
|
Chris@16
|
1941 {
|
Chris@16
|
1942 vertex_iterator_t vi, vi_end;
|
Chris@16
|
1943 for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
|
Chris@16
|
1944 {
|
Chris@16
|
1945 vertex_t v(*vi);
|
Chris@16
|
1946 perm[v].clear();
|
Chris@16
|
1947 face_handles[v].get_list(std::back_inserter(perm[v]));
|
Chris@16
|
1948 }
|
Chris@16
|
1949 }
|
Chris@16
|
1950
|
Chris@16
|
1951
|
Chris@16
|
1952 private:
|
Chris@16
|
1953
|
Chris@16
|
1954 const Graph& g;
|
Chris@16
|
1955 VertexIndexMap vm;
|
Chris@16
|
1956
|
Chris@16
|
1957 vertex_t kuratowski_v;
|
Chris@16
|
1958 vertex_t kuratowski_x;
|
Chris@16
|
1959 vertex_t kuratowski_y;
|
Chris@16
|
1960
|
Chris@16
|
1961 vertex_list_t garbage; // we delete items from linked lists by
|
Chris@16
|
1962 // splicing them into garbage
|
Chris@16
|
1963
|
Chris@16
|
1964 //only need these two for kuratowski subgraph isolation
|
Chris@16
|
1965 std::vector<vertex_t> current_merge_points;
|
Chris@16
|
1966 std::vector<edge_t> embedded_edges;
|
Chris@16
|
1967
|
Chris@16
|
1968 //property map storage
|
Chris@16
|
1969 std::vector<v_size_t> low_point_vector;
|
Chris@16
|
1970 std::vector<vertex_t> dfs_parent_vector;
|
Chris@16
|
1971 std::vector<v_size_t> dfs_number_vector;
|
Chris@16
|
1972 std::vector<v_size_t> least_ancestor_vector;
|
Chris@16
|
1973 std::vector<face_handle_list_ptr_t> pertinent_roots_vector;
|
Chris@16
|
1974 std::vector<v_size_t> backedge_flag_vector;
|
Chris@16
|
1975 std::vector<v_size_t> visited_vector;
|
Chris@16
|
1976 std::vector< face_handle_t > face_handles_vector;
|
Chris@16
|
1977 std::vector< face_handle_t > dfs_child_handles_vector;
|
Chris@16
|
1978 std::vector< vertex_list_ptr_t > separated_dfs_child_list_vector;
|
Chris@16
|
1979 std::vector< typename vertex_list_t::iterator >
|
Chris@16
|
1980 separated_node_in_parent_list_vector;
|
Chris@16
|
1981 std::vector<vertex_t> canonical_dfs_child_vector;
|
Chris@16
|
1982 std::vector<bool> flipped_vector;
|
Chris@16
|
1983 std::vector<edge_vector_t> backedges_vector;
|
Chris@16
|
1984 edge_vector_t self_loops;
|
Chris@16
|
1985 std::vector<edge_t> dfs_parent_edge_vector;
|
Chris@16
|
1986 vertex_vector_t vertices_by_dfs_num;
|
Chris@16
|
1987
|
Chris@16
|
1988 //property maps
|
Chris@16
|
1989 vertex_to_v_size_map_t low_point;
|
Chris@16
|
1990 vertex_to_vertex_map_t dfs_parent;
|
Chris@16
|
1991 vertex_to_v_size_map_t dfs_number;
|
Chris@16
|
1992 vertex_to_v_size_map_t least_ancestor;
|
Chris@16
|
1993 vertex_to_face_handle_list_ptr_map_t pertinent_roots;
|
Chris@16
|
1994 vertex_to_v_size_map_t backedge_flag;
|
Chris@16
|
1995 vertex_to_v_size_map_t visited;
|
Chris@16
|
1996 vertex_to_face_handle_map_t face_handles;
|
Chris@16
|
1997 vertex_to_face_handle_map_t dfs_child_handles;
|
Chris@16
|
1998 vertex_to_vertex_list_ptr_map_t separated_dfs_child_list;
|
Chris@16
|
1999 vertex_to_separated_node_map_t separated_node_in_parent_list;
|
Chris@16
|
2000 vertex_to_vertex_map_t canonical_dfs_child;
|
Chris@16
|
2001 vertex_to_bool_map_t flipped;
|
Chris@16
|
2002 vertex_to_edge_vector_map_t backedges;
|
Chris@16
|
2003 vertex_to_edge_map_t dfs_parent_edge; //only need for kuratowski
|
Chris@16
|
2004
|
Chris@16
|
2005 merge_stack_t merge_stack;
|
Chris@16
|
2006
|
Chris@16
|
2007 };
|
Chris@16
|
2008
|
Chris@16
|
2009
|
Chris@16
|
2010 } //namespace boost
|
Chris@16
|
2011
|
Chris@16
|
2012 #endif //__BOYER_MYRVOLD_IMPL_HPP__
|