Mercurial > hg > touchkeys
view Source/Mappings/OnsetAngle/TouchkeyOnsetAngleMapping.cpp @ 20:dfff66c07936
Lots of minor changes to support building on Visual Studio. A few MSVC-specific #ifdefs to eliminate things Visual Studio doesn't like. This version now compiles on Windows (provided liblo, Juce and pthread are present) but the TouchKeys device support is not yet enabled. Also, the code now needs to be re-checked on Mac and Linux.
author | Andrew McPherson <andrewm@eecs.qmul.ac.uk> |
---|---|
date | Sun, 09 Feb 2014 18:40:51 +0000 |
parents | 3580ffe87dc8 |
children |
line wrap: on
line source
/* TouchKeys: multi-touch musical keyboard control software Copyright (c) 2013 Andrew McPherson This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ===================================================================== TouchkeyOnsetAngleMapping.cpp: per-note mapping for the onset angle mapping, which measures the speed of finger motion along the key surface at the time of MIDI note onset. */ #include "TouchkeyOnsetAngleMapping.h" #include "../MappingFactory.h" #define DEBUG_NOTE_ONSET_MAPPING // Class constants const int TouchkeyOnsetAngleMapping::kDefaultFilterBufferLength = 30; const timestamp_diff_type TouchkeyOnsetAngleMapping::kDefaultMaxLookbackTime = milliseconds_to_timestamp(100); const int TouchkeyOnsetAngleMapping::kDefaultMaxLookbackSamples = 3; // Main constructor takes references/pointers from objects which keep track // of touch location, continuous key position and the state detected from that // position. The PianoKeyboard object is strictly required as it gives access to // Scheduler and OSC methods. The others are optional since any given system may // contain only one of continuous key position or touch sensitivity TouchkeyOnsetAngleMapping::TouchkeyOnsetAngleMapping(PianoKeyboard &keyboard, MappingFactory *factory, int noteNumber, Node<KeyTouchFrame>* touchBuffer, Node<key_position>* positionBuffer, KeyPositionTracker* positionTracker) : TouchkeyBaseMapping(keyboard, factory, noteNumber, touchBuffer, positionBuffer, positionTracker), pastSamples_(kDefaultFilterBufferLength), maxLookbackTime_(kDefaultMaxLookbackTime), startingPitchBendSemitones_(0), lastPitchBendSemitones_(0), rampBeginTime_(missing_value<timestamp_type>::missing()), rampLength_(0) { } // Reset state back to defaults void TouchkeyOnsetAngleMapping::reset() { ScopedLock sl(sampleBufferMutex_); TouchkeyBaseMapping::reset(); pastSamples_.clear(); } // Resend all current parameters void TouchkeyOnsetAngleMapping::resend() { // Message is only sent at release; resend may not apply here. } // This method receives data from the touch buffer or possibly the continuous key angle (not used here) void TouchkeyOnsetAngleMapping::triggerReceived(TriggerSource* who, timestamp_type timestamp) { if(who == touchBuffer_) { ScopedLock sl(sampleBufferMutex_); // Save the latest frame, even if it is an empty touch (we need to know what happened even // after the touch ends since the MIDI off may come later) if(!touchBuffer_->empty()) pastSamples_.insert(touchBuffer_->latest(), touchBuffer_->latestTimestamp()); } } // Mapping method. This actually does the real work of sending OSC data in response to the // latest information from the touch sensors or continuous key angle timestamp_type TouchkeyOnsetAngleMapping::performMapping() { timestamp_type currentTimestamp = keyboard_.schedulerCurrentTimestamp(); if(rampLength_ != 0 && currentTimestamp <= rampBeginTime_ + rampLength_) { float rampValue = 1.0 - (float)(currentTimestamp - rampBeginTime_)/(float)rampLength_; lastPitchBendSemitones_ = startingPitchBendSemitones_ * rampValue; #ifdef DEBUG_NOTE_ONSET_MAPPING std::cout << "onset pitch = " << lastPitchBendSemitones_ << endl; #endif sendPitchBendMessage(lastPitchBendSemitones_); } else if(lastPitchBendSemitones_ != 0) { lastPitchBendSemitones_ = 0; #ifdef DEBUG_NOTE_ONSET_MAPPING std::cout << "onset pitch = " << lastPitchBendSemitones_ << endl; #endif sendPitchBendMessage(lastPitchBendSemitones_); } // Register for the next update by returning its timestamp nextScheduledTimestamp_ = currentTimestamp + updateInterval_; return nextScheduledTimestamp_; } void TouchkeyOnsetAngleMapping::processOnset(timestamp_type timestamp) { sampleBufferMutex_.enter(); // Look backwards from the current timestamp to find the velocity float calculatedVelocity = missing_value<float>::missing(); bool touchWasOn = false; int sampleCount = 0; #ifdef DEBUG_NOTE_ONSET_MAPPING std::cout << "processOnset begin = " << pastSamples_.beginIndex() << " end = " << pastSamples_.endIndex() << "\n"; #endif if(!pastSamples_.empty()) { Node<KeyTouchFrame>::size_type index = pastSamples_.endIndex() - 1; Node<KeyTouchFrame>::size_type mostRecentTouchPresentIndex = pastSamples_.endIndex() - 1; while(index >= pastSamples_.beginIndex()) { #ifdef DEBUG_NOTE_ONSET_MAPPING std::cout << "examining sample " << index << " with " << pastSamples_[index].count << " touches and time diff " << timestamp - pastSamples_.timestampAt(index) << "\n"; #endif if(timestamp - pastSamples_.timestampAt(index) >= maxLookbackTime_) break; if(pastSamples_[index].count == 0) { if(touchWasOn) { // We found a break in the touch; stop here. But don't stop // if the first frames we consider have no touches. if(index < pastSamples_.endIndex() - 1) index++; break; } } else if(!touchWasOn) { mostRecentTouchPresentIndex = index; touchWasOn = true; } if(sampleCount++ >= kDefaultMaxLookbackSamples) break; // Can't decrement past 0 in an unsigned type if(index == 0) break; index--; } // If we fell off the beginning of the buffer, back up. if(index < pastSamples_.beginIndex()) index = pastSamples_.beginIndex(); // Need at least two points for this calculation to work timestamp_type endingTimestamp = pastSamples_.timestampAt(mostRecentTouchPresentIndex); timestamp_type startingTimestamp = pastSamples_.timestampAt(index); if(endingTimestamp - startingTimestamp > 0) { float endingPosition = pastSamples_[mostRecentTouchPresentIndex].locs[0]; float startingPosition = pastSamples_[index].locs[0]; calculatedVelocity = (endingPosition - startingPosition) / (endingTimestamp - startingTimestamp); } else { // DEBUG #ifdef DEBUG_NOTE_ONSET_MAPPING std::cout << "Found 0 timestamp difference on key onset (indices " << index << " and " << pastSamples_.endIndex() - 1 << "\n"; #endif } } else { #ifdef DEBUG_NOTE_ONSET_MAPPING std::cout << "Found empty touch buffer on key onset\n"; #endif } sampleBufferMutex_.exit(); if(!missing_value<float>::isMissing(calculatedVelocity)) { #ifdef DEBUG_NOTE_ONSET_MAPPING std::cout << "Found onset velocity " << calculatedVelocity << " on note " << noteNumber_ << std::endl; #endif if(calculatedVelocity > 6.0) calculatedVelocity = 6.0; if(calculatedVelocity > 1.5) { startingPitchBendSemitones_ = -1.0 * (calculatedVelocity / 5.0); rampLength_ = milliseconds_to_timestamp((50.0 + calculatedVelocity*25.0)); rampBeginTime_ = keyboard_.schedulerCurrentTimestamp(); } else rampLength_ = 0; sendOnsetAngleMessage(calculatedVelocity); } } void TouchkeyOnsetAngleMapping::sendOnsetAngleMessage(float onsetAngle, bool force) { if(force || !suspended_) { keyboard_.sendMessage("/touchkeys/onsetangle", "if", noteNumber_, onsetAngle, LO_ARGS_END); } } // Send the pitch bend message of a given number of a semitones. Send by OSC, // which can be mapped to MIDI CC externally void TouchkeyOnsetAngleMapping::sendPitchBendMessage(float pitchBendSemitones, bool force) { if(force || !suspended_) keyboard_.sendMessage("/touchkeys/scoop", "if", noteNumber_, pitchBendSemitones, LO_ARGS_END); }