andrewm@0: /* andrewm@0: TouchKeys: multi-touch musical keyboard control software andrewm@0: Copyright (c) 2013 Andrew McPherson andrewm@0: andrewm@0: This program is free software: you can redistribute it and/or modify andrewm@0: it under the terms of the GNU General Public License as published by andrewm@0: the Free Software Foundation, either version 3 of the License, or andrewm@0: (at your option) any later version. andrewm@0: andrewm@0: This program is distributed in the hope that it will be useful, andrewm@0: but WITHOUT ANY WARRANTY; without even the implied warranty of andrewm@0: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the andrewm@0: GNU General Public License for more details. andrewm@0: andrewm@0: You should have received a copy of the GNU General Public License andrewm@0: along with this program. If not, see . andrewm@0: andrewm@0: ===================================================================== andrewm@0: andrewm@0: MRPMapping.cpp: mapping class for magnetic resonator piano using continuous andrewm@0: key position. andrewm@0: */ andrewm@0: andrewm@0: #include "MRPMapping.h" andrewm@0: #include andrewm@0: andrewm@0: // Class constants andrewm@0: // Useful constants for mapping MRP messages andrewm@0: const int MRPMapping::kMIDINoteOnMessage = 0x90; andrewm@0: const int MRPMapping::kDefaultMIDIChannel = 15; andrewm@0: const float MRPMapping::kDefaultAftertouchScaler = 100.0; andrewm@0: andrewm@0: // Parameters for vibrato detection and mapping andrewm@0: const key_velocity MRPMapping::kVibratoVelocityThreshold = scale_key_velocity(2.0); andrewm@0: const timestamp_diff_type MRPMapping::kVibratoMinimumPeakSpacing = microseconds_to_timestamp(60000); andrewm@0: const timestamp_diff_type MRPMapping::kVibratoTimeout = microseconds_to_timestamp(500000); andrewm@0: const int MRPMapping::kVibratoMinimumOscillations = 4; andrewm@0: const float MRPMapping::kVibratoRateScaler = 0.005; andrewm@0: andrewm@0: // Main constructor takes references/pointers from objects which keep track andrewm@0: // of touch location, continuous key position and the state detected from that andrewm@0: // position. The PianoKeyboard object is strictly required as it gives access to andrewm@0: // Scheduler and OSC methods. The others are optional since any given system may andrewm@0: // contain only one of continuous key position or touch sensitivity andrewm@0: MRPMapping::MRPMapping(PianoKeyboard &keyboard, MappingFactory *factory, int noteNumber, Node* touchBuffer, andrewm@0: Node* positionBuffer, KeyPositionTracker* positionTracker) andrewm@0: : Mapping(keyboard, factory, noteNumber, touchBuffer, positionBuffer, positionTracker), andrewm@0: noteIsOn_(false), lastIntensity_(missing_value::missing()), andrewm@0: lastBrightness_(missing_value::missing()), lastPitch_(missing_value::missing()), andrewm@0: lastHarmonic_(missing_value::missing()), andrewm@0: shouldLookForPitchBends_(true), rawVelocity_(kMRPMappingVelocityBufferLength), andrewm@0: filteredVelocity_(kMRPMappingVelocityBufferLength, rawVelocity_), lastCalculatedVelocityIndex_(0), andrewm@0: vibratoActive_(false), vibratoVelocityPeakCount_(0), vibratoLastPeakTimestamp_(missing_value::missing()) andrewm@0: { andrewm@0: setAftertouchSensitivity(1.0); andrewm@0: andrewm@0: // Initialize the filter coefficients for filtered key velocity (used for vibrato detection) andrewm@0: std::vector bCoeffs, aCoeffs; andrewm@0: designSecondOrderLowpass(bCoeffs, aCoeffs, 15.0, 0.707, 1000.0); andrewm@0: std::vector bCf(bCoeffs.begin(), bCoeffs.end()), aCf(aCoeffs.begin(), aCoeffs.end()); andrewm@0: filteredVelocity_.setCoefficients(bCf, aCf); andrewm@0: } andrewm@0: andrewm@0: // Copy constructor andrewm@0: /*MRPMapping::MRPMapping(MRPMapping const& obj) andrewm@0: : Mapping(obj), lastIntensity_(obj.lastIntensity_), lastBrightness_(obj.lastBrightness_), andrewm@0: aftertouchScaler_(obj.aftertouchScaler_), noteIsOn_(obj.noteIsOn_), lastPitch_(obj.lastPitch_), andrewm@0: lastHarmonic_(obj.lastHarmonic_), andrewm@0: shouldLookForPitchBends_(obj.shouldLookForPitchBends_), activePitchBends_(obj.activePitchBends_), andrewm@0: rawVelocity_(obj.rawVelocity_), filteredVelocity_(obj.filteredVelocity_), andrewm@0: lastCalculatedVelocityIndex_(obj.lastCalculatedVelocityIndex_), vibratoActive_(obj.vibratoActive_), andrewm@0: vibratoVelocityPeakCount_(obj.vibratoVelocityPeakCount_), vibratoLastPeakTimestamp_(obj.vibratoLastPeakTimestamp_) { andrewm@0: andrewm@0: }*/ andrewm@0: andrewm@0: MRPMapping::~MRPMapping() { andrewm@0: //std::cerr << "~MRPMapping(): " << this << std::endl; andrewm@0: andrewm@0: try { andrewm@0: disengage(); andrewm@0: } andrewm@0: catch(...) { andrewm@0: std::cerr << "~MRPMapping(): exception during disengage()\n"; andrewm@0: } andrewm@0: andrewm@0: //std::cerr << "~MRPMapping(): done\n"; andrewm@0: } andrewm@0: andrewm@0: // Turn off mapping of data. Remove our callback from the scheduler andrewm@0: void MRPMapping::disengage() { andrewm@0: Mapping::disengage(); andrewm@0: if(noteIsOn_) { andrewm@0: int newNoteNumber = noteNumber_; andrewm@0: //int newNoteNumber = ((noteNumber_ - 21) * 25)%88 + 21; andrewm@0: keyboard_.sendMessage("/mrp/midi", andrewm@0: "iii", (int)(kMIDINoteOnMessage + kDefaultMIDIChannel), (int)newNoteNumber, (int)0, LO_ARGS_END); andrewm@0: // if(!touchBuffer_->empty()) andrewm@0: // keyboard_.testLog_ << touchBuffer_->latestTimestamp() << " /mrp/midi iii " << (kMIDINoteOnMessage + kDefaultMIDIChannel) << " " << newNoteNumber << " " << 0 << endl; andrewm@0: andrewm@0: // Reset qualities andrewm@0: lastPitch_ = lastHarmonic_ = lastBrightness_ = lastIntensity_ = missing_value::missing(); andrewm@0: } andrewm@0: noteIsOn_ = false; andrewm@0: shouldLookForPitchBends_ = true; andrewm@0: } andrewm@0: andrewm@0: // Reset state back to defaults andrewm@0: void MRPMapping::reset() { andrewm@0: Mapping::reset(); andrewm@0: noteIsOn_ = false; andrewm@0: shouldLookForPitchBends_ = true; andrewm@0: } andrewm@0: andrewm@0: // Set the aftertouch sensitivity on continuous key position andrewm@0: // 0 means no aftertouch, 1 means default sensitivity, upward andrewm@0: // from there andrewm@0: void MRPMapping::setAftertouchSensitivity(float sensitivity) { andrewm@0: if(sensitivity <= 0) andrewm@0: aftertouchScaler_ = 0; andrewm@0: else andrewm@0: aftertouchScaler_ = kDefaultAftertouchScaler * sensitivity; andrewm@0: } andrewm@0: andrewm@0: // This is called by another MRPMapping when it finds a pitch bend starting. andrewm@0: // Add the sending note to our list of bends, with the sending note marked andrewm@0: // as controlling the bend andrewm@0: void MRPMapping::enablePitchBend(int toNote, Node* toPositionBuffer, andrewm@0: KeyPositionTracker *toPositionTracker) { andrewm@0: if(toPositionBuffer == 0 || toPositionTracker == 0) andrewm@0: return; andrewm@0: andrewm@0: std::cout << "enablePitchBend(): this note = " << noteNumber_ << " note = " << toNote << " posBuf = " << toPositionBuffer << " posTrack = " << toPositionTracker << "\n"; andrewm@0: PitchBend newBend = {toNote, true, false, toPositionBuffer, toPositionTracker}; andrewm@0: activePitchBends_.push_back(newBend); andrewm@0: } andrewm@0: andrewm@0: // Trigger method. This receives updates from the TouchKey data or from state changes in andrewm@0: // the continuous key position (KeyPositionTracker). It will potentially change the scheduled andrewm@0: // behavior of future mapping calls, but the actual OSC messages should be transmitted in a different andrewm@0: // thread. andrewm@0: void MRPMapping::triggerReceived(TriggerSource* who, timestamp_type timestamp) { andrewm@0: if(who == 0) andrewm@0: return; andrewm@0: if(who == positionTracker_) { andrewm@0: // The state of the key (based on continuous position) just changed. andrewm@0: // Might want to alter our mapping strategy. andrewm@0: } andrewm@0: else if(who == touchBuffer_) { andrewm@0: // TouchKey data is available andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: // Mapping method. This actually does the real work of sending OSC data in response to the andrewm@0: // latest information from the touch sensors or continuous key angle andrewm@0: timestamp_type MRPMapping::performMapping() { andrewm@0: if(!engaged_) andrewm@0: return 0; andrewm@0: andrewm@0: timestamp_type currentTimestamp = keyboard_.schedulerCurrentTimestamp(); andrewm@0: float intensity = 0; andrewm@0: float brightness = 0; andrewm@0: float pitch = 0; andrewm@0: float harmonic = 0; andrewm@0: andrewm@0: // Calculate the output features as a function of input sensor data andrewm@0: if(positionBuffer_ == 0) { andrewm@0: // No buffer -> all 0 andrewm@0: } andrewm@0: else if(positionBuffer_->empty()) { andrewm@0: // No samples -> all 0 andrewm@0: } andrewm@0: else { andrewm@0: // TODO: IIR filter on the position data before mapping it andrewm@0: key_position latestPosition = positionBuffer_->latest(); andrewm@0: int trackerState = kPositionTrackerStateUnknown; andrewm@0: if(positionTracker_ != 0) andrewm@0: trackerState = positionTracker_->currentState(); andrewm@0: andrewm@0: // Get the latest velocity measurements andrewm@0: key_velocity latestVelocity = updateVelocityMeasurements(); andrewm@0: andrewm@0: // Every time we enter a state of PartialPress, check whether this key andrewm@0: // is part of a multi-key pitch bend gesture with another key that's already andrewm@0: // down. Only do this once, though, since keys that go down after we enter andrewm@0: // PartialPress state are not part of such a gesture. andrewm@0: if(shouldLookForPitchBends_) { andrewm@0: if(trackerState == kPositionTrackerStatePartialPressAwaitingMax || andrewm@0: trackerState == kPositionTrackerStatePartialPressFoundMax) { andrewm@0: // Look for a pitch bend gesture by searching for neighboring andrewm@0: // keys which are in the Down state and reached that state before andrewm@0: // this one reached PartialPress state. andrewm@0: for(int neighborNote = noteNumber_ - 2; neighborNote < noteNumber_; neighborNote++) { andrewm@0: // If one of the lower keys is in the Down state, then this note should bend it up andrewm@0: MRPMapping *neighborMapper = dynamic_cast(keyboard_.mapping(neighborNote)); andrewm@0: if(neighborMapper == 0) andrewm@0: continue; andrewm@0: if(neighborMapper->positionTracker_ != 0) { andrewm@0: int neighborState = neighborMapper->positionTracker_->currentState(); andrewm@0: if(neighborState == kPositionTrackerStateDown) { andrewm@0: // Here we've found a neighboring note in the Down state. But did it precede our transition? andrewm@0: timestamp_type timeOfDownTransition = neighborMapper->positionTracker_->latestTimestamp(); andrewm@0: timestamp_type timeOfOurPartialActivation = findTimestampOfPartialPress(); andrewm@0: andrewm@0: cout << "Found key " << neighborNote << " in Down state\n"; andrewm@0: andrewm@0: if(!missing_value::isMissing(timeOfOurPartialActivation)) { andrewm@0: if(timeOfOurPartialActivation > timeOfDownTransition) { andrewm@0: // The neighbor note went down before us; pitch bend should engage andrewm@0: cout << "Found pitch bend: " << noteNumber_ << " to " << neighborNote << endl; andrewm@0: andrewm@0: // Insert the details for the neighboring note into our buffer. The bend andrewm@0: // is controlled by our own key, and the target is the neighbor note. andrewm@0: PitchBend newBend = {neighborNote, false, false, neighborMapper->positionBuffer_, andrewm@0: neighborMapper->positionTracker_}; andrewm@0: activePitchBends_.push_back(newBend); andrewm@0: andrewm@0: // Tell the other note to bend its pitch based on our position andrewm@0: neighborMapper->enablePitchBend(noteNumber_, positionBuffer_, positionTracker_); andrewm@0: } andrewm@0: } andrewm@0: } andrewm@0: } andrewm@0: } andrewm@0: for(int neighborNote = noteNumber_ + 1; neighborNote < noteNumber_ + 3; neighborNote++) { andrewm@0: // If one of the upper keys is in the Down state, then this note should bend it down andrewm@0: MRPMapping *neighborMapper = dynamic_cast(keyboard_.mapping(neighborNote)); andrewm@0: if(neighborMapper == 0) andrewm@0: continue; andrewm@0: if(neighborMapper->positionTracker_ != 0) { andrewm@0: int neighborState = neighborMapper->positionTracker_->currentState(); andrewm@0: if(neighborState == kPositionTrackerStateDown) { andrewm@0: // Here we've found a neighboring note in the Down state. But did it precede our transition? andrewm@0: timestamp_type timeOfDownTransition = neighborMapper->positionTracker_->latestTimestamp(); andrewm@0: timestamp_type timeOfOurPartialActivation = findTimestampOfPartialPress(); andrewm@0: andrewm@0: cout << "Found key " << neighborNote << " in Down state\n"; andrewm@0: andrewm@0: if(!missing_value::isMissing(timeOfOurPartialActivation)) { andrewm@0: if(timeOfOurPartialActivation > timeOfDownTransition) { andrewm@0: // The neighbor note went down before us; pitch bend should engage andrewm@0: cout << "Found pitch bend: " << noteNumber_ << " to " << neighborNote << endl; andrewm@0: andrewm@0: // Insert the details for the neighboring note into our buffer. The bend andrewm@0: // is controlled by our own key, and the target is the neighbor note. andrewm@0: PitchBend newBend = {neighborNote, false, false, neighborMapper->positionBuffer_, andrewm@0: neighborMapper->positionTracker_}; andrewm@0: activePitchBends_.push_back(newBend); andrewm@0: andrewm@0: // Tell the other note to bend its pitch based on our position andrewm@0: neighborMapper->enablePitchBend(noteNumber_, positionBuffer_, positionTracker_); andrewm@0: } andrewm@0: } andrewm@0: } andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: shouldLookForPitchBends_ = false; andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: if(trackerState == kPositionTrackerStatePartialPressAwaitingMax || andrewm@0: trackerState == kPositionTrackerStatePartialPressFoundMax) { andrewm@0: // Look for active vibrato gestures which are defined as oscillating andrewm@0: // motion in the key velocity. They could conceivably occur at a variety andrewm@0: // of raw key positions, as long as the key is not yet down andrewm@0: andrewm@0: if(missing_value::isMissing(vibratoLastPeakTimestamp_)) andrewm@0: vibratoLastPeakTimestamp_ = currentTimestamp; andrewm@0: andrewm@0: if(vibratoVelocityPeakCount_ % 2 == 0) { andrewm@0: if(latestVelocity > kVibratoVelocityThreshold && currentTimestamp - vibratoLastPeakTimestamp_ > kVibratoMinimumPeakSpacing) { andrewm@0: std::cout << "Vibrato count = " << vibratoVelocityPeakCount_ << std::endl; andrewm@0: vibratoVelocityPeakCount_++; andrewm@0: vibratoLastPeakTimestamp_ = currentTimestamp; andrewm@0: } andrewm@0: } andrewm@0: else { andrewm@0: if(latestVelocity < -kVibratoVelocityThreshold && currentTimestamp - vibratoLastPeakTimestamp_ > kVibratoMinimumPeakSpacing) { andrewm@0: std::cout << "Vibrato count = " << vibratoVelocityPeakCount_ << std::endl; andrewm@0: vibratoVelocityPeakCount_++; andrewm@0: vibratoLastPeakTimestamp_ = currentTimestamp; andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: if(vibratoVelocityPeakCount_ >= kVibratoMinimumOscillations) { andrewm@0: vibratoActive_ = true; andrewm@0: } andrewm@0: andrewm@0: andrewm@0: if(vibratoActive_) { andrewm@0: // Update the harmonic parameter, which increases linearly with the absolute andrewm@0: // value of velocity. The value will accumulate over the course of a vibrato andrewm@0: // gesture and retain its value when the vibrato finishes. It reverts to minimum andrewm@0: // when the note finishes. andrewm@0: if(missing_value::isMissing(lastHarmonic_)) andrewm@0: lastHarmonic_ = 0.0; andrewm@0: harmonic = lastHarmonic_ + fabsf(latestVelocity) * kVibratoRateScaler; andrewm@0: std::cout << "harmonic = " << harmonic << std::endl; andrewm@0: andrewm@0: // Check whether the current vibrato has timed out andrewm@0: if(currentTimestamp - vibratoLastPeakTimestamp_ > kVibratoTimeout) { andrewm@0: std::cout << "Vibrato timed out\n"; andrewm@0: vibratoActive_ = false; andrewm@0: vibratoVelocityPeakCount_ = 0; andrewm@0: vibratoLastPeakTimestamp_ = currentTimestamp; andrewm@0: } andrewm@0: } andrewm@0: } andrewm@0: else { andrewm@0: // Vibrato can't be active in these states andrewm@0: //std::cout << "Vibrato finished from state change\n"; andrewm@0: vibratoActive_ = false; andrewm@0: vibratoVelocityPeakCount_ = 0; andrewm@0: vibratoLastPeakTimestamp_ = currentTimestamp; andrewm@0: } andrewm@0: andrewm@0: if(trackerState != kPositionTrackerStateReleaseFinished) { andrewm@0: // For all active states except post-release, calculate andrewm@0: // Intensity and Brightness parameters based on key position andrewm@0: andrewm@0: if(latestPosition > 1.0) { andrewm@0: intensity = 1.0; andrewm@0: brightness = (latestPosition - 1.0) * aftertouchScaler_; andrewm@0: } andrewm@0: else if(latestPosition < 0.0) { andrewm@0: intensity = 0.0; andrewm@0: brightness = 0.0; andrewm@0: } andrewm@0: else { andrewm@0: intensity = latestPosition; andrewm@0: brightness = 0.0; andrewm@0: } andrewm@0: andrewm@0: if(!activePitchBends_.empty()) { andrewm@0: // Look for active multi-key pitch bend gestures andrewm@0: std::vector::iterator it = activePitchBends_.begin(); andrewm@0: pitch = 0.0; andrewm@0: andrewm@0: for(it = activePitchBends_.begin(); it != activePitchBends_.end(); it++) { andrewm@0: PitchBend& bend(*it); andrewm@0: andrewm@0: if(bend.isControllingBend) { andrewm@0: // First find out of the bending key is still in a PartialPress state andrewm@0: // If not, remove it and move on andrewm@0: if((bend.positionTracker->currentState() != kPositionTrackerStatePartialPressAwaitingMax && andrewm@0: bend.positionTracker->currentState() != kPositionTrackerStatePartialPressFoundMax) andrewm@0: || !bend.positionTracker->engaged()) { andrewm@0: cout << "Removing bend from note " << bend.note << endl; andrewm@0: bend.isFinished = true; andrewm@0: continue; andrewm@0: } andrewm@0: andrewm@0: // This is the case where the other note is controlling our pitch andrewm@0: if(bend.positionBuffer->empty()) { andrewm@0: continue; andrewm@0: } andrewm@0: andrewm@0: float noteDifference = (float)(bend.note - noteNumber_); andrewm@0: key_position latestBenderPosition = bend.positionBuffer->latest(); andrewm@0: andrewm@0: // Key position at 0 = 0 pitch bend; key position at max = most pitch bend andrewm@0: float bendAmount = key_position_to_float(latestBenderPosition - kPianoKeyDefaultIdlePositionThreshold*2) / andrewm@0: key_position_to_float(1.0 - kPianoKeyDefaultIdlePositionThreshold*2); andrewm@0: if(bendAmount < 0) andrewm@0: bendAmount = 0; andrewm@0: pitch += noteDifference * bendAmount; andrewm@0: } andrewm@0: else { andrewm@0: // This is the case where we're controlling the other note's pitch. Our own andrewm@0: // pitch is the inverse of what we're sending to the neighboring note. andrewm@0: // Compared to the above case, we know a few things since we're using our own andrewm@0: // position: the buffer isn't empty and the tracker is engaged. andrewm@0: andrewm@0: if(trackerState != kPositionTrackerStatePartialPressAwaitingMax && andrewm@0: trackerState != kPositionTrackerStatePartialPressFoundMax) { andrewm@0: cout << "Removing our bend on note " << bend.note << endl; andrewm@0: bend.isFinished = true; andrewm@0: continue; andrewm@0: } andrewm@0: andrewm@0: float noteDifference = (float)(bend.note - noteNumber_); andrewm@0: andrewm@0: // Key position at 0 = 0 pitch bend; key position at max = most pitch bend andrewm@0: float bendAmount = key_position_to_float(latestPosition - kPianoKeyDefaultIdlePositionThreshold*2) / andrewm@0: key_position_to_float(1.0 - kPianoKeyDefaultIdlePositionThreshold*2); andrewm@0: if(bendAmount < 0) andrewm@0: bendAmount = 0; andrewm@0: pitch += noteDifference * (1.0 - bendAmount); andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: // Now reiterate to remove any of them that have finished andrewm@0: it = activePitchBends_.begin(); andrewm@0: andrewm@0: while(it != activePitchBends_.end()) { andrewm@0: if(it->isFinished) { andrewm@0: // Go back to beginning and look again after erasing each one andrewm@0: // This isn't very efficient but there will never be more than 4 elements anyway andrewm@0: activePitchBends_.erase(it); andrewm@0: it = activePitchBends_.begin(); andrewm@0: } andrewm@0: else andrewm@0: it++; andrewm@0: } andrewm@0: andrewm@0: std::cout << "pitch = " << pitch << std::endl; andrewm@0: } andrewm@0: else andrewm@0: pitch = 0.0; andrewm@0: } andrewm@0: else { andrewm@0: intensity = 0.0; andrewm@0: brightness = 0.0; andrewm@0: if(noteIsOn_) { andrewm@0: int newNoteNumber = noteNumber_; andrewm@0: //int newNoteNumber = ((noteNumber_ - 21) * 25)%88 + 21; andrewm@0: keyboard_.sendMessage("/mrp/midi", andrewm@0: "iii", (int)(kMIDINoteOnMessage + kDefaultMIDIChannel), (int)newNoteNumber, (int)0, LO_ARGS_END); andrewm@0: //keyboard_.testLog_ << currentTimestamp << " /mrp/midi iii " << (kMIDINoteOnMessage + kDefaultMIDIChannel) << " " << newNoteNumber << " " << 0 << endl; andrewm@0: } andrewm@0: noteIsOn_ = false; andrewm@0: shouldLookForPitchBends_ = true; andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: // TODO: TouchKeys mapping andrewm@0: andrewm@0: // Send OSC message with these parameters unless they are unchanged from before andrewm@0: if(!noteIsOn_ && intensity > 0.0) { andrewm@0: int newNoteNumber = noteNumber_; andrewm@0: //int newNoteNumber = ((noteNumber_ - 21) * 25)%88 + 21; andrewm@0: keyboard_.sendMessage("/mrp/midi", andrewm@0: "iii", (int)(kMIDINoteOnMessage + kDefaultMIDIChannel), (int)newNoteNumber, (int)127, LO_ARGS_END); andrewm@0: //keyboard_.testLog_ << currentTimestamp << " /mrp/midi iii " << (kMIDINoteOnMessage + kDefaultMIDIChannel) << " " << newNoteNumber << " " << 127 << endl; andrewm@0: noteIsOn_ = true; andrewm@0: } andrewm@0: andrewm@0: // Set key LED color according to key parameters andrewm@0: // Partial press --> green of varying intensity andrewm@0: // Aftertouch (brightness) --> green moving to red depending on brightness parameter andrewm@0: // Pitch bend --> note bends toward blue as pitch value departs from center andrewm@0: // Harmonic glissando --> cycle through hues with whitish tint (lower saturation) andrewm@0: if(intensity != lastIntensity_ || brightness != lastBrightness_ || pitch != lastPitch_ || harmonic != lastHarmonic_) { andrewm@0: if(harmonic != 0.0) { andrewm@0: float hue = fmodf(harmonic, 1.0); andrewm@0: keyboard_.setKeyLEDColorHSV(noteNumber_, hue, 0.25, 0.5); andrewm@0: } andrewm@0: else if(intensity >= 1.0) { andrewm@0: if(pitch != 0.0) andrewm@0: keyboard_.setKeyLEDColorHSV(noteNumber_, 0.33 + 0.33 * fabsf(pitch) - (brightness * 0.2), 1.0, intensity); andrewm@0: else andrewm@0: keyboard_.setKeyLEDColorHSV(noteNumber_, 0.33 - (brightness * 0.2), 1.0, 1.0); andrewm@0: } andrewm@0: else { andrewm@0: if(pitch != 0.0) andrewm@0: keyboard_.setKeyLEDColorHSV(noteNumber_, 0.33 + 0.33 * fabsf(pitch), 1.0, intensity); andrewm@0: else andrewm@0: keyboard_.setKeyLEDColorHSV(noteNumber_, 0.33, 1.0, intensity); andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: if(intensity != lastIntensity_) { andrewm@0: int newNoteNumber = noteNumber_; andrewm@0: //int newNoteNumber = ((noteNumber_ - 21) * 25)%88 + 21; andrewm@0: keyboard_.sendMessage("/mrp/quality/intensity", andrewm@0: "iif", (int)kDefaultMIDIChannel, (int)newNoteNumber, (float)intensity, LO_ARGS_END); andrewm@0: //keyboard_.testLog_ << currentTimestamp << " /mrp/quality/intensity iif " << kDefaultMIDIChannel << " " << newNoteNumber << " " << intensity << endl; andrewm@0: } andrewm@0: if(brightness != lastBrightness_) { andrewm@0: int newNoteNumber = noteNumber_; andrewm@0: //int newNoteNumber = ((noteNumber_ - 21) * 25)%88 + 21; andrewm@0: keyboard_.sendMessage("/mrp/quality/brightness", andrewm@0: "iif", (int)kDefaultMIDIChannel, (int)newNoteNumber, (float)brightness, LO_ARGS_END); andrewm@0: //keyboard_.testLog_ << currentTimestamp << " /mrp/quality/brightness iif " << kDefaultMIDIChannel << " " << newNoteNumber << " " << brightness << endl; andrewm@0: } andrewm@0: if(pitch != lastPitch_) { andrewm@0: int newNoteNumber = noteNumber_; andrewm@0: //int newNoteNumber = ((noteNumber_ - 21) * 25)%88 + 21; andrewm@0: keyboard_.sendMessage("/mrp/quality/pitch", andrewm@0: "iif", (int)kDefaultMIDIChannel, (int)newNoteNumber, (float)pitch, LO_ARGS_END); andrewm@0: //keyboard_.testLog_ << currentTimestamp << " /mrp/quality/pitch iif " << kDefaultMIDIChannel << " " << newNoteNumber << " " << pitch << endl; andrewm@0: } andrewm@0: if(harmonic != lastHarmonic_) { andrewm@0: int newNoteNumber = noteNumber_; andrewm@0: //int newNoteNumber = ((noteNumber_ - 21) * 25)%88 + 21; andrewm@0: keyboard_.sendMessage("/mrp/quality/harmonic", andrewm@0: "iif", (int)kDefaultMIDIChannel, (int)newNoteNumber, (float)harmonic, LO_ARGS_END); andrewm@0: //keyboard_.testLog_ << currentTimestamp << " /mrp/quality/harmonic iif " << kDefaultMIDIChannel << " " << newNoteNumber << " " << harmonic << endl; andrewm@0: } andrewm@0: andrewm@0: lastIntensity_ = intensity; andrewm@0: lastBrightness_ = brightness; andrewm@0: lastPitch_ = pitch; andrewm@0: lastHarmonic_ = harmonic; andrewm@0: andrewm@0: // Register for the next update by returning its timestamp andrewm@0: nextScheduledTimestamp_ = currentTimestamp + updateInterval_; andrewm@0: return nextScheduledTimestamp_; andrewm@0: } andrewm@0: andrewm@0: // Helper function that brings the velocity buffer up to date with the latest andrewm@0: // samples. Velocity is not updated on every new position sample since it's not andrewm@0: // efficient to run that many triggers all the time. Instead, it's brought up to andrewm@0: // date on an as-needed basis during performMapping(). andrewm@0: key_velocity MRPMapping::updateVelocityMeasurements() { andrewm@0: positionBuffer_->lock_mutex(); andrewm@0: andrewm@0: // Need at least 2 samples to calculate velocity (first difference) andrewm@0: if(positionBuffer_->size() < 2) { andrewm@0: positionBuffer_->unlock_mutex(); andrewm@0: return missing_value::missing(); andrewm@0: } andrewm@0: andrewm@0: if(lastCalculatedVelocityIndex_ < positionBuffer_->beginIndex() + 1) { andrewm@0: // Fell off the beginning of the position buffer. Reset calculations. andrewm@0: filteredVelocity_.clear(); andrewm@0: rawVelocity_.clear(); andrewm@0: lastCalculatedVelocityIndex_ = positionBuffer_->beginIndex() + 1; andrewm@0: } andrewm@0: andrewm@0: while(lastCalculatedVelocityIndex_ < positionBuffer_->endIndex()) { andrewm@0: // Calculate the velocity and add to buffer andrewm@0: key_position diffPosition = (*positionBuffer_)[lastCalculatedVelocityIndex_] - (*positionBuffer_)[lastCalculatedVelocityIndex_ - 1]; andrewm@0: timestamp_diff_type diffTimestamp = positionBuffer_->timestampAt(lastCalculatedVelocityIndex_) - positionBuffer_->timestampAt(lastCalculatedVelocityIndex_ - 1); andrewm@0: key_velocity vel; andrewm@0: andrewm@0: if(diffTimestamp != 0) andrewm@0: vel = calculate_key_velocity(diffPosition, diffTimestamp); andrewm@0: else andrewm@0: vel = 0; // Bad measurement: replace with 0 so as not to mess up IIR calculations andrewm@0: andrewm@0: // Add the raw velocity to the buffer andrewm@0: rawVelocity_.insert(vel, positionBuffer_->timestampAt(lastCalculatedVelocityIndex_)); andrewm@0: lastCalculatedVelocityIndex_++; andrewm@0: } andrewm@0: andrewm@0: positionBuffer_->unlock_mutex(); andrewm@0: andrewm@0: // Bring the filtered velocity up to date andrewm@0: key_velocity filteredVel = filteredVelocity_.calculate(); andrewm@0: //std::cout << "Key " << noteNumber_ << " velocity " << filteredVel << std::endl; andrewm@0: return filteredVel; andrewm@0: } andrewm@0: andrewm@0: // Helper function that locates the timestamp at which this key entered the andrewm@0: // PartialPress (i.e. first non-idle) state. Returns missing value if the andrewm@0: // state can't be located. andrewm@0: timestamp_type MRPMapping::findTimestampOfPartialPress() { andrewm@0: if(positionTracker_ == 0) andrewm@0: return missing_value::missing(); andrewm@0: if(positionTracker_->empty()) andrewm@0: return missing_value::missing(); andrewm@0: //Node::reverse_iterator it = positionTracker_->rbegin(); andrewm@0: Node::size_type index = positionTracker_->endIndex() - 1; andrewm@0: bool foundPartialPressState = false; andrewm@0: timestamp_type earliestPartialPressTimestamp; andrewm@0: andrewm@0: // Search backwards from present andrewm@0: while(index >= positionTracker_->beginIndex()/*it != positionTracker_->rend()*/) { andrewm@0: if((*positionTracker_)[index].state == kPositionTrackerStatePartialPressAwaitingMax || andrewm@0: (*positionTracker_)[index].state == kPositionTrackerStatePartialPressFoundMax) { andrewm@0: cout << "index " << index << " state " << (*positionTracker_)[index].state << endl; andrewm@0: foundPartialPressState = true; andrewm@0: earliestPartialPressTimestamp = positionTracker_->timestampAt(index); andrewm@0: } andrewm@0: else { andrewm@0: // This state is not a PartialPress state. Two cases: either andrewm@0: // we haven't yet encountered a partial press or we have found andrewm@0: // a state before the partial press, in which case the previous andrewm@0: // state we found was the first. andrewm@0: cout << "index " << index << " state " << (*positionTracker_)[index].state << endl; andrewm@0: if(foundPartialPressState) { andrewm@0: return earliestPartialPressTimestamp; andrewm@0: } andrewm@0: } andrewm@0: andrewm@0: // Step backwards one sample, but stop if we hit the beginning index andrewm@0: if(index == 0) andrewm@0: break; andrewm@0: index--; andrewm@0: } andrewm@0: andrewm@0: if(foundPartialPressState) andrewm@0: return earliestPartialPressTimestamp; andrewm@0: andrewm@0: // Didn't find anything if we get here andrewm@0: return missing_value::missing(); andrewm@0: }