annotate DEPENDENCIES/generic/include/boost/graph/bc_clustering.hpp @ 118:770eb830ec19 emscripten

Typo fix
author Chris Cannam
date Wed, 18 May 2016 16:14:08 +0100
parents 2665513ce2d3
children
rev   line source
Chris@16 1 // Copyright 2004 The Trustees of Indiana University.
Chris@16 2
Chris@16 3 // Distributed under the Boost Software License, Version 1.0.
Chris@16 4 // (See accompanying file LICENSE_1_0.txt or copy at
Chris@16 5 // http://www.boost.org/LICENSE_1_0.txt)
Chris@16 6
Chris@16 7 // Authors: Douglas Gregor
Chris@16 8 // Andrew Lumsdaine
Chris@16 9 #ifndef BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
Chris@16 10 #define BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
Chris@16 11
Chris@16 12 #include <boost/graph/betweenness_centrality.hpp>
Chris@16 13 #include <boost/graph/graph_traits.hpp>
Chris@16 14 #include <boost/graph/graph_utility.hpp>
Chris@16 15 #include <boost/pending/indirect_cmp.hpp>
Chris@16 16 #include <algorithm>
Chris@16 17 #include <vector>
Chris@16 18 #include <boost/property_map/property_map.hpp>
Chris@16 19
Chris@16 20 namespace boost {
Chris@16 21
Chris@16 22 /** Threshold termination function for the betweenness centrality
Chris@16 23 * clustering algorithm.
Chris@16 24 */
Chris@16 25 template<typename T>
Chris@16 26 struct bc_clustering_threshold
Chris@16 27 {
Chris@16 28 typedef T centrality_type;
Chris@16 29
Chris@16 30 /// Terminate clustering when maximum absolute edge centrality is
Chris@16 31 /// below the given threshold.
Chris@16 32 explicit bc_clustering_threshold(T threshold)
Chris@16 33 : threshold(threshold), dividend(1.0) {}
Chris@16 34
Chris@16 35 /**
Chris@16 36 * Terminate clustering when the maximum edge centrality is below
Chris@16 37 * the given threshold.
Chris@16 38 *
Chris@16 39 * @param threshold the threshold value
Chris@16 40 *
Chris@16 41 * @param g the graph on which the threshold will be calculated
Chris@16 42 *
Chris@16 43 * @param normalize when true, the threshold is compared against the
Chris@16 44 * normalized edge centrality based on the input graph; otherwise,
Chris@16 45 * the threshold is compared against the absolute edge centrality.
Chris@16 46 */
Chris@16 47 template<typename Graph>
Chris@16 48 bc_clustering_threshold(T threshold, const Graph& g, bool normalize = true)
Chris@16 49 : threshold(threshold), dividend(1.0)
Chris@16 50 {
Chris@16 51 if (normalize) {
Chris@16 52 typename graph_traits<Graph>::vertices_size_type n = num_vertices(g);
Chris@16 53 dividend = T((n - 1) * (n - 2)) / T(2);
Chris@16 54 }
Chris@16 55 }
Chris@16 56
Chris@16 57 /** Returns true when the given maximum edge centrality (potentially
Chris@16 58 * normalized) falls below the threshold.
Chris@16 59 */
Chris@16 60 template<typename Graph, typename Edge>
Chris@16 61 bool operator()(T max_centrality, Edge, const Graph&)
Chris@16 62 {
Chris@16 63 return (max_centrality / dividend) < threshold;
Chris@16 64 }
Chris@16 65
Chris@16 66 protected:
Chris@16 67 T threshold;
Chris@16 68 T dividend;
Chris@16 69 };
Chris@16 70
Chris@16 71 /** Graph clustering based on edge betweenness centrality.
Chris@16 72 *
Chris@16 73 * This algorithm implements graph clustering based on edge
Chris@16 74 * betweenness centrality. It is an iterative algorithm, where in each
Chris@16 75 * step it compute the edge betweenness centrality (via @ref
Chris@16 76 * brandes_betweenness_centrality) and removes the edge with the
Chris@16 77 * maximum betweenness centrality. The @p done function object
Chris@16 78 * determines when the algorithm terminates (the edge found when the
Chris@16 79 * algorithm terminates will not be removed).
Chris@16 80 *
Chris@16 81 * @param g The graph on which clustering will be performed. The type
Chris@16 82 * of this parameter (@c MutableGraph) must be a model of the
Chris@16 83 * VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph
Chris@16 84 * concepts.
Chris@16 85 *
Chris@16 86 * @param done The function object that indicates termination of the
Chris@16 87 * algorithm. It must be a ternary function object thats accepts the
Chris@16 88 * maximum centrality, the descriptor of the edge that will be
Chris@16 89 * removed, and the graph @p g.
Chris@16 90 *
Chris@16 91 * @param edge_centrality (UTIL/OUT) The property map that will store
Chris@16 92 * the betweenness centrality for each edge. When the algorithm
Chris@16 93 * terminates, it will contain the edge centralities for the
Chris@16 94 * graph. The type of this property map must model the
Chris@16 95 * ReadWritePropertyMap concept. Defaults to an @c
Chris@16 96 * iterator_property_map whose value type is
Chris@16 97 * @c Done::centrality_type and using @c get(edge_index, g) for the
Chris@16 98 * index map.
Chris@16 99 *
Chris@16 100 * @param vertex_index (IN) The property map that maps vertices to
Chris@16 101 * indices in the range @c [0, num_vertices(g)). This type of this
Chris@16 102 * property map must model the ReadablePropertyMap concept and its
Chris@16 103 * value type must be an integral type. Defaults to
Chris@16 104 * @c get(vertex_index, g).
Chris@16 105 */
Chris@16 106 template<typename MutableGraph, typename Done, typename EdgeCentralityMap,
Chris@16 107 typename VertexIndexMap>
Chris@16 108 void
Chris@16 109 betweenness_centrality_clustering(MutableGraph& g, Done done,
Chris@16 110 EdgeCentralityMap edge_centrality,
Chris@16 111 VertexIndexMap vertex_index)
Chris@16 112 {
Chris@16 113 typedef typename property_traits<EdgeCentralityMap>::value_type
Chris@16 114 centrality_type;
Chris@16 115 typedef typename graph_traits<MutableGraph>::edge_iterator edge_iterator;
Chris@16 116 typedef typename graph_traits<MutableGraph>::edge_descriptor edge_descriptor;
Chris@16 117 typedef typename graph_traits<MutableGraph>::vertices_size_type
Chris@16 118 vertices_size_type;
Chris@16 119
Chris@16 120 if (has_no_edges(g)) return;
Chris@16 121
Chris@16 122 // Function object that compares the centrality of edges
Chris@16 123 indirect_cmp<EdgeCentralityMap, std::less<centrality_type> >
Chris@16 124 cmp(edge_centrality);
Chris@16 125
Chris@16 126 bool is_done;
Chris@16 127 do {
Chris@16 128 brandes_betweenness_centrality(g,
Chris@16 129 edge_centrality_map(edge_centrality)
Chris@16 130 .vertex_index_map(vertex_index));
Chris@16 131 std::pair<edge_iterator, edge_iterator> edges_iters = edges(g);
Chris@16 132 edge_descriptor e = *max_element(edges_iters.first, edges_iters.second, cmp);
Chris@16 133 is_done = done(get(edge_centrality, e), e, g);
Chris@16 134 if (!is_done) remove_edge(e, g);
Chris@16 135 } while (!is_done && !has_no_edges(g));
Chris@16 136 }
Chris@16 137
Chris@16 138 /**
Chris@16 139 * \overload
Chris@16 140 */
Chris@16 141 template<typename MutableGraph, typename Done, typename EdgeCentralityMap>
Chris@16 142 void
Chris@16 143 betweenness_centrality_clustering(MutableGraph& g, Done done,
Chris@16 144 EdgeCentralityMap edge_centrality)
Chris@16 145 {
Chris@16 146 betweenness_centrality_clustering(g, done, edge_centrality,
Chris@16 147 get(vertex_index, g));
Chris@16 148 }
Chris@16 149
Chris@16 150 /**
Chris@16 151 * \overload
Chris@16 152 */
Chris@16 153 template<typename MutableGraph, typename Done>
Chris@16 154 void
Chris@16 155 betweenness_centrality_clustering(MutableGraph& g, Done done)
Chris@16 156 {
Chris@16 157 typedef typename Done::centrality_type centrality_type;
Chris@16 158 std::vector<centrality_type> edge_centrality(num_edges(g));
Chris@16 159 betweenness_centrality_clustering(g, done,
Chris@16 160 make_iterator_property_map(edge_centrality.begin(), get(edge_index, g)),
Chris@16 161 get(vertex_index, g));
Chris@16 162 }
Chris@16 163
Chris@16 164 } // end namespace boost
Chris@16 165
Chris@16 166 #endif // BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP