Mercurial > hg > vamp-aubio-plugins
view plugins/Tempo.cpp @ 112:f80b207ccd15
libmain.cpp, plugins/: update to GPLv3
author | Paul Brossier <piem@piem.org> |
---|---|
date | Sat, 31 Jan 2015 17:34:33 +0100 |
parents | 43e22cc4992d |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Vamp feature extraction plugins using Paul Brossier's Aubio library. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This file is part of vamp-aubio-plugins. vamp-aubio is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. vamp-aubio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with aubio. If not, see <http://www.gnu.org/licenses/>. */ #include <math.h> #include "Tempo.h" using std::string; using std::vector; using std::cerr; using std::endl; Tempo::Tempo(float inputSampleRate) : Plugin(inputSampleRate), m_ibuf(0), m_beat(0), m_bpm(0), m_onsettype(OnsetComplex), m_tempo(0), m_threshold(0.3), m_silence(-70) { } Tempo::~Tempo() { if (m_ibuf) del_fvec(m_ibuf); if (m_beat) del_fvec(m_beat); if (m_tempo) del_aubio_tempo(m_tempo); } string Tempo::getIdentifier() const { return "aubiotempo"; } string Tempo::getName() const { return "Aubio Beat Tracker"; } string Tempo::getDescription() const { return "Estimate the musical tempo and track beat positions"; } string Tempo::getMaker() const { return "Paul Brossier (method by Matthew Davies, plugin by Chris Cannam)"; } int Tempo::getPluginVersion() const { return 2; } string Tempo::getCopyright() const { return "GPL"; } bool Tempo::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (channels != 1) { std::cerr << "Tempo::initialise: channels must be 1" << std::endl; return false; } m_stepSize = stepSize; m_blockSize = blockSize; m_ibuf = new_fvec(stepSize); m_beat = new_fvec(2); m_delay = Vamp::RealTime::frame2RealTime(3 * stepSize, lrintf(m_inputSampleRate)); reset(); return true; } void Tempo::reset() { if (m_tempo) del_aubio_tempo(m_tempo); m_lastBeat = Vamp::RealTime::zeroTime - m_delay - m_delay; m_tempo = new_aubio_tempo (const_cast<char *>(getAubioNameForOnsetType(m_onsettype)), m_blockSize, m_stepSize, lrintf(m_inputSampleRate)); aubio_tempo_set_silence(m_tempo, m_silence); aubio_tempo_set_threshold(m_tempo, m_threshold); } size_t Tempo::getPreferredStepSize() const { return 512; } size_t Tempo::getPreferredBlockSize() const { return 2 * getPreferredStepSize(); } Tempo::ParameterList Tempo::getParameterDescriptors() const { ParameterList list; ParameterDescriptor desc; desc.identifier = "onsettype"; desc.name = "Onset Detection Function Type"; desc.description = "Type of onset detection function to use"; desc.minValue = 0; desc.maxValue = 7; desc.defaultValue = (int)OnsetComplex; desc.isQuantized = true; desc.quantizeStep = 1; desc.valueNames.push_back("Energy Based"); desc.valueNames.push_back("Spectral Difference"); desc.valueNames.push_back("High-Frequency Content"); desc.valueNames.push_back("Complex Domain"); desc.valueNames.push_back("Phase Deviation"); desc.valueNames.push_back("Kullback-Liebler"); desc.valueNames.push_back("Modified Kullback-Liebler"); desc.valueNames.push_back("Spectral Flux"); list.push_back(desc); desc = ParameterDescriptor(); desc.identifier = "peakpickthreshold"; desc.name = "Peak Picker Threshold"; desc.description = "Peak picking threshold, the higher the least detection"; desc.minValue = 0; desc.maxValue = 1; desc.defaultValue = 0.3; desc.isQuantized = false; list.push_back(desc); desc = ParameterDescriptor(); desc.identifier = "silencethreshold"; desc.name = "Silence Threshold"; desc.description = "Silence threshold, the higher the least detection"; desc.minValue = -120; desc.maxValue = 0; desc.defaultValue = -70; desc.unit = "dB"; desc.isQuantized = false; list.push_back(desc); return list; } float Tempo::getParameter(std::string param) const { if (param == "onsettype") { return m_onsettype; } else if (param == "peakpickthreshold") { return m_threshold; } else if (param == "silencethreshold") { return m_silence; } else { return 0.0; } } void Tempo::setParameter(std::string param, float value) { if (param == "onsettype") { switch (lrintf(value)) { case 0: m_onsettype = OnsetEnergy; break; case 1: m_onsettype = OnsetSpecDiff; break; case 2: m_onsettype = OnsetHFC; break; case 3: m_onsettype = OnsetComplex; break; case 4: m_onsettype = OnsetPhase; break; case 5: m_onsettype = OnsetKL; break; case 6: m_onsettype = OnsetMKL; break; case 7: m_onsettype = OnsetSpecFlux; break; } } else if (param == "peakpickthreshold") { m_threshold = value; } else if (param == "silencethreshold") { m_silence = value; } } Tempo::OutputList Tempo::getOutputDescriptors() const { OutputList list; OutputDescriptor d; d.identifier = "beats"; d.name = "Beats"; d.description = "List of times at which a beat was detected"; d.unit = ""; d.hasFixedBinCount = true; d.binCount = 0; d.sampleType = OutputDescriptor::VariableSampleRate; d.sampleRate = 0; list.push_back(d); d.identifier = "tempo"; d.name = "Tempo"; d.description = "Overall estimated tempo"; d.unit = "bpm"; d.hasFixedBinCount = true; d.binCount = 1; d.hasKnownExtents = false; d.isQuantized = false; d.sampleType = OutputDescriptor::OneSamplePerStep; list.push_back(d); return list; } Tempo::FeatureSet Tempo::process(const float *const *inputBuffers, Vamp::RealTime timestamp) { for (size_t i = 0; i < m_stepSize; ++i) { fvec_set_sample(m_ibuf, inputBuffers[0][i], i); } aubio_tempo_do(m_tempo, m_ibuf, m_beat); bool istactus = m_beat->data[0]; m_bpm = aubio_tempo_get_bpm(m_tempo); FeatureSet returnFeatures; if (istactus == true) { if (timestamp - m_lastBeat >= m_delay) { Feature onsettime; onsettime.hasTimestamp = true; if (timestamp < m_delay) timestamp = m_delay; onsettime.timestamp = timestamp - m_delay; returnFeatures[0].push_back(onsettime); m_lastBeat = timestamp; } } if (m_bpm >= 30 && m_bpm <= 206) { Feature tempo; tempo.hasTimestamp = false; tempo.values.push_back(m_bpm); returnFeatures[1].push_back(tempo); } return returnFeatures; } Tempo::FeatureSet Tempo::getRemainingFeatures() { return FeatureSet(); }