Chris@16
|
1 // (C) Copyright John Maddock 2008.
|
Chris@16
|
2 // Use, modification and distribution are subject to the
|
Chris@16
|
3 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5
|
Chris@16
|
6 #ifndef BOOST_MATH_SPECIAL_NEXT_HPP
|
Chris@16
|
7 #define BOOST_MATH_SPECIAL_NEXT_HPP
|
Chris@16
|
8
|
Chris@16
|
9 #ifdef _MSC_VER
|
Chris@16
|
10 #pragma once
|
Chris@16
|
11 #endif
|
Chris@16
|
12
|
Chris@16
|
13 #include <boost/math/policies/error_handling.hpp>
|
Chris@16
|
14 #include <boost/math/special_functions/fpclassify.hpp>
|
Chris@16
|
15 #include <boost/math/special_functions/sign.hpp>
|
Chris@16
|
16 #include <boost/math/special_functions/trunc.hpp>
|
Chris@16
|
17
|
Chris@16
|
18 #ifdef BOOST_MSVC
|
Chris@16
|
19 #include <float.h>
|
Chris@16
|
20 #endif
|
Chris@16
|
21
|
Chris@16
|
22 namespace boost{ namespace math{
|
Chris@16
|
23
|
Chris@16
|
24 namespace detail{
|
Chris@16
|
25
|
Chris@16
|
26 template <class T>
|
Chris@16
|
27 inline T get_smallest_value(mpl::true_ const&)
|
Chris@16
|
28 {
|
Chris@16
|
29 //
|
Chris@16
|
30 // numeric_limits lies about denorms being present - particularly
|
Chris@16
|
31 // when this can be turned on or off at runtime, as is the case
|
Chris@16
|
32 // when using the SSE2 registers in DAZ or FTZ mode.
|
Chris@16
|
33 //
|
Chris@16
|
34 static const T m = std::numeric_limits<T>::denorm_min();
|
Chris@16
|
35 return ((tools::min_value<T>() - m) == tools::min_value<T>()) ? tools::min_value<T>() : m;
|
Chris@16
|
36 }
|
Chris@16
|
37
|
Chris@16
|
38 template <class T>
|
Chris@16
|
39 inline T get_smallest_value(mpl::false_ const&)
|
Chris@16
|
40 {
|
Chris@16
|
41 return tools::min_value<T>();
|
Chris@16
|
42 }
|
Chris@16
|
43
|
Chris@16
|
44 template <class T>
|
Chris@16
|
45 inline T get_smallest_value()
|
Chris@16
|
46 {
|
Chris@16
|
47 #if defined(BOOST_MSVC) && (BOOST_MSVC <= 1310)
|
Chris@16
|
48 return get_smallest_value<T>(mpl::bool_<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == 1)>());
|
Chris@16
|
49 #else
|
Chris@16
|
50 return get_smallest_value<T>(mpl::bool_<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present)>());
|
Chris@16
|
51 #endif
|
Chris@16
|
52 }
|
Chris@16
|
53
|
Chris@16
|
54 //
|
Chris@16
|
55 // Returns the smallest value that won't generate denorms when
|
Chris@16
|
56 // we calculate the value of the least-significant-bit:
|
Chris@16
|
57 //
|
Chris@16
|
58 template <class T>
|
Chris@16
|
59 T get_min_shift_value();
|
Chris@16
|
60
|
Chris@16
|
61 template <class T>
|
Chris@16
|
62 struct min_shift_initializer
|
Chris@16
|
63 {
|
Chris@16
|
64 struct init
|
Chris@16
|
65 {
|
Chris@16
|
66 init()
|
Chris@16
|
67 {
|
Chris@16
|
68 do_init();
|
Chris@16
|
69 }
|
Chris@16
|
70 static void do_init()
|
Chris@16
|
71 {
|
Chris@16
|
72 get_min_shift_value<T>();
|
Chris@16
|
73 }
|
Chris@16
|
74 void force_instantiate()const{}
|
Chris@16
|
75 };
|
Chris@16
|
76 static const init initializer;
|
Chris@16
|
77 static void force_instantiate()
|
Chris@16
|
78 {
|
Chris@16
|
79 initializer.force_instantiate();
|
Chris@16
|
80 }
|
Chris@16
|
81 };
|
Chris@16
|
82
|
Chris@16
|
83 template <class T>
|
Chris@16
|
84 const typename min_shift_initializer<T>::init min_shift_initializer<T>::initializer;
|
Chris@16
|
85
|
Chris@16
|
86
|
Chris@16
|
87 template <class T>
|
Chris@16
|
88 inline T get_min_shift_value()
|
Chris@16
|
89 {
|
Chris@16
|
90 BOOST_MATH_STD_USING
|
Chris@16
|
91 static const T val = ldexp(tools::min_value<T>(), tools::digits<T>() + 1);
|
Chris@16
|
92 min_shift_initializer<T>::force_instantiate();
|
Chris@16
|
93
|
Chris@16
|
94 return val;
|
Chris@16
|
95 }
|
Chris@16
|
96
|
Chris@16
|
97 template <class T, class Policy>
|
Chris@16
|
98 T float_next_imp(const T& val, const Policy& pol)
|
Chris@16
|
99 {
|
Chris@16
|
100 BOOST_MATH_STD_USING
|
Chris@16
|
101 int expon;
|
Chris@16
|
102 static const char* function = "float_next<%1%>(%1%)";
|
Chris@16
|
103
|
Chris@16
|
104 int fpclass = (boost::math::fpclassify)(val);
|
Chris@16
|
105
|
Chris@16
|
106 if((fpclass == FP_NAN) || (fpclass == FP_INFINITE))
|
Chris@16
|
107 {
|
Chris@16
|
108 if(val < 0)
|
Chris@16
|
109 return -tools::max_value<T>();
|
Chris@16
|
110 return policies::raise_domain_error<T>(
|
Chris@16
|
111 function,
|
Chris@16
|
112 "Argument must be finite, but got %1%", val, pol);
|
Chris@16
|
113 }
|
Chris@16
|
114
|
Chris@16
|
115 if(val >= tools::max_value<T>())
|
Chris@16
|
116 return policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
117
|
Chris@16
|
118 if(val == 0)
|
Chris@16
|
119 return detail::get_smallest_value<T>();
|
Chris@16
|
120
|
Chris@16
|
121 if((fpclass != FP_SUBNORMAL) && (fpclass != FP_ZERO) && (fabs(val) < detail::get_min_shift_value<T>()) && (val != -tools::min_value<T>()))
|
Chris@16
|
122 {
|
Chris@16
|
123 //
|
Chris@16
|
124 // Special case: if the value of the least significant bit is a denorm, and the result
|
Chris@16
|
125 // would not be a denorm, then shift the input, increment, and shift back.
|
Chris@16
|
126 // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
|
Chris@16
|
127 //
|
Chris@16
|
128 return ldexp(float_next(T(ldexp(val, 2 * tools::digits<T>())), pol), -2 * tools::digits<T>());
|
Chris@16
|
129 }
|
Chris@16
|
130
|
Chris@16
|
131 if(-0.5f == frexp(val, &expon))
|
Chris@16
|
132 --expon; // reduce exponent when val is a power of two, and negative.
|
Chris@16
|
133 T diff = ldexp(T(1), expon - tools::digits<T>());
|
Chris@16
|
134 if(diff == 0)
|
Chris@16
|
135 diff = detail::get_smallest_value<T>();
|
Chris@16
|
136 return val + diff;
|
Chris@16
|
137 }
|
Chris@16
|
138
|
Chris@16
|
139 }
|
Chris@16
|
140
|
Chris@16
|
141 template <class T, class Policy>
|
Chris@16
|
142 inline typename tools::promote_args<T>::type float_next(const T& val, const Policy& pol)
|
Chris@16
|
143 {
|
Chris@16
|
144 typedef typename tools::promote_args<T>::type result_type;
|
Chris@16
|
145 return detail::float_next_imp(static_cast<result_type>(val), pol);
|
Chris@16
|
146 }
|
Chris@16
|
147
|
Chris@16
|
148 #if 0 //def BOOST_MSVC
|
Chris@16
|
149 //
|
Chris@16
|
150 // We used to use ::_nextafter here, but doing so fails when using
|
Chris@16
|
151 // the SSE2 registers if the FTZ or DAZ flags are set, so use our own
|
Chris@16
|
152 // - albeit slower - code instead as at least that gives the correct answer.
|
Chris@16
|
153 //
|
Chris@16
|
154 template <class Policy>
|
Chris@16
|
155 inline double float_next(const double& val, const Policy& pol)
|
Chris@16
|
156 {
|
Chris@16
|
157 static const char* function = "float_next<%1%>(%1%)";
|
Chris@16
|
158
|
Chris@16
|
159 if(!(boost::math::isfinite)(val) && (val > 0))
|
Chris@16
|
160 return policies::raise_domain_error<double>(
|
Chris@16
|
161 function,
|
Chris@16
|
162 "Argument must be finite, but got %1%", val, pol);
|
Chris@16
|
163
|
Chris@16
|
164 if(val >= tools::max_value<double>())
|
Chris@16
|
165 return policies::raise_overflow_error<double>(function, 0, pol);
|
Chris@16
|
166
|
Chris@16
|
167 return ::_nextafter(val, tools::max_value<double>());
|
Chris@16
|
168 }
|
Chris@16
|
169 #endif
|
Chris@16
|
170
|
Chris@16
|
171 template <class T>
|
Chris@16
|
172 inline typename tools::promote_args<T>::type float_next(const T& val)
|
Chris@16
|
173 {
|
Chris@16
|
174 return float_next(val, policies::policy<>());
|
Chris@16
|
175 }
|
Chris@16
|
176
|
Chris@16
|
177 namespace detail{
|
Chris@16
|
178
|
Chris@16
|
179 template <class T, class Policy>
|
Chris@16
|
180 T float_prior_imp(const T& val, const Policy& pol)
|
Chris@16
|
181 {
|
Chris@16
|
182 BOOST_MATH_STD_USING
|
Chris@16
|
183 int expon;
|
Chris@16
|
184 static const char* function = "float_prior<%1%>(%1%)";
|
Chris@16
|
185
|
Chris@16
|
186 int fpclass = (boost::math::fpclassify)(val);
|
Chris@16
|
187
|
Chris@16
|
188 if((fpclass == FP_NAN) || (fpclass == FP_INFINITE))
|
Chris@16
|
189 {
|
Chris@16
|
190 if(val > 0)
|
Chris@16
|
191 return tools::max_value<T>();
|
Chris@16
|
192 return policies::raise_domain_error<T>(
|
Chris@16
|
193 function,
|
Chris@16
|
194 "Argument must be finite, but got %1%", val, pol);
|
Chris@16
|
195 }
|
Chris@16
|
196
|
Chris@16
|
197 if(val <= -tools::max_value<T>())
|
Chris@16
|
198 return -policies::raise_overflow_error<T>(function, 0, pol);
|
Chris@16
|
199
|
Chris@16
|
200 if(val == 0)
|
Chris@16
|
201 return -detail::get_smallest_value<T>();
|
Chris@16
|
202
|
Chris@16
|
203 if((fpclass != FP_SUBNORMAL) && (fpclass != FP_ZERO) && (fabs(val) < detail::get_min_shift_value<T>()) && (val != tools::min_value<T>()))
|
Chris@16
|
204 {
|
Chris@16
|
205 //
|
Chris@16
|
206 // Special case: if the value of the least significant bit is a denorm, and the result
|
Chris@16
|
207 // would not be a denorm, then shift the input, increment, and shift back.
|
Chris@16
|
208 // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
|
Chris@16
|
209 //
|
Chris@16
|
210 return ldexp(float_prior(T(ldexp(val, 2 * tools::digits<T>())), pol), -2 * tools::digits<T>());
|
Chris@16
|
211 }
|
Chris@16
|
212
|
Chris@16
|
213 T remain = frexp(val, &expon);
|
Chris@16
|
214 if(remain == 0.5)
|
Chris@16
|
215 --expon; // when val is a power of two we must reduce the exponent
|
Chris@16
|
216 T diff = ldexp(T(1), expon - tools::digits<T>());
|
Chris@16
|
217 if(diff == 0)
|
Chris@16
|
218 diff = detail::get_smallest_value<T>();
|
Chris@16
|
219 return val - diff;
|
Chris@16
|
220 }
|
Chris@16
|
221
|
Chris@16
|
222 }
|
Chris@16
|
223
|
Chris@16
|
224 template <class T, class Policy>
|
Chris@16
|
225 inline typename tools::promote_args<T>::type float_prior(const T& val, const Policy& pol)
|
Chris@16
|
226 {
|
Chris@16
|
227 typedef typename tools::promote_args<T>::type result_type;
|
Chris@16
|
228 return detail::float_prior_imp(static_cast<result_type>(val), pol);
|
Chris@16
|
229 }
|
Chris@16
|
230
|
Chris@16
|
231 #if 0 //def BOOST_MSVC
|
Chris@16
|
232 //
|
Chris@16
|
233 // We used to use ::_nextafter here, but doing so fails when using
|
Chris@16
|
234 // the SSE2 registers if the FTZ or DAZ flags are set, so use our own
|
Chris@16
|
235 // - albeit slower - code instead as at least that gives the correct answer.
|
Chris@16
|
236 //
|
Chris@16
|
237 template <class Policy>
|
Chris@16
|
238 inline double float_prior(const double& val, const Policy& pol)
|
Chris@16
|
239 {
|
Chris@16
|
240 static const char* function = "float_prior<%1%>(%1%)";
|
Chris@16
|
241
|
Chris@16
|
242 if(!(boost::math::isfinite)(val) && (val < 0))
|
Chris@16
|
243 return policies::raise_domain_error<double>(
|
Chris@16
|
244 function,
|
Chris@16
|
245 "Argument must be finite, but got %1%", val, pol);
|
Chris@16
|
246
|
Chris@16
|
247 if(val <= -tools::max_value<double>())
|
Chris@16
|
248 return -policies::raise_overflow_error<double>(function, 0, pol);
|
Chris@16
|
249
|
Chris@16
|
250 return ::_nextafter(val, -tools::max_value<double>());
|
Chris@16
|
251 }
|
Chris@16
|
252 #endif
|
Chris@16
|
253
|
Chris@16
|
254 template <class T>
|
Chris@16
|
255 inline typename tools::promote_args<T>::type float_prior(const T& val)
|
Chris@16
|
256 {
|
Chris@16
|
257 return float_prior(val, policies::policy<>());
|
Chris@16
|
258 }
|
Chris@16
|
259
|
Chris@16
|
260 template <class T, class U, class Policy>
|
Chris@16
|
261 inline typename tools::promote_args<T, U>::type nextafter(const T& val, const U& direction, const Policy& pol)
|
Chris@16
|
262 {
|
Chris@16
|
263 typedef typename tools::promote_args<T, U>::type result_type;
|
Chris@16
|
264 return val < direction ? boost::math::float_next<result_type>(val, pol) : val == direction ? val : boost::math::float_prior<result_type>(val, pol);
|
Chris@16
|
265 }
|
Chris@16
|
266
|
Chris@16
|
267 template <class T, class U>
|
Chris@16
|
268 inline typename tools::promote_args<T, U>::type nextafter(const T& val, const U& direction)
|
Chris@16
|
269 {
|
Chris@16
|
270 return nextafter(val, direction, policies::policy<>());
|
Chris@16
|
271 }
|
Chris@16
|
272
|
Chris@16
|
273 namespace detail{
|
Chris@16
|
274
|
Chris@16
|
275 template <class T, class Policy>
|
Chris@16
|
276 T float_distance_imp(const T& a, const T& b, const Policy& pol)
|
Chris@16
|
277 {
|
Chris@16
|
278 BOOST_MATH_STD_USING
|
Chris@16
|
279 //
|
Chris@16
|
280 // Error handling:
|
Chris@16
|
281 //
|
Chris@16
|
282 static const char* function = "float_distance<%1%>(%1%, %1%)";
|
Chris@16
|
283 if(!(boost::math::isfinite)(a))
|
Chris@16
|
284 return policies::raise_domain_error<T>(
|
Chris@16
|
285 function,
|
Chris@16
|
286 "Argument a must be finite, but got %1%", a, pol);
|
Chris@16
|
287 if(!(boost::math::isfinite)(b))
|
Chris@16
|
288 return policies::raise_domain_error<T>(
|
Chris@16
|
289 function,
|
Chris@16
|
290 "Argument b must be finite, but got %1%", b, pol);
|
Chris@16
|
291 //
|
Chris@16
|
292 // Special cases:
|
Chris@16
|
293 //
|
Chris@16
|
294 if(a > b)
|
Chris@16
|
295 return -float_distance(b, a, pol);
|
Chris@16
|
296 if(a == b)
|
Chris@16
|
297 return 0;
|
Chris@16
|
298 if(a == 0)
|
Chris@16
|
299 return 1 + fabs(float_distance(static_cast<T>((b < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol));
|
Chris@16
|
300 if(b == 0)
|
Chris@16
|
301 return 1 + fabs(float_distance(static_cast<T>((a < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol));
|
Chris@16
|
302 if(boost::math::sign(a) != boost::math::sign(b))
|
Chris@16
|
303 return 2 + fabs(float_distance(static_cast<T>((b < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol))
|
Chris@16
|
304 + fabs(float_distance(static_cast<T>((a < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol));
|
Chris@16
|
305 //
|
Chris@16
|
306 // By the time we get here, both a and b must have the same sign, we want
|
Chris@16
|
307 // b > a and both postive for the following logic:
|
Chris@16
|
308 //
|
Chris@16
|
309 if(a < 0)
|
Chris@16
|
310 return float_distance(static_cast<T>(-b), static_cast<T>(-a), pol);
|
Chris@16
|
311
|
Chris@16
|
312 BOOST_ASSERT(a >= 0);
|
Chris@16
|
313 BOOST_ASSERT(b >= a);
|
Chris@16
|
314
|
Chris@16
|
315 int expon;
|
Chris@16
|
316 //
|
Chris@16
|
317 // Note that if a is a denorm then the usual formula fails
|
Chris@16
|
318 // because we actually have fewer than tools::digits<T>()
|
Chris@16
|
319 // significant bits in the representation:
|
Chris@16
|
320 //
|
Chris@16
|
321 frexp(((boost::math::fpclassify)(a) == FP_SUBNORMAL) ? tools::min_value<T>() : a, &expon);
|
Chris@16
|
322 T upper = ldexp(T(1), expon);
|
Chris@16
|
323 T result = 0;
|
Chris@16
|
324 expon = tools::digits<T>() - expon;
|
Chris@16
|
325 //
|
Chris@16
|
326 // If b is greater than upper, then we *must* split the calculation
|
Chris@16
|
327 // as the size of the ULP changes with each order of magnitude change:
|
Chris@16
|
328 //
|
Chris@16
|
329 if(b > upper)
|
Chris@16
|
330 {
|
Chris@16
|
331 result = float_distance(upper, b);
|
Chris@16
|
332 }
|
Chris@16
|
333 //
|
Chris@16
|
334 // Use compensated double-double addition to avoid rounding
|
Chris@16
|
335 // errors in the subtraction:
|
Chris@16
|
336 //
|
Chris@16
|
337 T mb, x, y, z;
|
Chris@16
|
338 if(((boost::math::fpclassify)(a) == FP_SUBNORMAL) || (b - a < tools::min_value<T>()))
|
Chris@16
|
339 {
|
Chris@16
|
340 //
|
Chris@16
|
341 // Special case - either one end of the range is a denormal, or else the difference is.
|
Chris@16
|
342 // The regular code will fail if we're using the SSE2 registers on Intel and either
|
Chris@16
|
343 // the FTZ or DAZ flags are set.
|
Chris@16
|
344 //
|
Chris@16
|
345 T a2 = ldexp(a, tools::digits<T>());
|
Chris@16
|
346 T b2 = ldexp(b, tools::digits<T>());
|
Chris@16
|
347 mb = -(std::min)(T(ldexp(upper, tools::digits<T>())), b2);
|
Chris@16
|
348 x = a2 + mb;
|
Chris@16
|
349 z = x - a2;
|
Chris@16
|
350 y = (a2 - (x - z)) + (mb - z);
|
Chris@16
|
351
|
Chris@16
|
352 expon -= tools::digits<T>();
|
Chris@16
|
353 }
|
Chris@16
|
354 else
|
Chris@16
|
355 {
|
Chris@16
|
356 mb = -(std::min)(upper, b);
|
Chris@16
|
357 x = a + mb;
|
Chris@16
|
358 z = x - a;
|
Chris@16
|
359 y = (a - (x - z)) + (mb - z);
|
Chris@16
|
360 }
|
Chris@16
|
361 if(x < 0)
|
Chris@16
|
362 {
|
Chris@16
|
363 x = -x;
|
Chris@16
|
364 y = -y;
|
Chris@16
|
365 }
|
Chris@16
|
366 result += ldexp(x, expon) + ldexp(y, expon);
|
Chris@16
|
367 //
|
Chris@16
|
368 // Result must be an integer:
|
Chris@16
|
369 //
|
Chris@16
|
370 BOOST_ASSERT(result == floor(result));
|
Chris@16
|
371 return result;
|
Chris@16
|
372 }
|
Chris@16
|
373
|
Chris@16
|
374 }
|
Chris@16
|
375
|
Chris@16
|
376 template <class T, class U, class Policy>
|
Chris@16
|
377 inline typename tools::promote_args<T, U>::type float_distance(const T& a, const U& b, const Policy& pol)
|
Chris@16
|
378 {
|
Chris@16
|
379 typedef typename tools::promote_args<T, U>::type result_type;
|
Chris@16
|
380 return detail::float_distance_imp(static_cast<result_type>(a), static_cast<result_type>(b), pol);
|
Chris@16
|
381 }
|
Chris@16
|
382
|
Chris@16
|
383 template <class T, class U>
|
Chris@16
|
384 typename tools::promote_args<T, U>::type float_distance(const T& a, const U& b)
|
Chris@16
|
385 {
|
Chris@16
|
386 return boost::math::float_distance(a, b, policies::policy<>());
|
Chris@16
|
387 }
|
Chris@16
|
388
|
Chris@16
|
389 namespace detail{
|
Chris@16
|
390
|
Chris@16
|
391 template <class T, class Policy>
|
Chris@16
|
392 T float_advance_imp(T val, int distance, const Policy& pol)
|
Chris@16
|
393 {
|
Chris@16
|
394 BOOST_MATH_STD_USING
|
Chris@16
|
395 //
|
Chris@16
|
396 // Error handling:
|
Chris@16
|
397 //
|
Chris@16
|
398 static const char* function = "float_advance<%1%>(%1%, int)";
|
Chris@16
|
399
|
Chris@16
|
400 int fpclass = (boost::math::fpclassify)(val);
|
Chris@16
|
401
|
Chris@16
|
402 if((fpclass == FP_NAN) || (fpclass == FP_INFINITE))
|
Chris@16
|
403 return policies::raise_domain_error<T>(
|
Chris@16
|
404 function,
|
Chris@16
|
405 "Argument val must be finite, but got %1%", val, pol);
|
Chris@16
|
406
|
Chris@16
|
407 if(val < 0)
|
Chris@16
|
408 return -float_advance(-val, -distance, pol);
|
Chris@16
|
409 if(distance == 0)
|
Chris@16
|
410 return val;
|
Chris@16
|
411 if(distance == 1)
|
Chris@16
|
412 return float_next(val, pol);
|
Chris@16
|
413 if(distance == -1)
|
Chris@16
|
414 return float_prior(val, pol);
|
Chris@16
|
415
|
Chris@16
|
416 if(fabs(val) < detail::get_min_shift_value<T>())
|
Chris@16
|
417 {
|
Chris@16
|
418 //
|
Chris@16
|
419 // Special case: if the value of the least significant bit is a denorm,
|
Chris@16
|
420 // implement in terms of float_next/float_prior.
|
Chris@16
|
421 // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
|
Chris@16
|
422 //
|
Chris@16
|
423 if(distance > 0)
|
Chris@16
|
424 {
|
Chris@16
|
425 do{ val = float_next(val, pol); } while(--distance);
|
Chris@16
|
426 }
|
Chris@16
|
427 else
|
Chris@16
|
428 {
|
Chris@16
|
429 do{ val = float_prior(val, pol); } while(++distance);
|
Chris@16
|
430 }
|
Chris@16
|
431 return val;
|
Chris@16
|
432 }
|
Chris@16
|
433
|
Chris@16
|
434 int expon;
|
Chris@16
|
435 frexp(val, &expon);
|
Chris@16
|
436 T limit = ldexp((distance < 0 ? T(0.5f) : T(1)), expon);
|
Chris@16
|
437 if(val <= tools::min_value<T>())
|
Chris@16
|
438 {
|
Chris@16
|
439 limit = sign(T(distance)) * tools::min_value<T>();
|
Chris@16
|
440 }
|
Chris@16
|
441 T limit_distance = float_distance(val, limit);
|
Chris@16
|
442 while(fabs(limit_distance) < abs(distance))
|
Chris@16
|
443 {
|
Chris@16
|
444 distance -= itrunc(limit_distance);
|
Chris@16
|
445 val = limit;
|
Chris@16
|
446 if(distance < 0)
|
Chris@16
|
447 {
|
Chris@16
|
448 limit /= 2;
|
Chris@16
|
449 expon--;
|
Chris@16
|
450 }
|
Chris@16
|
451 else
|
Chris@16
|
452 {
|
Chris@16
|
453 limit *= 2;
|
Chris@16
|
454 expon++;
|
Chris@16
|
455 }
|
Chris@16
|
456 limit_distance = float_distance(val, limit);
|
Chris@16
|
457 if(distance && (limit_distance == 0))
|
Chris@16
|
458 {
|
Chris@16
|
459 policies::raise_evaluation_error<T>(function, "Internal logic failed while trying to increment floating point value %1%: most likely your FPU is in non-IEEE conforming mode.", val, pol);
|
Chris@16
|
460 }
|
Chris@16
|
461 }
|
Chris@16
|
462 if((0.5f == frexp(val, &expon)) && (distance < 0))
|
Chris@16
|
463 --expon;
|
Chris@16
|
464 T diff = 0;
|
Chris@16
|
465 if(val != 0)
|
Chris@16
|
466 diff = distance * ldexp(T(1), expon - tools::digits<T>());
|
Chris@16
|
467 if(diff == 0)
|
Chris@16
|
468 diff = distance * detail::get_smallest_value<T>();
|
Chris@16
|
469 return val += diff;
|
Chris@16
|
470 }
|
Chris@16
|
471
|
Chris@16
|
472 }
|
Chris@16
|
473
|
Chris@16
|
474 template <class T, class Policy>
|
Chris@16
|
475 inline typename tools::promote_args<T>::type float_advance(T val, int distance, const Policy& pol)
|
Chris@16
|
476 {
|
Chris@16
|
477 typedef typename tools::promote_args<T>::type result_type;
|
Chris@16
|
478 return detail::float_advance_imp(static_cast<result_type>(val), distance, pol);
|
Chris@16
|
479 }
|
Chris@16
|
480
|
Chris@16
|
481 template <class T>
|
Chris@16
|
482 inline typename tools::promote_args<T>::type float_advance(const T& val, int distance)
|
Chris@16
|
483 {
|
Chris@16
|
484 return boost::math::float_advance(val, distance, policies::policy<>());
|
Chris@16
|
485 }
|
Chris@16
|
486
|
Chris@16
|
487 }} // namespaces
|
Chris@16
|
488
|
Chris@16
|
489 #endif // BOOST_MATH_SPECIAL_NEXT_HPP
|
Chris@16
|
490
|