# HG changeset patch # User csong # Date 1430136610 -3600 # Node ID bae079ff88e2f7e43df8ddb32f7faf952e635328 # Parent 1abc08dbde499cdcee0cc847dd45281d8ea14f31# Parent 79ce0dd919468380358e005a8fc407ef55a739ab Merge diff -r 79ce0dd91946 -r bae079ff88e2 SMC2015latex/images/allmodels.pdf Binary file SMC2015latex/images/allmodels.pdf has changed diff -r 79ce0dd91946 -r bae079ff88e2 SMC2015latex/section/dataset.tex --- a/SMC2015latex/section/dataset.tex Mon Apr 27 12:51:49 2015 +0100 +++ b/SMC2015latex/section/dataset.tex Mon Apr 27 13:10:10 2015 +0100 @@ -1,2 +1,12 @@ -\section{Data Set} -\label{sec:data} \ No newline at end of file +\section{Syncopation Dataset} +\label{sec:data} + +The major outcome of the SynPy toolkit is to provide prediction of the level of syncopation of a certain rhythm pattern, or none if not applicable. As a demonstration, we apply all seven syncopation models on the rhythms in the syncopation perceptual dataset in~\cite{Song14thesis, Song13}. This dataset includes 27 monorhythms in 4/4 meter, 36 monorhythms in 6/8 and 48 polyrhythms in 4/4, altogether 111 rhythm-stimuli. + +\begin{figure} +\centerline{\epsfig{figure=images/allmodels.pdf, width=\columnwidth}} +\caption{\textbf{Syncopation predictions of seven models for the syncopation dataset}.} +\label{fig:modelpredictions} +\end{figure} + +Figure~\ref{fig:modelpredictions} plots the syncopation predictions of individual model for each rhythm. It shows that each model has different ranges of prediction and applicable scope of rhythm categories (consistent with Table~\ref{ta:capabilities}. \ No newline at end of file